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ABSTRACT 
Movie shots categorization may be approached by using audio 
and visual features for inferring high-level information about a 
movie shot. Low-level audio and visual features such as color and 
MFCC and mid-level features such as sky and speech detection 
have been used in multimedia understanding research. However, 
integrating all this features in a classifier remains a subject of 
study. In this paper, we propose a multimedia SVM fusion model, 
presented in Figure 1, for integrating knowledge from low-level 
and semantic features extracted from auditory and visual signal 
for scene classification of movie shots. We also compare our 
method with common approaches for feature integration based on 
Bayesian Network. Our computational results show that our 
model can achieve significantly better and more stable 
performance than other strategies. 

Categories and Subject Descriptors 
D.3.3 [Artificial Intelligence]: Vision and scene understanding – 
video analysis.  

General Terms 
Theory, Design, Performance. 

Keywords 
Multimodal information fusion, statistical modeling, video 
indexing, SVM, Bayesian network, early fusion, late fusion. 

1. INTRODUCTION 
Large digital video libraries require tools for representing, 
searching, retrieving content. One possibility is the query-by-
example (QBE) approach, in which users provide (usually visual) 
examples of the content they seek. However, such schemes have 
some obvious limitations, and since most users wish to search in 
terms of semantic-concepts rather than by visual content [1], work 
in the video retrieval area has begun to shift from QBE to query-

by-keyword (QBK) approaches, which allow the users to search 
by specifying their query in terms of a limited vocabulary of 
semantic concepts. 
Semantic concepts are estimated by classification algorithm. Shot 
classification commonly means grouping shots into semantically 
meaningful categories based on the available training data. 
However, although some work [2,3,4] has been done in this field, 
little results have been obtained to satisfy user’s expectations.  
Shot classification is still a challenging and important problem in 
compute vision recently.  
 

 
 

Figure 1. Multimedia shot localization scheme. 
The scene categorization, which classifies movie shots into 
meaningful semantic scenes, is a major issue in movie analysis. 
Knowledge of the scene type of a movie shot is useful in shot 
event classification that constitutes a fundamental component of 
automatic albuming systems [5]. Scene categorization is also 
valuable in shot retrieval from databases because it provides 
understanding of scene content that can be used along with color, 
texture, and shape for database browsing. This semantic 
representation is also used for movie scene segmentation, which 
constitutes fundamental components of movie management 
systems. These systems performs structuring and categorization of 
the image and audio signal from movies. 
The general problem of automatic scene categorization is difficult 
to solve and is best approached by a divide-and-conquer strategy. 
A good first step is to consider only two classes such as indoor vs 
outdoor [6,7], which may be further subdivided into city vs 
landscape [8,9], etc. 
Scene categorization is often approached by computing low-level 
features from the visual signal, which are processed with a 
classifier engine for inferring high-level information about the 
shot [6,8].  One problem with the methods using low-level 
features in scene categorization is that it is often difficult to 
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generalize these methods to diverse shot data beyond the training 
set. More importantly, they lack semantic interpretation that is 
extremely valuable in determining the scene type. Scene content 
such as the presence of people, sky, grass, etc., may be used as 
cues for improving the classification performance obtained by 
low-level features alone [7]. 
In general, two modalities exist in video, namely the auditory and 
the visual modality. Most of the actual systems only use visual 
signal for scene classification. But at present, there is enough 
experimental evidence to state that semantic video analysis yields 
the most effective index when a multimodal approach is adhered 
[10,11]. Environmental cues related to place and type of activity, 
can be utilized to improve classification performance. 
Environmental sounds and background sounds in places like the 
office, classrooms, streets, train stations and cafes can be a rich 
source of information for inferring scene types.  
Using low-level and semantic features from auditory and visual 
signal for inferring high-level information may thus approach 
movie shots categorization. One of the issues when dealing with a 
diverse set of features is how to integrate them into a 
classification engine.  Pioneering approaches for features fusion 
focused on indexing of specific concepts only, e.g. [12]. In these 
cases a rule-based combination method yields adequate results. 
Drawbacks of such approaches, however, are the lack of 
scalability and robustness. To cope with both issues, a recent trend 
in semantic video analysis is generic indexing approaches using 
machine learning [10,11]. 
In this article we propose a SVM approach for the integration of 
low-level features and semantic features from auditory and visual 
signal of movie shots. This approach improves the classification 
performance over using visual low-level features alone.  
The rest of the paper is organized as follows. In the next section, 
related work on feature fusion is reviewed. The multimedia 
feature set used for inferring shot categorization is presented in 
Sect. 3.  In Sect. 4, we present a comparison of the two principal 
classifiers used for feature fusion, namely Bayesian network and 
SVM. In Sect. 5, we introduce and compare two general schemes 
for feature fusion, early and late fusion. In Sect. 6, we determine 
the best fusion model by experiments over real-world movie 
shots, and some potential application domains of the proposed 
strategies are outlined. Concluding remarks are given in Sect. 7. 

2. RELATED WORK 
Query using keywords representing semantic-concepts has 
motivated recent research in semantic media indexing [13,14, 7, 
8]. Recent attempts to introduce semantics in the structuring and 
classification of videos include [16,17].  
Naphade et al. [13] present a novel probabilistic framework for 
semantic video indexing by learning probabilistic multimedia 
representations of semantic events to represent keywords and key 
concepts. They define probabilistic multimedia objects 
(multijects) to map low-level media features to semantic labels. A 
graphical network of such multijects (multinet) captures scene 
context by discovering intra-frame as well as inter-frame 
dependency relations between the semantic concepts. The authors 
place all the concepts on the same semantic level. They can 
belong to different basic categories: objects (car, man, helicopter), 
place (external, beach), or events (explosion, man which goes), 
and they are connected by a statistical relation to the low-level 
features they are associated. Intuitively it is clear that the 
presence of certain multijects suggests a high possibility of 
detecting certain other multijects. Similarly some multijects are 

less likely to occur in the presence of others. The detection of sky 
and water boosts the chances of detecting a beach, and reduces 
the chances of detecting Indoor. It might also be possible to detect 
some concepts and infer more complex concepts based on their 
relation with the detected ones. Detection of human speech in the 
audio stream and a face in the video stream may lead to the 
inference of human talking.  
The disadvantage of the multinet is that it must consider the 
relations between all the concepts of the ontology. In our case the 
significant number of concepts and features makes computing 
time prohibitory. It is thus necessary to eliminate certain irrelevant 
relations between concepts as between man and sky for example. 
A solution is to create a hierarchy to explicitly represent semantic-
concepts using a basis of other semantic-concepts. 
[18] begins by assuming the a priori definition of a set of atomic 
semantic-concepts or mid-level features (objects, scenes, and 
events) which is assumed to be broad enough to cover the 
semantic query space of interest. By atomic mid-level features, 
they mean concepts such as sky, music, water, speech, and so 
forth, which cannot be decomposed or represented 
straightforwardly in terms of other concepts. Concepts that can be 
described in terms of other concepts are then defined as high-level 
concepts. Clearly, the definition of high-level concepts depends, 
to some extent, on the variety of mid-level concepts defined. Note 
that these concepts are defined independently of the modality in 
which they are naturally expressed (i.e., an atomic concept can be 
multimodal and a high-level concept can be unimodal etc.). 
The challenges are then:  Firstly, high-level concepts must be 
linked to the presence (or absence) of other concepts (either 
within a modality or across) and statistical models for combining 
these concept models into a high-level model must be chosen. 
Secondly, cutting across these levels, information from multiple 
modalities must be integrated or fused. Fusion could occur at 
various levels: low-level features, within atomic concept models, 
or by combining several atomic-concept models within a 
multimodal high-level concept models. 
The first challenge is considered by assuming a priori definition of 
the set of low-level and mid-level features relevant to the higher-
level concept. Then retrieval of the high-level concepts is a 
multiclass classification problem. It is amenable by the modeling 
of class conditional densities with Bayesian network [17,19,20] or 
more discriminative techniques such as SVMs [18]. 
For the second challenge, we identify two general fusion 
strategies within the machine-learning trend to semantic video 
analysis, namely: early fusion [21] and late fusion [10,11,22,41]. 
In the early fusion model, after analysis of the various unimodal 
streams, the extracted features are combined into a single 
representation before classification. The late fusion learns 
semantic high-level concepts directly from unimodal features. 
Then scores from auditory and visual classification are combined 
to yield a final multimedia classification. The question arises 
whether early fusion or late fusion is the preferred method for 
semantic multimedia video analysis. 
In this paper we present a comparison of multiple fusion models 
based on these techniques. The analysis of the particular 
dependence relations between low-level and mid-level semantic 
features, on one hand, and between auditory and visual features, 
on the other hand, will permit to select the best 
fusion/classification model for the multimedia localization of 
movie shots. In the next section we present the set of features 
relevant to the high-level localization concepts 



3. DATA EXTRACTION 
One of the keys of any content analysis algorithm is the type of 
features employed for the analysis. These features must be able to 
discriminate among different target scene classes. Some of them 
may be designed for specific tasks, while others are more general 
and may be useful for a variety of applications. In this section we 
remind the definition of a movie shot, then we review the features 
used for our classification task.  
3.1 Shot segmentation 
The apparition of shots is leaned to the invention of camera. A 
shot is a video sequence that consists of continuous movie images 
for one camera action. We extend this definition to include 
auditory signal by supposing that a multimedia shot is the images 
sequence between two visual transitions (cut, fade…) associated 
with the synchronous auditory signal. 
 

 

Figure 2. Movie shots segmentation. 
Although we consider that shots are multimedia as they convey 
auditory and visual signal, movie shots are segmented using 
image alone. Indeed, the auditory signal is often continuous along 
two consecutive shots. After the seminal work of Nagasaka and 
Tanaka in 1990 [23], work has been done for detecting shot 
boundaries in a video flow. Many researchers [24,25] have 
focused on trying to detect the different kinds of shot transitions 
that occur in video. The TREC video track 2001 [26] compared 
different temporal segmentation approached, and if the detection 
of cuts between shots is usually successful, the detection of fades 
does not achieve very high success rates. 
For our use, a standard algorithm was developed by [27]; it 
realizes shots segmentation by local maxima detection of an 
observation function. This function is based on a wavelet 
transform of the colour and luminosity of images within the film. 
The algorithm is optimized to over-segment the signal, nearly 
every transition is detected as recall=98% and some false alarm 
are spotted as precision=86%. 
The audio features describing a shot are extracted from the 
integrality of the auditory signal from a shot. 
As far as image is concerned, we remarked that extracting the set 
of visual features from each image or frame of a shot would make 
the processing time prohibitory. In addition, we suppose that 
content within a shot is homogeneous. This observation results in 
supporting a treatment of segments of images rather than a 
treatment image by image. Many approaches thus reduce the 
problem of the content extraction of a segment to the features 
processing of only one image per considered segment. Several 
algorithms were developed in order to determine the average 
image or summary of an image sequence [28]. It is also possible 

to extract statistics (e.g.: mean, standard deviation) from the low-
level features of the images of the sequence [29]. But this 
technique supposes features extraction from every image, which is 
time consuming. Thus we choused to extract from each shot a 
“mean” image. This image is the local minima of the observation 
function within a shot: it is the closest image (visually speaking) 
from its neighbours images in the shot. Content features are 
extracted from this image, which, we suppose, contains enough 
information about the shot it summarizes. The Figure 2 presents 
the multimedia shots segmentation. 
 
3.2 Low-level features 
3.2.1 Auditory low-level features 
Auditory low-level features should be selected so that they are 
relevant for the specific scene classification task. Environmental 
sounds provide many contextual cues that enable us to recognize 
important aspects of our surroundings. We selected cepstral 
coefficients features, as they are known to be a good signature of 
environmental sounds [28]. They express the energy distribution 
of sounds in a mel-scaled frequency space.  
The feature vector Laud, containing the cepstral coefficient, is the 
final result of the low-level auditory features extraction stage. 
3.2.2 Visual low-level features 
Visual low-level features are selected so that they describe the 
physical characteristics of places. Multiple low-level features may 
describe material and structural content of places. Identifying 
chromaticity and lighting conditions of a place is a good first 
approach. These characteristics are represented by a basic color-
histogram [30]. The texture of the particular elements present in a 
place may also be a good signature. We use a texture histogram 
founded on local-edge pattern (LEP). Contours of the image are 
initially calculated with a 3x3 Sobel filter. After thresholding, a 
binary image of contours is obtained. Then, for each pixel of this 
image, the 3x3 window around this pixel is considered. There is 
2^9 = 512 possible configurations. To each central pixel the 
number of the associated configuration is listed. It is then possible 
to build a 512 components histogram.  It was shown that this 
feature, called TextureLEP, provides good performances in image 
retrieval by similarity [30]. Thus we expect it to well reflect the 
signature of  places. 
The feature vector Lvis, containing the color and TextureLEP 
histograms, is the final result of the low-level visual features 
extraction stage. 

3.3 Semantic features 
3.3.1 Auditory semantic features 
We believe that the presence of certain types of audio signal may 
give some indication on the localization of the action in films. 
Thus, classification of audio in speech, music, ambient-sounds, 
silence may present an interest for classifying shots.  
These semantic features are extracted by classifying a set of 
selected low-level features containing zero crossing rate, 4 Hz 
modulation and others, noted LMaud. In the simplest form, we 
model a mid-level semantic concept Maud (audio type here) as a 
set of class conditional probability density function over a feature 
space. For the semantic-concept audio type and a feature 
observation, we choose the label as the set of classes conditional 
density knowing the observed features, stored in the vector Maud. 
The concept is then represented in a semantic space by the 
relevance rates of its classification estimated by the classifier. 



Each dimension of the vector expresses the confidence in the 
automatic classification of a shot in the selected class Ci. 
 

Maud = {P(LMaud|Maud=Ci)}i=1..n                  (1) 
 

A large variety of supervised machine learning approaches exists 
to learn the relation between a concept M and pattern L. For our 
purpose, the method of choice should handle typical problems 
related to semantic video analysis. Namely, it must learn from few 
examples, handle unbalanced data, and account for unknown or 
erroneous detected data. In such heavy demands, the Support 
Vector Machine (SVM) framework [31] is a solid choice. We 
convert the SVM output using Genoud’s method [32] to acquire a 
measure in the form of conditional probabilities used here. 
 

3.3.2 Visual semantic features 
Semantic visual features that describe the scene set of an action 
may also indicate the localization of a shot. Scene content such as 
the presence of people, sky, grass, etc., may be used as cues for 
improving the classification performance obtained by low-level 
features alone [19]. 
 

 
 

Figure 3. Texture and object detections. 
For object detection in images, we use the Adaboost classification 
scheme developed by [33]. The author describes a visual object 
detection framework that is capable of processing images 
extremely rapidly while achieving high detection rates. The 
system yields faces and objects (cars, artificial lighting) detection 
performance comparable to the best previous systems. 
 The identification of particular texture in the background (sky, 
grass, building, snow, sand, dirt, buildings) in shots is also used 
[34]. First homogeneous background regions are segmented by a 
image segmentation algorithm based on hierarchical LPE defined 
in [35], Then regions are classified using SVM classifier learned 
on a texture database.  
Both identification algorithm shows performance of 80% of 
detection rate, which is largely sufficient for our application. 
Figure 3 presents an example of texture and object detections.  
These semantic features are extracted by classifying a set of 
selected low-level features. We model a semantic-concept (car, 
sky) as binary variable equal to 1 when concept is present and 0 
when absent. Each concept is represented by the conditional 
probability density function that it is present over a feature space. 
For each semantic-concept Mvis,i and a feature observation 
LMvis,i, we choose the label as the class equal present conditional 
density knowing the observed feature. Each concept is then 
represented by the relevance rate of its classification estimated by 
the classifier. Then the scores are stored in the vector Mvis. Each 
dimension of the vector expresses the confidence in the associated 
concept being present.  

Mvis = {P(LMvis,i|Mvis,i=1)}i=1..n            (2) 
 

For both classifier the Adaboost and SVM we convert the output 
using Genoud’s method [32] to acquire a measure in the form of 
conditional probabilities used here. 

3.4 Fusion of low-level and semantic features 
For both auditory and visual signal, low-level and semantic 
features are concatenated, so that the segmentation algorithm may 
analyze the set of features. We obtain one feature vector per shot.  
Features used here come from different extraction models. They 
describe multiple physical characteristics and media. Therefore, it 
is necessary to apply standardization: for each dimension of the 
vector the mean is set to 0 and the deviation is set to 1. This 
normalization gives the same weight to every physical 
characteristic in the classification process. 
 

4. CLASSIFICATION ALGORITHM 
Semantic indexing in movie is perceived as a pattern recognition 
problem. Given a shot S the aim is to obtain a measure that 
indicates the value of a high-level semantic concept H (e.g. 
H=indoor or outdoor). To obtain a pattern representation from 
multimodal movie we rely on feature extraction and classification. 
Bayesian network and support vector machine differ in the way 
they classify the results of the features extraction.  

4.1 Classification scheme 
Our assumption is that high-level semantic concept may be 
inferred by both low-level and mid-level features. We start our 
discussion by the simplest case shown in Figure 4.  

 
 

Figure 4. Features relation in the classification scheme. 
Suppose a high-level semantic concept H (e.g. H=indoor/ 
outdoor). Suppose that this concept may be inferred by one low-
level feature L (e.g. L=color histogram) and one medium-level 
concept M (e.g. M=car=1/0). The value of M is obtained by the 
classification of a set of low-level features LM. Then the 
hierarchical schema shown in Figure 4 represents the dependence 
relationships between all this features. The aim of the 
classification system is to estimate the value of semantic concepts, 
the mid-level (car=1/0) and the high-level (H=indoor/outdoor) 
from the set of observed low-level features.  
The challenge of the classification scheme is then to take 
advantage of the dependence relation between the content 
features: (1) Mid-level and high-level concept are connected by a 
particular statistical relation. Intuitively it is clear that the 
presence of a car suggests a high possibility of detecting outdoor 
(down-up relation). Similarly the detection of a car is less likely to 
occur in an indoor scene (up-down relation). The relation between 
M and H is bidirectional. (2) As both low-level and mid-level 
feature influence the classification of the high-level concept it is 
important to use the correlation between low and mid level 
features in the mixed feature space 



Next we will discuss the ability of both Bayesian network and 
SVM to consider these relations in their classification. 

4.2 Bayesian network 
Bayesian or belief networks provide an effective knowledge 
representation and inference engine in artificial intelligence and 
can be used in a variety of media understanding applications 
[17,19,20,36].  
4.2.1 Generalities on Bayesian network 
Bayes networks (BN) are directed, acyclic graphs that encode the 
cause-effect and conditional independence relationships among 
variables in the probabilistic reasoning system [37]. The network 
structure can easily incorporate domain-specific knowledge and a 
complicated joint probability distribution can be reduced to a set 
of conditionally independent relationships that are easier to 
characterize. Thus, a Bayes network can be used to represent the 
dependence relationships between various features that are 
represented by random variables at the nodes of the network. The 
directions of links represent causality and the links between the 
nodes, or variables, represent the conditional probabilities of 
inferring the existence of one variable (destination) given the 
existence of the other variable (source). Probabilistic reasoning 
uses the joint probability distribution of a given domain to answer 
a question about this domain. According to Bayes’ rule, the 
posterior probability can be expressed by the joint probability, 
which can be further expressed by conditional probability and 
prior probability. With Bayes networks, the computation of the 
joint probability distribution over the entire system given partial 
evidences about the state of the system is greatly simplified by 
using Bayes’ rule to exploit the conditional independence 
relationships among variables.  
Bayesian networks offer several advantages: explicit uncertainty 
characterization, fast and efficient computation, and quick 
training. They are highly adaptive and easy to build, and provide 
explicit representation of domain-specific knowledge in human 
reasoning framework. We found that for our applications, Bayes 
networks offer good generalization with limited training data, 
easy maintenance when adding new features or new training data, 
and convenience in building performance-scalable versions by 
pruning features. 
4.2.2 Bayesian network integration 
The hierarchical relation between features in our classification 
scheme may be represented by the Bayesian network structure 
shown in Figure 4. The network integrates low-level, mid-level 
and high-level features. The joint probability function encoded by 
this Bayesian network is: 
 

P(H,L,M,LM)=P(H)P(L|H)P(M|H)P(LM|M)  (2) 
 
The general classification of the shot S consists in allotting the 
values of the concepts M and H which maximize the joint 
probability of observing these concepts and the low-level features. 
This probability may be expressed by the product of three terms. 
(1) P(H) is the marginal probability of  observing one of the class. 
This term may be estimated by counting the ground truth 
examples, here we prefer to set it equal for each class from the 
considered high-level concept (e.g. P(H)=0.5 for indoor-outdoor). 
(2) The second term is the conditional probability of observing the 
low-level features attached to H, knowing the value of the concept 
H.  This term represents the weight of the low-level features in the 
global classification. (3) The third term is the produce of the joint 

probability of observing the mid-level feature M knowing H and 
the joint probability to observe the low-level feature attached to M 
knowing M. This term represents the weight of the mid-level 
feature M in the classification of H. 
We will know discuss the ability of the Bayesian network to 
consider the dependence relation between the content features: 
correlation and hierarchical relation. 
The correlation between the low-level and the mid-level features 
is expressed by the product of the second and third term. In this 
product each feature type gives its weight for the classification. 
The observations of features are considered independent knowing 
H. In the facts the independence assumption of low and mid-level 
features does not seem valid. The BN overestimates the 
importance of the dependent features. 
A far as hierarchical relation is concerned; the maximization of 
the global joint probability authorizes the bidirectional relation. 
The down-up relation is considered as low and mid-level features 
will influence the estimated value of the high-level concept H, this 
is our main goal. Moreover, up-down relation is considered, the 
estimated value of H may influence the value of M. For example, 
In a indoor scene, a car is detected with a low confidence 
(P(LM|M=car present)=0.6). The probability of M=car present 
knowing H=indoor (P(M=car present|H=indoor)=0.02) is low. 
So, if the probability of detecting H= indoor from the low-level 
features (P(L|H=indoor)) is high, the global maximization will 
estimate the value of M as M=car absent even if the low-level 
features attached to M gives the opposite estimation. This 
characteristic may be interesting when mid-level classification 
may be wrong, but it causes errors for some particular scenes as 
shots from an underground car park. 

4.3 Support vector machine 
From Bayes classifier to neural networks, there are many possible 
choices for an appropriate classifier. Among these, support vector 
machines (SVMs) would appear to be a good candidate because of 
their ability to generalize in high-dimensional spaces without the 
need to add a prior knowledge. The appeal of SVMs is based on 
their strong connection to the underlying statistical learning 
theory. That is, an SVM is an appropriate implementation of the 
structural risk minimization method [31]. For several pattern 
classification applications [18,38,39], SVMs have been shown to 
provide better generalization performance than traditional 
techniques such as neural networks and BN [40].  
4.3.1 Support vector machine generalities 
The classification task involves training and testing data, which 
consist of some data instances. Each instance in the training set 
contains one “target value” (class labels) and several “attributes” 
(features). The goal of SVM is to produce a model, which predicts 
target value of data instances in the testing set that are given only 
the attributes. 
Training vectors are mapped into a higher (maybe infinite) 
dimensional space by a learned function. Then SVM finds a linear 
separating hyperplane with the maximal margin in this higher 
dimensional space. The mapping function is estimated through the 
determination of a kernel function. Though new kernels are being 
proposed by researchers, beginners may find in SVM books the 
following four basic kernels: linear, polynomial, radial basis 
function, sigmoid. For our use, a 20-polynomial kernel will be 
largely sufficient.   



4.3.2 Support vector machine integration 
We will know discuss the ability of the SVM to consider the 
dependence relation between the content features: correlation and 
hierarchical relation. 
The low-level and the mid-level features are the two initial 
dimensions of the feature space. They are mapped into a higher 
dimensional space by a learned function. This function is 
estimated so that classes from H are separated by a hyperplane in 
the new features space. This particularity permits to consider the 
correlation between the features, as through the kernel estimation 
their inter-relation is learned from the examples mapped in the 
initial feature space. The hyperplane projected in the initial space 
gives a non-linear separating curve between the classes.  
A far as hierarchical relation is concerned, the down-up relation is 
considered as low and mid-level features will influence the 
estimated value of the high-level concept H. But SVM prohibits 
up-down relation: it is a one-way classification. 
 

5. FUSION SCHEME 
We perceive semantic indexing in video as a pattern recognition 
problem. Given pattern (Maud, Mvis, Laud, Lvis) describing the 
shot S, the aim is to obtain a measure that indicates the value of 
the high-level semantic concept H. To obtain a pattern 
representation from multimodal video we rely on feature 
extraction. Early fusion and late fusion differ in the way they 
integrate the results from feature extraction on the various features 
types (low/mid level, auditory/visual). The general schemes for 
early and late fusion are illustrated in Figure 5. 
 

 
 

Figure 5. Early and late fusion scheme. 

5.1 Early fusion 
Indexing approaches that rely on early fusion first extract features. 
After analysis of the various streams, the extracted features are 
combined into a single global representation. In [21] author used 
concatenation of unimodal low-level feature vectors to obtain a 
fused multimedia representation. The authors of [20] introduce a 
probabilistic layered framework based on Bayesian network and 
early fusion that combines low-level and mid-level features for 
multimedia classification. 
After combination of features in a multimodal representation, 
early fusion methods rely on supervised learning to classify 
semantic concepts.  

5.2 Late fusion 
Indexing approaches that rely on late fusion also start with 
extraction of the whole features. In contrast to early fusion, where 
features are then combined into a global representation, 
approaches for late fusion learn intermediary concepts directly 

from each type of features (low-level/auditory, low-level/visual, 
mid-level/auditory, mid-level/visual). These scores are combined 
afterwards to yield a final detection score.  
In [41] separate generative probabilistic models are learned for 
low-level features extracted from the visual and textual modality. 
In [19] low-level and mid-level visual features are fused by a late 
fusion scheme to classify image localization. In general, late 
fusion schemes combine learned intermediary scores into a 
multimodal score representation. Then late fusion methods rely on 
supervised learning to classify semantic concepts. 

5.3 Early vs late fusion 
In [42] the authors compare early and late fusion by experiment 
on 184 hours of broadcast video data and for 20 semantic 
concepts. They show that late fusion tends to give slightly better 
performance for most concepts. However, for those concepts 
where early fusion performs better the difference is more 
significant. 
An advantage of the early fusion is the requirement of one 
learning phase only. Disadvantage of the approach is the difficulty 
to combine features into a common representation. 
Late fusion focuses on the individual strength of features sets. 
Intermediary concept detection scores are fused into a multimodal 
semantic representation rather than a feature representation. A big 
disadvantage of late fusion schemes is its expensiveness in terms 
of the learning effort, as every modality requires a separate 
supervised learning stage. Moreover, the combined representation 
requires an additional learning stage. Another disadvantage of the 
late fusion approach is the potential loss of correlation in mixed 
feature space, which could be penalizing, as we believe that 
correlation between features plays an important role in 
classification tasks. 

6. EXPERIMENT 
In this section we evaluate the classification and fusion models on 
a hierarchical localization of a shots in indoor-outdoor, then 
outdoor shots are classified in city-landscape, and indoor shots in 
store-office-dwelling-underground. The algorithm is founded on 
the fusion of low-level (MFCC, color) and semantic (face, car) 
features from audio and image signal to determine the localization 
of a shot.   
 In order to emphasize the performances of each model, we study 
their performances on all the fusion levels. We start by testing the 
fusion of the visual low-level features on the classification of the 
basic scene concept, indoor/outdoor.  Then we study the fusion of 
visual low-level and mid-level features on the global hierarchical 
localization of visual shots. We finish our experiment with the 
multimodal fusion of low-level and mid-level features extracted 
from auditory and visual signal of movie shots.   

6.1 Evaluation metrics and database  
The shots are extracted from 8 commercial movies. The examples 
of localization concepts have been manually annotated in the 
corpus of 10.000 shots. The high-level classification algorithms 
are trained from 7.000 shots. The mid-level audio and visual 
concepts were already trained from another experience on a large 
example databases. Therefore, we use the mid-level classification 
results of training examples for training the high-level 
classification and not ground-truth. This way, the performance of 
the algorithm may be shown in a real situation. 
We measure classification performance using the confidence in 
the classification. The confidence is defined as the percentage of 
objects annotated with the ist class and classified by the model in 



ist class. We use this strategy as our baseline because of its 
popularity in the literature. 
       

6.2 Low-level unimodal feature fusion 
We first experiment the classification of the high-level semantic 
concept, indoor/outdoor, using visual low-level features alone. We 
compare the performance classification and fusion model. In 
Figure 6, we present the hierarchical dependence relation between 
features from both low-level early and late fusion scheme.   
 

 
 

Figure 6. Low-level features fusion scheme. 

6.2.1 Results 
The confidence in the indoor/outdoor classification of visual low-
level features is presented in the table 1. 
 

Table 1. Confidence in the classification of visual low-level 
features 

Classes BN 
early 

SVM 
early 

SVM 
late 

Indoor 79 82 81 

Outdoor 83 85 86 
 
This table shows that the performances obtained vary for the two 
classes. The classification of the outdoor shots provides better 
results than that of the indoor shots for the tests. The badly 
classified indoor shots correspond to shots whose lights and colors 
seem to reveal an outdoor shot. They are mainly: shots comprising 
a window; shots where the top is clearer than the bottom, 
indicating the potential presence of a "sky"; or shots of large 
enlightened indoor spaces (as a cathedral or a mall). The badly 
classified outdoor shots represent, in general, close-ups on objects 
or landscapes where the sight is blocked by a dark element of the 
scene set: a wall, a forest. It seems that this kind of pathological 
cases are more current for the indoor shots than for outdoor shots, 
which would explain such a difference in the performances 
observed. 
6.2.2 SVM vs Bayesian network 
We will now compare both classification algorithm, namely SVM 
and Bayesian network (BN). 
The classification of the low-level features by BN and SVM 
seems to provide similar results. However, we notice a light 
advantage for the SVM model of classification (approximately 
2%). In the facts the independence assumption of low-level 
features does not seem valid. The BN overestimates the 
importance of the dependent low-level features. As SVM better 
consider the correlation between features, it integrates more 
information from the features in the classification scheme, and 
then gives better results.  

6.2.3 Early vs late fusion 
We will now compare both fusion techniques, namely early and 
late fusion. 
The table reveals that the performances vary little according to the 
selected model. Within sight of these results and those observed 
by other studies, we notice that the late fusion does not make 
significant improvement of the performances of classification 
within the framework of low-level features fusion. The 
disadvantage of late fusion, its expensiveness in terms of the 
learning effort, makes us prefer the early fusion in this framework. 
6.2.4 Conclusion 
The results from these tests make it possible to conclude on the 
best model for low-level features classification/fusion: early 
fusion associated with a SVM classifier. These results will be 
regarded as allowed for the experiments presented in the 
following subsections. The examples of this chapter are used as 
experimental reference marks of the classifications performances 
used within the framework of shots localization. 

6.3 Low-level and mid-level unimodal feature 
fusion 
We then experiment the classification of the whole high-level 
semantic concepts, using visual low-level and mid-level features. 
We compare the performances of the classification and fusion 
models. In Figure 7 we present the hierarchical dependence 
relation between features from both low and mid-level features 
early and late fusion scheme.   
 

 
 

Figure 7. Low-level and mid-level features fusion scheme. 

6.3.1 Results 
The confidences in the three classifications of visual low-level 
features alone, mid-level features alone and the fusion of both sets 
are presented in the table 2.  
Several remarks can be made from this table. 
Firstly the automatic localization of shots in indoor/outdoor by 
mid-level concepts alone obtains good performances. Compared 
with those obtained by classification of the low-level features, we 
note a clear increase of approximately 5%. The mid-level 
concepts seem to contain more information on classification than 
low-level features. But the use of these concepts involves an 
increase in the computing time. However, for certain shots, 
classification remains complex. We notice for example that an 
indoor shot of car park containing a car is classified in outdoor, 
which constitutes an error. That is due to the fact that the majority 
of the cars are present in outdoor training shots. When the 
presence of certain concepts strongly indicates the class of the 
shot, the system makes errors. Also let us notice that the absence 
of concept in a shot actually gives no indication on the nature of 
the place. However, in the facts, the two algorithms classify such 



an image in indoor. That involves errors for the outdoor shots 
containing none of the selected mid-level concepts. 
 
Table 2. Confidence in the classification of visual low-level and 

mid-level features 

Classes SVM 
low 

SVM 
med 

BN 
early 

SVM 
early 

SVM 
late 

Indoor 82 86 87 89 87 

Outdoor 85 89 90 91 92 
Indoor 
Store 85 100 83 85 85 

Indoor 
Office 82 0 76 84 83 

Indoor 
Dwelling 79 0 60 78 76 

Indoor 
Underground 70 22 52 77 72 

Outdoor 
Landscape 87 62 86 86 81 

Outdoor 
City 92 88 90 92 86 

 
Secondly, the classification of indoor shots in store-office-
dwelling-underground by the concepts obtains bad results. The 
concepts used describe the presence of outdoor objects (and 
textures) and a great part of indoor shots does not contain any 
concept. Thus, they seem inadequate for indoor shots 
classification. Only some elements of the class underground were 
well classified thanks to the presence of cars in the shot (car park). 
Secondly, the classification of outdoor shots in city-landscape 
obtains rather good results; the mid-level concepts employed for 
classification carry out a good discrimination of the outdoor 
classes. 
Thirdly, the fusion of the mid-level concepts and the low-level 
features improves the performances of classification of the 
majority of the concepts of localization (3\% on average), 
compared to the low-level models. We note that the concepts 
bring additional and relevant information to the classification 
models. 
6.3.2 SVM vs Bayesian network 
We will now compare both classification algorithm, namely SVM 
and Bayesian network (BN). 
Like for low-level features alone, the classification of the set of 
low and mid-level features by BN and SVM seems to provide 
similar results. However, we notice a light advantage for the SVM 
model of classification (approximately 1%). In the facts the 
independence assumption does not seem valid. The BN 
overestimates the importance of the dependent features. As SVM 
better consider the correlation between features, it integrates more 
information from the features in the classification scheme, and 
then gives better results. For example, a outdoor shot containing a 
tree and grass, but whose automatic classification is mistaken and 
obtains for these mid-level concepts a rate of confidence of 40%, 
is classified in indoor by the BN and outdoor by the SVM. 
6.3.3 Early vs late fusion 
We will now compare both fusion techniques of low-level and 
mid-level features, namely early and late fusion. The classification 
results bring to several reflections. 
For both concepts, indoor/outdoor and city-landscape, for which 
mid-level concepts are relevant, the SVM classification models 

applied to early and late fusion obtain equivalent results. The late 
fusion shows slightly better performances, compared with the 
early fusion. 
For the localization of indoor shots in store-office-dwelling-
underground, only the early fusion model does not involve a 
reduction of the performances of categorization, compared with 
low-level model. If a dimension of the feature vector is not 
relevant for classification, it will not influence this one. Thus 
irrelevant mid-level concepts for the classification are not 
considered. The concept car is the only useful concept for this 
categorization; its presence indicates that the shot is an 
underground car park. For the classification in store, office and 
dwelling, none of the concepts is taken into account and we 
observe equivalent performances with and without mid-level 
features. We conclude from it that, when the mid-level concepts 
provide bad performances of classification, only early fusion 
improves, to a significant degree, the performances of 
classification compared to the low–level model. This 
characteristic brings that, on average, early fusion show better 
performances of classification than late fusion, in the framework 
of low and mid-level features fusion. 
6.3.4 Conclusion 
The results from these tests make it possible to conclude on the 
best model for low-level and mid-level features 
classification/fusion: early fusion associated with a hierarchical 
SVM classifier. These results will be regarded as allowed for the 
experiments presented in the following subsections. The examples 
of this chapter are used as experimental reference marks of the 
classifications performances used within the framework of 
multimedia shots localization. 

6.4 Low-level and mid-level multimodal 
feature fusion 
We then experiment the classification of the whole high-level 
semantic concepts, using visual and auditory low-level and mid-
level features. We compare the performance of the classification 
and fusion models. In Figure 8 we present the hierarchical 
dependence relations from both early and late fusion scheme of 
auditory and visual features.   

 
Figure 1. Auditory and visual features fusion scheme. 

6.4.1 Results 
The confidences in the three classifications of auditory features 
alone and the fusion of both visual and auditory features are 
presented in the table 3.  
We can deduce several observations from this table. 
First of all, the comparison of the unimodal classification results 
shows that according to the considered high-level concept, the 
different information brought by each medium involves variable 
performances. With regard to the concepts indoor-outdoor and 
city-landscape the image processing is more effective than that of 



the sound. And for the concept store-office-dwelling-underground 
we observe the opposite phenomenon.  
Secondly, the collaboration of audio and image for the 
classification provide better performances compared with the 
classification of visual features alone (approximately 5%). For the 
auditory signal the fusion of the low and mid-level features  
obtains good localization rates, despite some irrelevant mid-level 
concepts. Thus, the fusion of the sound and the image improves, 
definitively, the shots localization. 
 
Table 3. Confidence in the classification of visual and auditory  

low-level and mid-level features features 

Classes SVM 
audio 

SVM 
visual 

SVM 
early 

SVM 
late 

Indoor 88 89 93 95 

Outdoor 91 91 92 94 
Indoor 
Store 94 85 88 89 

Indoor 
Office 85 84 87 90 

Indoor 
Dwelling 92 78 93 94 

Indoor 
Underground 87 77 86 89 

Outdoor 
Landscape 89 86 89 93 

Outdoor 
City 88 92 93 95 

 
6.4.2 Early vs Late fusion 
We will now compare both fusion techniques of auditory and 
visual features, namely early and late fusion. The classification 
results induce some essential conclusion. 
At the opposite of the preceding subsection experiment, early 
fusion obtains worse performances than the late fusion of the 
sound and image (1.5\% on average). This is disconcerting 
because, a priori, early fusion keeps the informative correlations 
between features and exceeds the late fusion in term of 
performances. However, we give an explanation to this variation: 
this model well consider “masking” phenomenon where the image 
(or the sound) does not carry enough information to identify the 
place of the action. For example: the image is a close-up on a 
character face, or the sound contains only music. In general, this 
phenomenon only involves one media at a shot. The late fusion 
separately treats the two sets of features, and is thus more 
effective in these cases. Let us notice that in the fiction movie 
framework this kind of masking is frequent, due to the tendency to 
non-realistic editing. This is why this type of fusion is well 
adapted to films. It would be interesting to test these models for 
other types of audio-visual documents: documentary, television 
news, sporting meetings, for which the audio-visual editing is 
more "realistic" in its representation of the world: the transmitters 
are often synchronously present in both media. It is possible that 
in these cases, the late fusion is less effective, because of the loss 
of correlation between the two media. 
6.4.3 Conclusion 
The results from these tests make it possible to conclude on the 
best model for visual and auditory features classification/fusion: 
late fusion associated with a hierarchical SVM classifier.  

7. CONCLUSION 
In this paper, we have addressed the problem of multimedia 
movie shots localization. We proposed the fusion of low-level and 
semantic features extracted from auditory and visual signal of 
movie shots for the automatic labeling of high-level semantic-
concepts.  
Feasibility of the framework was demonstrated for the semantic-
concepts of localization as indoor-outdoor, first for concept 
classification using low-level and mid-level information in single 
modalities and then for concept classification using information 
from multiple modalities (auditory and visual). 
These experimental results, whilst preliminary, suffice to draw 
two conclusions: first, mid-level concepts information may be 
added to low-level features to improve the classification 
performance, second information from multiple modalities (visual 
and auditory) can be successfully integrated to improve semantic 
labeling performance over that achieved by any single modality. 
There is considerable potential for improving the schemes 
described for mid-level and high-level concepts classification. 
Future research directions include the utility of multimodal fusion 
in mid-level concepts models (e.g. cars, telephone, dogs… 
detection). Schemes must also be extended to much larger 
numbers of high-level semantic-concepts. In the framework of 
movie analysis, we believe that it is possible to label abstract 
concepts as suspense or love. The model developed here may also 
be applied to other applications domains as news or sport 
indexing. Specific events detection as sport highlights (e.g. goals) 
or news events (e.g. Presidential allocution) should be 
investigated.   
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