
EXTRACTION OF SPECTRAL PEAK PARAMETERS USING A
SHORT-TIME FOURIER TRANSFORM MODELING AND NO

SIDELOBE WINDOWS.
Ph. Depalle, T. Hélie
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ABSTRACT
A new method which improves the estimation of frequency, ampli-
tude and phase of the partials of a sound is presented. It allows the
reduction of the analysis-window size from four periods to two pe-
riods. It therefore gives better accuracy in parameter determination,
and has proved to remain efficient at low signal-to-noise ratios. The
basic idea consists of using a parametric modeling of the short-time
Fourier Transform. The method alternately estimates the complex
amplitudes and the frequencies starting from the result of the clas-
sical analysis method. It uses least-square procedure and a first-
order limited expansion of the model around previous estimations.
This method lead us to design new windows which do not have any
sidelobe in order to help the convergence. Finally an analysis algo-
rithm which has been built according to the observed behavior of the
method for various kinds of sound is presented.

1. INTRODUCTION
The additive synthesis model represents a sound ������� as a finite sum
of K partials (sinusoids whose amplitude �	� , frequency 
�� and initial
phase �
� , ������������� , vary in time), mixed with a time-varying
spectrum envelope noise � ����� :
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where the phase * � is updated as follows :
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In order to extract the temporal evolution of parameters �5� , 
�� and�
� , �6�7��������� from a recorded sound, the classical analysis proce-
dure [8] consists of detecting and selecting spectral peaks from its
Short-Time Fourier Transform (STFT) [9] given at time 8:9 by:
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Spectral peaks are well defined when the size L of the window Bbecomes wider than four periods of the lowest frequency included in
the analyzed signal. Then frequency and amplitude of each spectral
peak are obtained by a polynomial interpolation around the maxi-
mum [10]. This procedure has two drawbacks: the constraint on
the window size smooths rapid variations of the parameters and the
interpolation procedure does not take into account the influence of
neighbour peaks which slightly modify the frequency and even more
the amplitude.

In order to alleviate these problems, we developed a method based
on a parametric modeling of the STFT representation. This method

allows to decrease the window size down to two periods and globally
takes into account the mutual influence of the spectral peaks.

In this paper, we first describe the principle of the amplitude and
frequency estimation method. As this method is very sensitive to
the window’s shape, we present two new families of windows with-
out sidelobes in the spectral domain. Finally, we detail the synopsis
of the analysis algorithm which has been built according to the ob-
served behavior of the method for various kinds of sound.

2. THE METHOD
2.1. STFT parametric model
Lets consider the noiseless part of the additive representation of a
sound: we obtain from Eq. (1) the pure sinusoidal model M�������N������$�"D � ���$� . As we use a STFT to extract the parameters, we make
the assumption that the amplitudes and frequencies are constant over
the chosen window B . Then the initial phase � � is updated for each
window in order to minimize the distortion due to frequency varia-
tions between the model M� and the signal � . Thus we obtain the local
model of the signal M� < ��� < � , where � < �O�6D 8:9 is the local time
reference:
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���"! �#�

� 8:9 �P%�'�(���/)1 
�� � 8:9 �+� < , �
� � 8Q9 �+� (4)

Henceforth we consider only variables defined at instant 8:9 . There-
fore, the subscript 8 and instant 8:9 will be omitted. Then the STFTM; � 
 � of the local model M�����$� is given by the parametric expression:
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where W � 
 � is the Fourier transform of the analysis window.

2.2. The estimation method
M; � 
 � can be considered as a spectrum estimator of the STFT

; � 
 �
of the observed signal ������� . Now, the goal of our method is to iden-
tify the parameters for which the model M; � 
 � best fits the observed
spectrum

; � 
 � (Cf. Figure (1)) according to a least-square criterion.
For that, the observed STFT measured at Z equally spaced frequen-
cies [$\ �]�_^`D]a b7D � �c� !a � for ^d� ���:e�efe���Z ; Z being the power
of 2 immediatly greater than M. Then, defining the notation g as an
N-size column vector composed of g \ � g � [ \ � , the best estimateM; of

;
is obtained by minimizing the cost :

h ; D M; h (6)
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Figure 1: Observed Spectrum
; � 
 � (solid line) compared to its esti-

mation M; � 
 � (dashed dotted line).

The expression of M; is linear in terms of �P� and � T�U:V but non lin-
ear in 
)� . And even if we linearize the dependence between M; and
the frequency parameters as in Eq. (13), the expression of M; re-
mains nonlinear as it contains products of unknown parameters. So
we developed an iterative algorithm which alternately improves the
estimates of amplitudes and frequencies starting from the results of
the classical analysis method.

Amplitude and Phase estimation. For this step, we assume that
the frequencies of the partials are known and we estimate their am-
plitude and their phase using the model defined in Eq. (5). The
spectrum estimator takes the following linear structure:
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in terms of the / � unknown parameters � � defined by:� � � � � Vb7%�')( � � ��� ����� � �� � ?�� � � Vb (��	� �
� ��� ����� � � (8)

and the known / � expressions related to the Fourier Transform of
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Defining 
 as a matrix of dimension Z�� / � where � 
 � \�
 � �
�-� � [$\ � and � the vector of the unknown parameters, we obtain:

M; � 
�e � (10)

Then we deduct the least-square solution [7]:
� � � 
��`e	
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��`e ; (11)

This procedure gives very good results and it has been shown [11]
that, even with a strong presence of noise (-10 dB), amplitudes are
well estimated and have very little fluctuations. Since there is no
constant value in the model M; � 
 � , we center the signal in order to
remove its mean value.

Frequency estimation. Let us assume that we know the ampli-
tudes and the phases of the � sinusoids. Eq. (5) clearly shows
that the dependence of the model on the frequencies is non-linear.
In order to obtain a linear formulation, in addition we assume
that we have a rough approximation � � of each frequency 
�� for� � ����e�efe���� . The problem is now to estimate the distance � �
between 
�� and �J� ( �d� � 
)� D �J� ). For each frequency measure-
ment point [ \ , we linearize the frequency dependence by using a
first-order limited expansion of the Fourier Transform of the analy-
sis window W around [ \ D �J� for � � �)��e�e�ef��Z :

W � 
�� 
 � �=� W � 
���� � � � W�� � 
���� � � e � � ,��#� � b � � (12)

Thus rewriting M; , we obtain the following expression [4]:

M; ���; , � e	� (13)

where �; is the STFT model evaluated with the rough approximation
frequency vector � and with matrix � defined by:

�!� � \�
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Finally, using the least-square solution, we obtain the estimation:
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3. DESIGN OF WINDOWS ADAPTED TO
THE METHOD

3.1. Influence of the window shape
The STFT is expressed as a convolution product between spectral
lines and the Fourier Transform of the window W e Furthermore, the
expression of W appears at each step of the preceding algorithm
and is actually a degree of freedom of the estimation method. It is
then worthwhile to study the effects of the window’s shape on the
behavior of the algorithm.

The amplitude estimation is not very sensitive to the shape of the
window except when two partials become very close in frequency.
Classically, we have to choose windows with small bandwidth " W .
Then it decreases the ill-conditioning of 
 � 
 by increasing the
dissimilarity between the columns of the matrix 
 . In order to min-
imize the smoothing effect of time variation of parameters and for
a given bandwidth, we prefer windows with a small effective dura-
tion. This parameter is correlated [6] to the inverse of the Equivalent
Noise Bandwidth #%$`Z [5]. So we will search windows with a
small ratio &(')+* a .

Finally we may notice that spectral leakage does not constitute a
drawback to estimate amplitudes when frequencies are perfectly
known since the information of each partial is spread over a great
many measurement points. This gives also a better robustness when
analyzing poor signal-to-noise ratio signals.

The frequency estimation is much more sensitive to the shape of the
window as it is based on the first order expansion of W e By initializ-
ing the algorithm with a rough frequency approximation located far
from the right value, it may converge to the position of the maximum
of a sidelobe of W instead of converging to the center of the main
lobe. And when the amplitude of the partial becomes very low, the
algorithm may oscillate instead of converging. Then we can con-
clude that the presence of sidelobes in W is a serious problem to the
robustness of the method.



3.2. New windows without sidelobes
Windows well adapted to our method may have a small ratio � �&(') * a and no sidelobes. To our knowledge we found in the literature
only one window family without sidelobes: the Hanning-Poisson
window [1] [5]:
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which has no sidelobe for �	� / and its smallest value of � � 2 e � /��
for � �./ .
To have a better control on the characteristics of W , we designed
two families of windows called � � �5�+� � and " � �5�+�Q��� � [6]. In this
paper, only the first one � � �5� � � is presented. To design this family
of windows, the idea was to use a gaussian function which has no
sidelobes but which is not time limited and to multiply it by a power
of the triangular window (PTW) whose Fourier transform is always
real and positive. When the variance of the gaussian is large enough,
the smoothing in the spectral domain removes the sidelobes of PTW.

� � �5�c� �c��������� � D � � �L!� /#" � e e A#$�% & � 
����
��(' � � �)� D L / � L / D ���
(17)

Then for each values of � , an optimal corresponding value of � which
avoid the sidelobes is determined by dichotomy. Figure (2) shows
the temporal and frequential shape of six windows of this family.
For the spectral window W , notice the absence of sidelobe and the
independant control of the narrowness of the main lobe and of the
asymptotic level far from the main lobe. This can not be achieved
by the Hanning-Poisson window.
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Figure 2: Six examples of � � �5� � � windows ( B !
� � � � 2 A+* � / ��e � )

and B-, � � � ��e .P� 2 e � /�� ).
3.3. Example
We show an example which illustrates the ability of the method to
converge to the right values even when it is initialized by very bad
approximations. Let us consider a signal obtained by the superposi-
tion of three sinusoids whose parameters /)
 � �+� ��0 for � � ����e�efe���1
are given in the following table:

Order of Right Right Frequency
Partial Frequency Amplitude Initialization
1 
 ! �3242�2 Hz � ! � �)e 2 � ! �35Q2 Hz
2 
 b � � 2�2)2 Hz � b � �)e 2 � b � / 1 2)2 Hz
3 
76 �32�2�2)2 Hz �86 � �)e 2 ��6 �35Q2�2)2 Hz

Notice that the frequencies � � used to initalize the algorithm are far
from the solution. The analysis parameters are defined as follows:

Window Sampling Window FFT
Type Frequency Size Channels

B , [:9 �3242 � 2�2 Hz /Q2)2 � 2&/�2
The window size represents approximatively two periods of the first
partial. Figure (3) shows the efficency of the method which con-
verges in twelve iterations.
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Figure 3: Convergence of the method on a mix of three sinusoids.

4. THE ALGORITHM
We used this method to analyze various kinds of sound. This led us
to add several functionalities which help to converge or to speed up
the computation. Figure (4) shows the resulting algorithm which is
detailed now.

Frequency Initialization. To start the algorithm we perform a
”classical analysis” using a window with a very low bandwidth (usu-
ally a rectangular window). Secondly we select the spectral peaks
that have a power greater than a relative portion of the highest de-
tected one and whose shape are close to that of W around the max-
ima. The size of the window is chosen to contain two periods of a
20 Hz sinusoid. According to the detected spectral peaks, the size is
automatically modified.

Spectrum Splitting. We first detect the ; lowest minima in the
spectrum which are close to already detected maxima. Then we
eventually catenate the bands which contain very few maximas with
adjacent bands until they reach an assigned number of peaks.

Amplitude and Frequency Estimation. For each band, we per-
form the iterative method described in section (3).

Peak Fusion Manager. When a ”spurious” peak remains selected
at the frequency initalization step, it often becomes closer and closer
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in frequency to another detected peak. This increases the condition-
ing of the matrice 
 � 
 and may give huge amplitudes and opposite
phases to the two close peaks. To avoid this problem, we remove
one of the two peaks when their frequencies become stable and their
distance is lower than a threshold. If the signal actually contains
the two peaks, the peak which has been eliminated will be selected
again during the following spectral residual analysis.

Spectral Residual Computation. As we are using small window
sizes, some peaks are not detected at the frequency initalisation step.
It happens when their amplitudes are small, when they are too close
to other peaks or when they have been rejected at the preceding step.
Then we perform a new analysis on the difference between the ob-
served spectrum

;
and the estimated spectrum M; . In practice the

analysis of the spectrum and its spectral residual appears to be suffi-
cient but one may iterate if needed.

Peak Merger. We have to merge the sets of peaks extracted from
the observed spectrum M; and the successive analyzed spectral resid-
uals M; !:��e�efe�� M;�� . We catenate them by pairs, going from the last ob-
tained � � � � to the first obtained � � ��� (corresponding to M; ). For each
catenation, we remove the peaks of M;�� which appear to be masked
by peaks of M;�� A"! .

Amplitude Estimation. Finally we estimate again the amplitude
of the peaks selected at the preceding step.

This algorithm is then applied on each window centered at time 8:9
to obtain successive sets of partials. To drive an additive synthesizer,
these sets can be transformed in temporal trajectories of partials us-
ing hidden Markov models [2].

5. CONCLUSION
We have presented a new spectral analysis method which improves
the estimation of time-varying frequency, amplitude and phase of
the partials of a sound. It is based on a parametric modeling of the
short-time Fourier transform of the sound. It reduces the size of the
window by a factor of two and takes into account the mutual influ-
ence of the peaks for the amplitude estimation. This method has
been proved to remain efficient at low signal-to-noise ratios. We
have also designed new families of windows without sidelobe struc-
ture and manage the fusion of spectral peaks in order to improve
the convergence of the algorithm. Finally we are able to detect low
amplitude partials by an iterative analysis of the spectrum residual
and we speed up the algorithm by splitting the spectrum in spectral
bands.
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