IRCAM - Centre PompidouServeur © IRCAM - CENTRE POMPIDOU 1996-2005.
Tous droits réservés pour tous pays. All rights reserved.

Computation and Modeling of The Sound Radiation of An Upright Piano Using Modal Formalism and Integral Equations

Philippe Dérogis, René Caussé

ICA 95, Trondheim (Norvège), 1995


Introduction

Upright Piano

figure14

Modal Analysis

Modal Formalism for general viscous damping

  equation21

  equation26

  equation47

Eigenvalue Problem

  equation53

where tex2html_wrap_inline557 can be writren as :

  equation57

where tex2html_wrap_inline559 are respectively the eigen values and the eigen vectors of equation(1)

Modal parameters extraction

The response tex2html_wrap_inline561 at the point r to a sinusoidal excitation at the point s can be expressed using the eigen values and the eigen vectors of equation (1) :

  equation72

where :  tex2html_wrap_inline565

Computation of the displacement resulting from any excitation

The displacement x(t) resulting from an excitation tex2html_wrap_inline569 can be computed using the formula :

  equation89

where : tex2html_wrap_inline571

Mesasurements and Results

   figure107
Figure 1: Modes resulting from the curve-fiting of measurements

Sound Radiation

Sound radiation of a baffled plate

The sound pressure p(r) and the acoustic velocity tex2html_wrap_inline647 resulting from the vibrations of a baffled plate moving with normal acceleration tex2html_wrap_inline649 are given by :

  equation155

  equation161

Sound pressure radiated by the first mode of the soundboard

  figure172

Active Intensity

Normal Active Intensity

The active intensity is the power radiated per unit surface.
It is given by the formula :

  equation200

It is intersting to calculate the z componant of the active intensity near the soundboard in order to know which regions produce the acoustic power, in particular :

Computation of the normal Active Intensity at 5 centimeters of the soundboard

  figure215

An example of a loop of active intensity

Active intensity field in a plane orthogonal to the plate for the mode 1 : 122Hz

figure242

Radiation efficiency

Power radiated

The total power radiated by a source can be computed using :

  equation249

Power radiated by the soundboard versus frequency for several driving point

Results

Radiated power for several points excited by a 1N force

  figure266

Radiation efficiency

Radiation efficiency of the soundboard

  figure283

figure293

Estimated radiation efficiency

Radiation efficiency of a soundboard having eigen values (frequency and damping) a factor 1.5 higher.

figure305

Conclusion

____________________________
Server © IRCAM-CGP, 1996-2008 - file updated on .

____________________________
Serveur © IRCAM-CGP, 1996-2008 - document mis à jour le .