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This master’s thesis is dedicated to incremental multi-source recognition using non-negative
matrix factorization. A particular attention is paid to providing a mathematical framework for
sparse coding schemes in this context. The applications of non-negative matrix factorization
problems to sound recognition are discussed to give the outlines, positions and contributions
of the present work with respect to the literature. The problem of incremental recognition is
addressed within the framework of non-negative decomposition, a modified non-negative matrix
factorization scheme where the incoming signal is projected onto a basis of templates learned
off-line prior to the decomposition. As it appears that sparsity is one of the main issue in this
context, a theoretical approach is followed to overcome the problem. The main contribution of
the present work is in the formulation of a sparse non-negative matrix factorization framework.
This formulation is motivated and illustrated with a synthetic experiment, and then addressed
with convex optimization techniques such as gradient optimization, convex quadratic program-
ming and second-order cone programming. Several algorithms are proposed to address the
question of sparsity. To provide results and validations, some of these algorithms are applied
to preliminary evaluations, notably that of incremental multiple-pitch and multiple-instrument
recognition, and that of incremental analysis of complex auditory scenes.

Keywords: multi-source recognition, incremental system, non-negative matrix factorization,
sparsity, convex optimization.

Cette thèse de master est dédiée à la factorisation en matrices non-négatives pour la recon-
naissance incrémentale multi-source. Une attention toute particulière est attachée à fournir
un cadre mathématique pour contrôler la parcimonie dans ce contexte. Les applications des
problèmes de factorisation en matrices non-négatives à la reconnaissance des sons sont discutées
pour dessiner les grandes lignes ainsi que la position et les contributions du présent travail par
rapport à la littérature. Le problème de la reconnaissance incrémentale est attaqué dans un
cadre de décomposition non-négative, une modification du problème standard de factorisation
en matrices non-négatives où le signal est projeté sur une base de modèles apprise avant la dé-
composition. La question de parcimonie ressortant comme l’un des principaux problèmes dans
ce contexte, elle est abordée par une approche théorique. La contribution principale de ce travail
consiste en la formulation d’un cadre de factorisation parcimonieuse en matrices non-négatives.
Cette formulation est motivée et illustrée par une expérience synthétique, et approchée par
des techniques d’optimisation convexe comme l’optimisation par gradient, la programmation
quadratique convexe et la programmation conique de second ordre. Plusieurs algorithmes sont
proposés pour attaquer le problème de la parcimonie. Des résultats et validations sont pro-
posés en appliquant certains de ces algorithmes à des évaluations préliminaires, notamment à
la reconnaissance multi-pitch et multi-instrument incrémentale, et à l’analyse incrémentale de
scènes sonores complexes.

Mots-clés : reconnaissance multi-source, système incrémental, factorisation en matrices non-
négatives, parcimonie, optimisation convexe.
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Is perception of the whole based on
perception of its parts?

Lee & Seung (1999)

Introduction

Non-negative matrix factorization is a technique for data decomposition and analysis that was
made popular by Lee & Seung (1999). The main philosophy of this technique is to build up the
observed data in an additive manner, so that cancellation is not allowed. The technique has
been applied to various problems such as face recognition, semantic analysis of text documents
and audio analysis among others, for which it has proven to yield relevant results and to
give meaningful part-based representations of the analyzed objects. In the present work, non-
negative matrix factorization is applied to incremental multi-source recognition.

This study is an extension to the framework addressed by Cont et al. (2007) who proposed a
real-time system for multi-pitch and multi-instrument recognition based on non-negative matrix
factorization. In that work, it has been pointed out that in pattern recognition situations and in
absence of structural a priori information on the signal, controlling the sparsity of the solutions
is of great importance to achieve better results. The current study aims at explicitly addressing
the question of sparsity and optimization of non-negative matrix factorization problems, leaving
more complete applicative evaluations for future work.

Following this introduction, the present study focuses on theoretical frameworks employing non-
negative matrix factorization techniques with explicit sparsity controls. Once these theoretical
frameworks developed, we are able to address more complex optimization schemes which are
applied in the context of incremental multi-source recognition.

Chapter 1 introduces the state-of-the-art in non-negative matrix factorization and its extensions.
General applications of these methods to sound recognition are also motivated and discussed to
give the outlines, positions and contributions of the present work with respect to the literature.
Chapter 2 discusses the question of introducing an explicit control of sparsity in the case of
non-negative factorization. The main contribution of the present work is in the formulation
of a sparse non-negative matrix factorization framework. This formulation is motivated and
illustrated with a synthetic experiment, and then addressed with convex optimization tech-
niques such as gradient optimization, convex quadratic programming and second-order cone
programming. Several algorithms are proposed in this framework. These algorithms are then
applied to preliminary evaluations in Chapter 3. The developed algorithms are first validated
on a synthetic experiment. Applications to multi-pitch and multi-instrument recognition, and
analysis of complex auditory scenes are then discussed. We leave more rigorous evaluations on
complex auditory scenes for future works.
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1. State-of-the-Art

This chapter aims at introducing the state-of-the-art in non-negative matrix factorization, its
extensions, and their applications in sound recognition. This should provide the necessary
background to understand the framework of the present study and its position in the existing
literature. The chapter is organized as follows. In Section 1.1, we introduce the background of
non-negative matrix factorization and formulate the standard factorization problem. We also
give an overview of three common classes of algorithms used to solve this problem, namely
alternating least-squares, gradient descent and multiplicative updates. In Section 1.2, we re-
view several extensions to the standard non-negative matrix factorization problem, in terms
of modified cost functions, constraints or models. In Section 1.3, we present and discuss the
state-of-the-art in sound recognition with non-negative matrix factorization. We focus on in-
cremental source recognition, and define the position of the present work within this context
to expose its outlines and contributions.

1.1. Non-negative matrix factorization

1.1.1. Introduction

Non-negative matrix factorization (NMF) is a low-rank approximation technique for unsuper-
vised multivariate data decomposition, such as vector quantization (VQ), principal component
analysis (PCA) or independent component analysis (ICA) (Lee & Seung, 1999). Given an n×m
real matrix V and a positive integer r < min(n,m), these techniques try to find a factorization
of V into an n× r real matrix W and an r ×m real matrix H such that:

V ≈WH (1.1)

The multivariate data to decompose is stacked into V, whose columns represent the different
observations, and whose rows represent the different variables. Each column vj of V can be
expressed as vj ≈ Whj =

∑
i hijwi, where hj and wi are respectively the j-th column of H

and the i-th column of W. The columns of W then form a basis and each column of H is
the decomposition or encoding of the corresponding column of V into this basis. The rank r
of the factorization is generally chosen such that (n + m)r � nm, so WH can be thought of
as a compression or reduction of V. In the sequel, matrices are denoted by uppercase bold
letters. Lowercase bold letters denote column or row vectors, while lowercase plain letters
denote scalars. Where these conventions clash, the intended meaning should be clear enough
from the context.
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Non-negative matrix factorization State-of-the-Art

As mentioned by Lee & Seung (1999), NMF, PCA, ICA and VQ share the same linear model
expressed in Equation 1.1, but differ in the assumptions on the data and its factorization.
In VQ, a hard winner-take-all constraint is imposed, i.e. there is a single non-null encoding
coefficient per observation, so that the basis vectors represent mutually exclusive prototypes.
In PCA, the basis is constrained to be orthogonal in the sense that basis vectors are constrained
to be uncorrelated. In ICA, the basis vectors are constrained to be statistically independent.
In both PCA and ICA, cancellation is allowed in order to decompose the data, i.e. encoding
coefficients can be either positive or negative, thus it is possible to construct an observation by
addition or subtraction of the basis vectors. However, when the data is non-negative, this may
be counter-intuitive and negative values of elements cannot be interpreted (e.g. value of pixels,
occurrence of words, magnitude spectrum of sounds).

Compared to PCA and ICA, cancellation is not allowed in NMF. The data is supposed to
be non-negative, and the basis and encodings are constrained to be non-negative, so that an
observation is constructed only additively. These assumptions have participated in the growing
interest for NMF since the technique was made popular by Lee & Seung (1999) with applications
to facial images and semantic analysis of text documents1. They succeeded in obtaining part-
based representations of the underlying data (e.g. eyes, nose, eyebrows, mouth for the facial
images). They also made a parallel with perception, claiming that there is psychological and
physiological evidence for part-based representations in the brain, and that the non-negativity
constraints could represent the fact that firing rates of neurons are never negative.

1.1.2. Standard problem

In Equation 1.1, the rank of factorization r is supposed to be less than min(n,m) so as to avoid
trivial solutions. Therefore, the factorization WH may be inexact, i.e. differ from V, so the
factorization is only approximate. The aim is then to find the best factorization with respect
to a given goodness-of-fit measure C called cost function or objective function. In the standard
formulation, the Frobenius norm is used to define the following cost function:

C(W,H) = 1
2‖V−WH‖2

F = 1
2
∑
j

‖vj −Whj‖2
2 = 1

2
∑
i, j

(
vij − [WH]ij

)2 (1.2)

Thus, the NMF problem can be expressed as a constrained optimization problem:

Given V ∈ Rn×m
+ , r ∈ N∗ s.t. r < min(n,m)

minimize 1
2‖V−WH‖2

F w.r.t. W,H

subject to W ∈ Rn×r
+ , H ∈ Rr×m

+

(1.3)

The factorization may be approximate, and the solution of the problem given in Equation 1.3
is not unique. Some theoretical work about necessary or sufficient conditions for an exact or
unique factorization has been done (Donoho & Stodden, 2004; Theis et al., 2005; Laurberg

1However, NMF can be traced back to the work of Paatero & Tapper (1994) who used the confusing and
unfortunate term of positive matrix factorization.
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et al., 2008). The uniqueness of the solution must be considered up to a permutation and a
diagonal rescaling. Given optimal matrices W and H, for any r × r non-negative invertible
matrix P such that P−1 is also non-negative, WP and P−1H are other optimal matrices. It is
easy to show that such a matrix P is necessarily the product of a permutation and a strictly
positive diagonal rescaling matrices. But other solutions that differ from such a transformation
of W and H may also exist.

These remarks point out the fact that the optimization problem in Equation 1.3 has not a
unique global minimizer. This is in part due to the non-convexity of the cost function C in
both W and H. Because of this non-convexity, it is also possible that the cost function exhibits
local minima. Therefore, the problem is not easy to solve and several algorithms have been
developed in an attempt to achieve a good factorization.

1.1.3. Algorithms

Three common algorithms used in NMF are presented here. For more details, the interested
reader can refer to Berry et al. (2007). We focus here on explaining the optimization techniques,
and discuss other issues elsewhere.

Alternating least squares

The alternating least squares algorithms were the first to be used to solve NMF problems
(Paatero & Tapper, 1994; Paatero, 1997). They are based on the property that although the
cost function C is not convex in both W and H, it is convex in W and H separately. Thus,
the idea is to update W and H in turn by minimizing C respectively w.r.t. W or H until
convergence. For the first update, either W or H needs to be initialized. In most cases, W
is initialized and H is updated first, but the opposite is also possible. The two alternating
minimizations are both constrained least squares problems, more precisely non-negative least
squares problems:

H← arg min
H∈Rr×m+

‖V−WH‖2
F W← arg min

W∈Rn×r+

‖V−WH‖2
F (1.4)

They can be solved exactly with a non-negative least squares algorithm, or approximatively with
a projected least squares algorithm that projects the unconstrained least squares solution to the
non-negative matrices orthant, i.e. sets to zero the negative coefficients of the unconstrained
solution.

In general, alternating least squares algorithms are fast to converge. Using a non-negative
least squares algorithm to solve the problems in Equation 1.4 gives a global minimizer of the
corresponding problem at each iteration, and guarantees the convergence to a local minimum
of the NMF problem. Using a projected least squares algorithm aids speed and sparsity, but
does not guarantee to give a global minimizer of the non-negative least squares problems, nor to
decrease the cost function at each iteration, what may lead to oscillations or to a convergence
towards a point which is not a local minimum of the NMF problem.
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Non-negative matrix factorization State-of-the-Art

Gradient descent

The gradient descent algorithms are a particular case of additive updates algorithms whose
principle is to give additive update rules so as to progress in a direction, called learning direction,
where the cost function C is decreasing. In gradient descent, the learning direction is expressed
using the gradient of C. For the standard NMF problem, the following additive update rules
can be deduced for the coefficients of W and H:

hij ← hij − µij
∂C(W,H)

∂hij
wij ← wij − ηij

∂C(W,H)
∂wij

(1.5)

where µij > 0 and ηij > 0 are the respective learning rates or steps of progression of hij and
wij. The gradient coordinates are given by:

∂C(W,H)
∂hij

=
[
WTWH−WTV

]
ij

∂C(W,H)
∂wij

=
[
WHHT −VHT

]
ij

(1.6)

The update rules are applied in turn until convergence. As a special case when all ηij and
µij are equal, the learning direction is exactly the opposite direction of the gradient, i.e. the
learning is done in the direction of the steepest descent.

The main problem of the gradient descent algorithms is the choice of the steps. Indeed, they
should be small enough to reduce the cost function, but not too small for quick convergence.
Moreover, the updates do not guarantee that coefficients are non-negative. To alleviate these
problems, dynamic programming and back-tracking are often used to choose correct steps that
decrease C and give non-negative coefficients. The non-negativity constraints can also be en-
forced using projected gradient algorithms that project W and H to the non-negative matrices
orthant after each update.

Multiplicative updates

The multiplicative updates algorithms for NMF were introduced by Lee & Seung (1999, 2001) as
an alternative to the additive updates algorithms such as gradient descent. The multiplicative
updates are however derived from the gradient descent scheme, with judiciously chosen descent
steps that lead to the following update rules:

hij ← hij ×

[
WTV

]
ij

[WTWH]ij
wij ← wij ×

[
VHT

]
ij

[WHHT ]ij
(1.7)

Like in gradient descent, these update rules are applied in turn until convergence. To avoid
potential divisions by zero and negative values due to numerical imprecision, it is possible in
practice to add a small constant ε to the numerator and denominator, or to use the non-linear
operator max(x, ε).

Compared to gradient descent algorithms, multiplicative updates are easy to implement and
guarantee the non-violation of the non-negativity constraints if W and H are initialized with
non-negative coefficients. However, despite Lee & Seung’s claims that multiplicative updates
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converge to a local minimum of the cost function, several authors remarked that the proof shows
that the cost function is non-increasing under these updates, which is slightly different from
the convergence to a local minimum (e.g. Berry et al., 2007). Compared to alternating least
squares algorithms, multiplicative updates are computationally more expensive and undergo
slow convergence time. Finally, since a null coefficient in W or H remains null under the
updates, the algorithm can easily get stuck into a poor local minimum.

1.2. Extensions

A flourishing literature exists about extensions to the standard NMF problem and algorithms
detailed in Section 1.1. We do not seek to cover all the work here, but we rather try to give a
general structured viewpoint of the possible ways to extend the standard problem. For further
information, the interested reader can refer as a starting point to the outstanding work of
Cichocki & Zdunek (2006) who provide a MATLAB toolbox with a wide range of common and
new algorithms for extended NMF problems.

1.2.1. Cost functions

The standard NMF problem can be extended by using other cost functions than the cost defined
in Equation 1.2. We overview some of these extensions here on.

Divergences

In a more general setting, the Frobenius norm can be replaced with a divergence D, which
generalizes the notion of distance, to define the following cost function:

C(W,H) = D(V ‖WH) (1.8)

Usually, the divergences used are separable, i.e. the divergence D between two matrices A
and B is the sum of the element-wise divergences d(aij ‖ bij) where d is a given associated
between-scalar divergence:

D(A ‖ B) =
∑
i, j

d(aij ‖ bij) (1.9)

The cost defined in Equation 1.2 with the Frobenius norm is a special case of divergence. It is
equivalent to the divergence DE constructed with the between-scalar Euclidean divergence dE
defined as:

dE(a ‖ b) = 1
2(a− b)2 (1.10)

Another widespread divergence DKL is constructed with the generalized Kullback-Leibler diver-
gence dKL defined as:

dKL(a ‖ b) = a log a
b
− a+ b (1.11)
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Recently, the divergence DIS was used in the context of audio analysis by Févotte et al. (2009)
who developed a Bayesian framework for NMF with this divergence. The divergence DIS is
associated with the between-scalar Itakura-Saito divergence defined as:

dIS(a ‖ b) = a

b
− log a

b
− 1 (1.12)

Like the Euclidean divergence dE, the divergences dKL and dIS are lower bounded by zero
and vanish if and only if a = b, but are not distances since they are not symmetric. These
divergences are special cases of wider classes of divergences that can also be used and for
which algorithms have been developed: Bregman divergences (Dhillon & Sra, 2005), Csiszár’s
divergences (Cichocki et al., 2006) and Amari’s α-divergences (Cichocki et al., 2008).

It is also possible to use a weighted divergence D(Ω) in which the element-wise divergences are
weighted:

D(Ω)(A ‖ B) =
∑
i, j

ωij d(aij ‖ bij) (1.13)

where Ω is a weighting matrix with coefficients ωij > 0. This can help to emphasize certain parts
of the data to decompose. This idea was proposed by Guillamet et al. (2003), then developed
by Blondel et al. (2005) and generalized by Dhillon & Sra (2005).

Penalties

One can extend the cost function further by adding penalties JW(W) and JH(H) on the
structure of W and H. The general form of the cost function then becomes:

C(W,H) = D(V ‖WH) + λWJW(W) + λHJH(H) (1.14)

where the parameters λW, λH > 0 are set by the user to control the trade-off between the
reconstruction error and the penalties on W and H.

The penalty terms are used to obtain particular regularizations of W and H, and are often
problem-dependent (e.g. temporally smooth encoding coefficients, orthogonal or localized basis
vectors). The interested reader can refer to Buciu (2008) for an overview of several penalties
used in the literature. However, regardless of the application, a particular kind of regularization
is often desired, namely the sparseness of the factors W and H. Hoyer (2002) was the first to
propose a way to control sparseness of W and H using penalty terms. We develop the idea of
controlling sparseness in Chapter 2.

1.2.2. Constraints

A second way to extend the standard problem is to enforce more constraints than non-negativity
on the factors W and H, and/or to relax the non-negativity constraints as described below.

7
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Additional constraints

The most widespread additional constraint is to enforce either the columns of W or the rows
of H to be of unit-norm. In general, the `1-norm or `2-norm is used. We have seen that the
solution of standard NMF is not unique and that a diagonal rescaling of W and H gives another
solution. The additional unit-norm constraint helps to avoid the ambiguity of the solution up
to such a rescaling. The normalization can in most cases be done by an appropriate diagonal
rescaling of W and H after each update of the matrix constrained to be of unit-norm2.

A second interesting constraint was proposed by Hoyer (2004) to control the sparseness of the
factors W and H. The idea was later generalized by Heiler & Schnörr (2005a,b, 2006) to give
more control on sparseness and include other constraints. We develop these approaches in
Chapter 2.

A third additional constraint of interest is the situation where one wants to project V onto
a basis W which is known and fixed. This can be seen as the additional constraint that W
must be equal to a given fixed matrix. Throughout this document, we call this approach
non-negative decomposition (ND). We discuss the use of ND in the context of incremental
multi-source recognition in Section 1.3.

Relaxed constraints

The main philosophy of NMF is to build up the observed data additively. In the standard
formulation, V is supposed to be non-negative and W constrained to be non-negative, but one
may also want to allow the observed data to take negative values even if it is still built only
additively. Ding et al. (2006) developed a mean of relaxing the non-negativity constraints to use
real matrices V and W. In the present study, we propose in Appendix A a way to use complex
matrices V and W while keeping the non-negativity constraints on the encoding matrix H.

Another constraint that can be relaxed is the rank of factorization r. In the standard problem,
r is supposed to be less than min(n,m) so as to avoid trivial solutions. However, for some
extensions of the standard problem, the addition of penalties or constraints can move the
trivial solutions aside the global minima. One may then want to choose a rank of factorization
greater than n or m. This is typically the case when sparseness penalties or constraints are
added, or when W is fixed.

1.2.3. Models

A third way to extend the standard problem is to modify the linear model of matrix factorization
given in Equation 1.1. Several modified models were proposed in the literature, but for the sake
of concision we do not present all of them here. We introduce some models that are relevant

2In some particular extended problems however, a rescaling may modify the value of the cost or make additional
constraints to be violated. Thus if the unit-norm constraint is desired, an ad hoc method must be used.
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to the context of incremental sound recognition. The interested reader can refer to (Li & Ding,
2006) as reference for further information about extended NMF models.

In the context of signal processing, where the columns of V are often successive observations
along time, Smaragdis (2004) remarked that NMF is well adapted to the analysis of static
objects but not of time-varying objects. He thus proposed non-negative matrix factor deconvo-
lution (NMFD) to overcome this issue. The idea was further developed by Mørup & Schmidt
(2005) for sound analysis, with non-negative matrix factor 2-D deconvolution (NMF2D), to
take not only time into consideration but also frequency shifts. Another model extension called
incremental non-negative matrix factorization (INMF) was proposed very recently by Bucak
& Günsel (2009) to overcome the off-line nature of standard NMF and consider the incoming
signals as data streams.

Welling & Weber (2001) proposed to extend NMF to tensors for non-negative tensor factoriza-
tion (NTF). NTF was used in numerous applications and two MATLAB toolboxes are available
to perform NTF (Cichocki & Zdunek, 2006; Friedlander, 2006). In the context of sound anal-
ysis, NTF has been applied to source separation (FitzGerald et al., 2008; Ozerov & Févotte,
2009) where tensors are helpful to deal with multi-channel signals, time-varying objects, and
express sound transformations such as frequency shifts.

1.3. Application to sound recognition

Due to the practical nature of NMF algorithms, they have been largely applied to problems
in vision (e.g. face and object recognition), sound analysis (e.g. source separation, automatic
transcription), biomedical data analysis, and text or email classification among others (Buciu,
2008). Overall, NMF has been mostly used in the general domain of pattern recognition. We
introduce here the background of NMF in sound recognition, and discuss its applications within
the context of the present work.

1.3.1. Background

In the context of sound analysis, NMF and its extensions have been used in several applications.
In general, the matrix V is a time-frequency representation of the sound to analyze. The rows
and columns represent respectively different frequencies and successive time-frames. As the
columns vj of V can be decomposed as vj ≈

∑
i hijwi (see Section 1.1), the factorization is

easy to interpret: each basis vector wi contains a spectral template, and the encoding coefficients
hij represent the activation coefficients of the i-th template wi at the j-th time-frame.

Several sound representations have been used in the literature: the magnitude or power spec-
trum computed by different means (e.g. Fourier transform, constant-Q transform, instantaneous
frequency estimation, filter-bank), the magnitude modulation spectrum, etc. One could argue
that none of these representations is additive, and that anyway, there do not exist any additive
non-negative representation of sounds (just consider two sinusoids in phase opposition). How-
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ever, under certain conditions of phase independence between the different sources, some of the
above-mentioned representations can approximatively be considered as additive. For example,
Parry & Essa (2007) discussed the additivity of the spectrogram.

Concerning sound recognition, NMF has been widely used in polyphonic music transcription,
where the sounds to recognize are notes (e.g. Smaragdis & Brown, 2003; Abdallah & Plumb-
ley, 2004). Several problem-dependent extensions have been developed to this end such as
enforcing an additional purely harmonic constraint (Raczyński et al., 2007), or constructing an
harmonic/inharmonic model with adaptive tuning (Vincent et al., 2008). In these approaches,
the pitches of the basis vectors are either known in advance (e.g. for the case of an additional
purely harmonic constraint) or computed with a pitch detector. The attacks are detected with
an ad hoc method (e.g. activation threshold, onset detector). These approaches rely in general
on the off-line nature of NMF, some authors however used NMF in the context of incremental
multi-source recognition, we review this approach here on.

1.3.2. Incremental multi-source recognition

To overcome the off-line nature of NMF and design an incremental system, the traditional
approach is to use non-negative decomposition (ND, see Section 1.2), i.e. to constrain the basis
vectors W to be equal to a given matrix of templates which is in general learned off-line prior
to the factorization. These templates represent the different sources that the system should
recognize (e.g. several notes of the same instrument or of different instruments). During the
factorization, each incoming time-frame vj can be decomposed onto these templates vj ≈Whj
where W is kept constant and only the activation coefficients hj at the current time-frame are
updated. A NMF problem with the input matrix vj and the templates W is thus solved at
each time-frame j to give the current activation coefficients hj.

The first authors to use ND for incremental multi-source recognition are Sha & Saul (2005) who
proposed a system to identify the presence and determine the pitch of one or more voices in
real-time. Their method is based on an instantaneous frequency representation of the incoming
signal which is decomposed in real-time on templates learned off-line. To make recognition more
robust, a template for unvoiced speech is added. A threshold heuristic is used to determine
the activated voiced templates, and unvoiced speech is detected with a classifier on vj and hj.
The system was later adapted for sight-reading evaluation of solo instrument by Cheng et al.
(2008). For each note of the instrument, five templates are learned off-line using NMF with a
power spectrum representation. The five templates represent the variations in timbre due to
onset, offset and three dynamics that are taken into account.

Concerning automatic transcription, a similar system was used by Paulus & Virtanen (2005) for
drum transcription. A five-band spectrum is used to represent the sounds and one template is
learned off-line using NMF for each drum instrument. The detection of the instruments is done
with an onset detector on the encoding coefficients. An incremental system for transcription of
polyphonic music was proposed by Niedermayer (2008). The learning is also done using NMF,
one template is learned for each note, and the system is tested on piano music.
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A real-time alignment of audio to score system for polyphonic music was proposed by Cont
(2006). The system is tested on piano music, using an instantaneous frequency representation.
For each note of the piano, a template is learned off-line using NMF. More precisely, a training
sample V(k) of each note k is factorized into W(k)H(k), with a rank of factorization r = 2 and
the second column of W(k) fixed as white noise. The first column of each matrix W(k) is kept as
a template in W for the real-time decomposition. To help generalization and robustness during
the decomposition, a noise template is also added to W, and a sparseness constraint similar
to the one proposed by Hoyer (2004) is used. This approach was further developed by Cont
et al. (2007) for real-time multi-pitch and multi-instrument recognition, using a modulation
spectrum representation instead of an instantaneous frequency estimation.

1.3.3. Position of the present work

The present study is dedicated to incremental multi-source recognition using NMF. We are
not only interested in multi-instrument and multi-pitch recognition for polyphonic music tran-
scription, but also in the analysis of everyday auditory scenes with overlapping sound sources
and background noise. The state-of-the-art presented above shows two general approaches to
extend the unsupervised off-line NMF for incremental sound recognition.

The first one is to use NMF to factorize the signal to analyze, and then classify the basis vectors
found with an ad hoc method (e.g. pitch detector for polyphonic music transcription). This
approach may be adapted for incremental recognition using INMF (Bucak & Günsel, 2009),
a recent incremental model extension of NMF (see Section 1.2). In the case of polyphonic
music transcription, the main problem we see is that INMF may not be well-suited to extract
notes as basis vectors. To overcome this issue, it would be interesting to combine INMF
with the additional purely harmonic constraint proposed by Raczyński et al. (2007), or the
harmonic/inharmonic model proposed by Vincent et al. (2008). We think that this approach
could perform well for the transcription of a solo polyphonic instrument. However, it may be
too limited for a generalization to multi-pitch and multi-instrument recognition, and for the
recognition of everyday sound sources in a complex auditory scene.

The second approach is to use ND. Templates are learned off-line and the incoming signal is
decomposed incrementally onto these templates which are kept fixed. This is the approach
followed by all the incremental sound recognition systems we have found in the literature,
and the approach we chose in the present work. The main problem we see is the robustness
against noise or unknown sound events, and the power of generalization if the sound events to
recognize are different from the sounds used for template learning. In the context of automatic
classification of musical instrument segments, Benetos et al. (2006) proposed to include between-
class information for better discrimination and generalization, and developed an incremental
system combining NMF with a classifier. However, this approach cannot be easily adapted to
a multi-source application such as ours.

We have chosen to address the problem of robustness and generalization from a theoretical
viewpoint. As the control of sparseness in ND seems to be a predominant issue to us, we have
focused on methods to obtain a sparse non-negative decomposition (SND). We have considered
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extended NMF problems with penalties and additional constraints to control sparseness explic-
itly. As a result, these problems are more complex than the standard NMF problem, and we
have developed specific optimization techniques to solve them.

We can establish a parallel between SND and the framework of non-negative sparse representa-
tions (e.g. Bruckstein et al., 2008). In the two approaches, the incoming signal is decomposed
on a fixed basis with a few active coefficients. In SND however, we have no assumption on the
rank of factorization r which can be less or greater than the number of variables n, and we
do not seek a reconstructive but a discriminative decomposition. This means that we do not
want to reconstruct the incoming signal perfectly with few basis vectors, but to find the few
basis vectors that are present in the signal. In Chapter 2, we motivate the approach of SND,
expose the theoretical framework and develop specific algorithms for controlling sparseness in
this context.

We focus on NMF with the Euclidean distance. This helps us to consider sparsity within a
geometrical framework and use optimization techniques such as second-order cone and convex
quadratic programming. Using the Euclidean distance, we are also able to relax the non-
negativity constraints on V and W to use complex representations as shown in Appendix A.
These theoretical developments are validated on synthetic data, and applied to multi-pitch
multi-instrument recognition and to the analysis of a complex auditory scene in Chapter 3.
Some perspectives for future work, such as the use of other cost functions and extended NMF
models, are discussed later.
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2. Controlling Sparsity

Sparsity is an important way to reduce the space of plausible factorizations in NMF applied
to complex problems. Concerning sound recognition, it has been shown that more rigorous
and complex optimization schemes with explicit considerations for sparsity are necessary to
deal with real-world problems (Cont et al., 2007). In this chapter, we address the issue of
controlling sparsity from a theoretical viewpoint, with specific optimization techniques. In Sec-
tion 2.1, we define sparsity and review several measures of sparseness. We also motivate the
need for an explicit control of sparseness in NMF, and illustrate our points with a synthetic
experiment. In Section 2.2, we introduce two optimization techniques to overcome the lack of
control on sparseness in NMF, namely projected gradient optimization and second-order cone
programming. In Section 2.3, we focus on controlling sparseness in non-negative decomposition
(ND) to obtain a sparse non-negative decomposition (SND). We adapt the previous optimiza-
tion methods and develop specific algorithms. In particular, we propose modified gradient
descent algorithms and we introduce another optimization technique, namely convex quadratic
programming. These theoretical developments are validated on synthetic data, and applied to
multi-pitch multi-instrument recognition and to the analysis of a complex auditory scene in
Chapter 3. In Appendix A, we also show how to relax the non-negativity constraints in the
developed algorithms, so as to use complex matrices V and W in SND. The practical interest
of such an extension is discussed later.

2.1. Preliminaries

2.1.1. Sparseness and its measures

The simplest definition of sparseness (or sparsity) is that a vector is sparse when most of its
elements are null. However, there is no consensus on how sparseness should actually be defined
and measured, with the result that numerous sparseness measures have been proposed. A
comparative review of commonly used measures is done in Karvanen & Cichocki (2003). The
idea is that a vector is sparse when it is not dense, i.e. much of its energy is packed into a
few components, and so the different measures of sparseness try to quantify how much of the
energy is packed into a few components. In the sequel, we employ the term norm in a wide
sense, remembering that the `p-norms are not norms in the strict terms for p < 1.

Given a vector x of length n, the sparseness measure that corresponds to the naive definition
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is based on the `0-norm defined as the number of non-zero elements:

sp(x) = ‖x‖0
n

= card {i : xi 6= 0}
n

(2.1)

This measure increases as x becomes less sparse, and is comprised between 0 for the null vector
and 1 for any vector x with n non-null coefficients.

This basic measure is only applicable in noiseless situations. In practice, ‖·‖0 is often replaced
with ‖·‖0, ε to define:

sp(x) =
‖x‖0, ε

n
= card {i : |xi| > ε}

n
(2.2)

where ε > 0 is a threshold that takes into account the presence of noise. The choice of ε
should depend on the noise variance which is not easy to estimate, so it is often chosen by
trial-and-error in practice. Another problem is that this measure is non-differentiable in the
interior of Rn

+, denoted by Rn
++ in the sequel, and thus cannot be used with several optimization

techniques such as gradient descent. To overcome this problem, ‖·‖0, ε is often approximated
with a hyperbolic tangent function:

‖x‖0, ε ≈
∑
i

tanh
(
|axi|b

)
(2.3)

where a > 0 and b > 1 are constant parameters chosen to approximate ‖·‖0, ε more or less
smoothly.

Other sparseness measures differentiable on Rn
++ can also be defined using the `p-norms for

0 < p 6 1, leading to:

sp(x) =
‖x‖pp
n

=
∑

i |xi|
p

n
(2.4)

In the context of NMF, Hoyer (2004) introduced an interesting sparseness measure which writes:

sp(x) =
√
n− ‖x‖1/‖x‖2√

n− 1 =
√
n−

∑
i |xi| /

√∑
i xi

2
√
n− 1 (2.5)

From now on, sp(x) denotes this particular sparseness measure. On the contrary of the other
measures, sp(x) increases as x becomes sparser and has the interesting property of being scale-
independent (but thus is not defined for the null vector). Another interesting property comes
from the following inequalities:

1√
n
‖x‖1 6 ‖x‖2 6 ‖x‖1 (2.6)

where the lower and upper bounds are respectively obtained if and only if all components of x
are equal up to their signs, and if and only if x has a single non-null component. As a result,
sp(x) is comprised between 0 for any vector with all components equal up to the signs, and 1 for
any vector with a single non-null component, interpolating smoothly between the two bounds.
Moreover, sp(x) is differentiable on Rn

++ and the gradient coordinates are given by:

∂sp(x)
∂xi

= 1√
n− 1 ·

xi‖x‖1 − ‖x‖
2
2

‖x‖3
2

(2.7)
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Like the other presented measures, sp(x) is symmetric, i.e. invariant against permutation of
the components of x, which is a desirable property for a sparseness measure. Another desirable
property for sparseness measures is the Schur-convexity or the Schur-concavity (Marshall &
Olkin, 1979), if the measure respectively increases or decreases as sparseness increases (Kreutz-
Delgado & Rao, 1997). The `p-norms for 0 6 p 6 1 are both symmetric and concave so they
are Schur-concave, and sp(x) is Schur-convex (Heiler & Schnörr, 2005b). In short, a sparseness
measure having this property ensures that for two vectors x 4 y, where 4 is the majorization
partial order, x is sparser than y.

2.1.2. Motivations

One of the most appreciated properties of NMF is that it usually reveals a sparse and part-
based decomposition of the data. However, this is rather a side-effect than a goal, and one
cannot control sparseness explicitly in standard NMF. Several application-dependent ways to
obtain sparse representations have been suggested in the literature. We focus here on more
general approaches to control sparseness, where we do not have any other a priori (e.g. quasi-
orthogonal or localized basis vectors) than the existence of a sparse representation of the data.
Such approaches have been considered by Hoyer (2002, 2004); Heiler & Schnörr (2005a,b, 2006).

In the present study, we are mainly interested in obtaining a sparse decomposition on a learned
basis W, that is we seek a sparse encoding matrix hj at each time-frame j. We are thus more
interested in devising algorithms for the specific case of sparse non-negative decomposition
(SND) rather than sparse non-negative matrix factorization (SNMF). We assume here that
sparseness is necessary to obtain a relevant decomposition and devise a robust system capable
of generalization. This assumption has already been discussed in the context of polyphonic
music transcription with SND by Cont (2006); Cont et al. (2007). We develop its meaning and
implications in the context of the present study here on.

For the specific problem of music transcription, the price to pay for the simplicity of the stan-
dard NMF formulation is the multiplicity of solutions for the factors W and H. Assuming
no mathematical independence over parts in W, and considering simple time-frequency rep-
resentations in V, this amounts to common octave and harmonic errors during decoding and
recognition. To overcome this problem, we can use the plausible assumption that the correct
solution for a given input V uses the minimum number of available part representations in
W to avoid common octave and harmonic errors. More specifically, this intuition about the
structure of the desired results amounts to using a sparse coding scheme.

In a more general term, sound recognition paradigms can be seen as dimensionality reduction
algorithms where the original high-dimensional space of sound representations (e.g. audio
features) is being mapped to a much smaller space of desired classes. In such problems, it
is generally desirable to obtain sparse results by nature. The issue becomes more serious if
different classes are allowed to overlap over the geometry of the problem with presence of noise,
causing uncertainties during recognition tasks. In such realistic cases, controlling sparsity of
the solution could reduce the space of plausible results and increase the economy of class
usage during reconstruction phases of any NMF formulation. Following an illustration of these
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motivations, we introduce specific optimization techniques to control sparsity in NMF. We will
concentrate on the particular case of SND later.

2.1.3. Illustration

We repeat here an experiment proposed by Paatero (1997) to illustrate the lack of control on
sparsity even in lab situations. The experiment consists in creating a synthetic non-negative
matrix V = WH + |N|, by mixing sparse basis vectors W with encoding coefficients H and
adding some positive noise |N|. The synthetic matrix V is then analyzed with NMF, and the
estimated basis vectors Ŵ and encoding coefficients Ĥ are compared with the ground truth W
and H to see if NMF succeeded in recovering them.

The data set is designed to resemble spectroscopic experiments in chemistry and physics. The
input matrix V ∈ R40×20

+ is created with four Gaussian distributions for the columns of the
matrix W ∈ R40×4

+ , four exponential distributions for the rows of the matrix H ∈ R4×20
+ , and

Gaussian noise N ∼ N (0, 0.01) for the matrix N ∈ R40×20
+ . The four Gaussian distributions are

chosen such that sp(wj) = 0.6877 for all j. The ground truth V, W and H of this experiment
are shown in Figures 2.1(a) and 2.1(b).

The optimization problem to solve is the same as the standard NMF problem 1.3, with the
additional constraints that the estimated basis vectors have a `2-norm equal to 1, leading to
the following formulation:

Given V ∈ Rn×m
+ , r ∈ N∗ s.t. r < min(n,m)

minimize 1
2‖V−WH‖2

F w.r.t. W,H

subject to W ∈ Rn×r
+ , H ∈ Rr×m

+ , ‖wj‖2 = 1 ∀j

(2.8)

Algorithm 2.1 is used to solve this problem. In this algorithm and in the sequel, the matrix
element-wise multiplication and division are respectively denoted by � and �. Algorithm 2.1
is the standard NMF algorithm with multiplicative updates (see Section 1.1) and an additional
step of diagonal rescaling to ensure the additional constraints on W. A rank of factorization
r = 4 and a number of 50000 iterations are chosen for the analysis.

Results obtained from this factorization are shown in Figure 2.1(c). They reveal that NMF
has not recovered correctly W and H, and that the estimated basis vectors ŵj are not sparse
enough. By increasing the number of iterations or employing alternative algorithms such as
alternating least squares algorithm (see Section 1.1), NMF will not recover the ground truth
factors either. In Section 3.1, we repeat Paatero’s experiment with two of the algorithms
developed in this chapter, and show that an explicit control of sparsity can help to recover the
ground truth factors, where NMF failed.
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(b) Ground truth matrices W and H.
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(c) Estimated matrices Ŵ and Ĥ.

Figure 2.1.: Paatero’s experiment with non-negative matrix factorization. The input matrix
V represented in Figure 2.1(a) is obtained by mixing W with H and adding a
small amount of noise N. The columns of W and the rows of H are represented
in Figure 2.1(b). The matrix V is analyzed with Algorithm 2.1 which outputs the
estimated basis vectors Ŵ and encoding coefficients Ĥ represented in Figure 2.1(c).
The experiment shows that NMF did not succeed in recovering the ground truth
matrices, and that the estimated basis vectors are not sparse enough.
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Algorithm 2.1 NMF with multiplicative updates and diagonal rescaling.
Input: V ∈ Rn×m

+ , r < min(n,m)
Output: W,H that try to solve the optimization problem in Equation 2.8
1: Initialize W and H with strictly positive random values or with an ad hoc method
2: W←WD with D > 0 diagonal s.t. the resulting W has columns of `2-norm equal to 1
3: H← D−1H
4: repeat
5: H← H� (WTV + ε)� (WTWH + ε)
6: W←W� (VHT + ε)� (WHHT + ε)
7: W←WD with D > 0 diagonal s.t. the resulting W has columns of `2-norm equal to 1
8: H← D−1H
9: until convergence

2.2. Sparseness in non-negative matrix factorization

In this section, we present two optimization methods to include an explicit control of sparseness
in NMF. The aim is not to propose an exhaustive range of algorithms for SNMF, but to introduce
algorithms that are easily adaptable for the particular case of SND for which a more exhaustive
range of specific algorithms are proposed in Section 2.3.

2.2.1. Projected gradient optimization

The projected gradient algorithms principle is to apply a gradient descent scheme (see Sec-
tion 1.1) with an additional step of projection after each update. The updated variables are
projected onto the feasible set, i.e. the set made of the points that verify the constraints. If
the cost does not decrease, then back-tracking is used, the step size(s) is (are) reduced, and
new updates of the variables are calculated and projected onto the feasible set until the cost
decreases. Otherwise, the step size(s) can be slightly increased for the next iteration and the
algorithm continues until convergence.

Projected gradient optimization has been used by Hoyer (2004) to control sparseness in NMF.
Hoyer proposed to enforce additional constraints on W and/or H, more precisely to enforce
W and/or H to have a desired sparseness sp(W) = sw, sp(HT ) = sh, with 0 6 sw, sh 6 1
chosen by the user. As a diagonal rescaling does not change the cost function nor the sparseness
of W and HT , we can also constrain the columns of W to have a `2-norm equal to 1. The
optimization problem then writes:

Given V ∈ Rn×m
+ , r ∈ N∗ s.t. r < min(n,m)

sw and/or sh s.t. 0 6 sw, sh 6 1

minimize 1
2‖V−WH‖2

F w.r.t. W,H

subject to W ∈ Rn×r
+ , H ∈ Rr×m

+ , ‖wj‖2 = 1 ∀j
sp(W) = sw and/or sp(HT ) = sh

(2.9)
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This problem can be solved with Algorithm 2.2 adapted from Hoyer (2004) for the unit-norm
constraints on the columns of W. The unit-norm constraint can be enforced by a diagonal
rescaling step at the end of each iteration and does not need to be taken into account during
the projected gradient scheme. If no sparseness constraint is enforced on either W or H, then
the standard multiplicative updates (Section 1.1) are applied respectively on W or H. The
step sizes µ and η are adaptive, they are chosen at each iteration by dynamic programming
as explained above. They are both initialized at 1 before the iterations and multiplied by 1.2
at the end of each iteration. During back-tracking, the corresponding step size is divided by 2
until the updated factor makes the cost decrease.

Algorithm 2.2 SNMF with projected gradient optimization and diagonal rescaling.
Input: V ∈ Rn×m

+ , r < min(n,m), sw and/or sh s.t. 0 6 sw, sh 6 1
Output: W,H that try to solve the optimization problem in Equation 2.9
1: Initialize W and H with strictly positive random values or with an ad hoc method
2: if sp(W) is constrained then
3: W← πsw(W)
4: end if
5: if sp(HT ) is constrained then
6: HT ← πsh(HT )
7: end if
8: W←WD with D > 0 diagonal s.t. the resulting W has columns of `2-norm equal to 1
9: H← D−1H
10: repeat
11: if sp(HT ) is constrained then
12: HT ← πsh

(
HT − µ · (HTWT −VT )W

)
with µ chosen s.t. the cost decreases

13: else
14: H← H� (WTV + ε)� (WTWH + ε)
15: end if
16: if sp(W) is constrained then
17: W← πsw

(
W− η · (WH−V)HT

)
with η chosen s.t. the cost decreases

18: else
19: W←W� (VHT + ε)� (WHHT + ε)
20: end if
21: W←WD with D > 0 diagonal s.t. the resulting W has columns of `2-norm equal to 1
22: H← D−1H
23: until convergence

In Algorithm 2.2, a projection operator πs is used to project the factors onto the feasible set
(excluding the unit-norm constraints). This operator projects each column of the input matrix
on the intersection of the non-negative orthant and the cone of sparsity s. Hoyer proposes to
do this projection at constant `2-norm, that is the projection has the same `2-norm as the input
vector x. The projection is thus equivalent to finding y, the closest non-negative vector to x
such that ‖y‖2 = ‖x‖2 = l2 and ‖y‖1 = ((1 − s)

√
n + s) l2 = l1 so that y has the desired

sparseness s. Algorithm 2.3 represents this projection scheme with the following procedures1.

1Due to the symmetries of the `1 and `2-norms, the algorithm can be extended straightforward for a solution
unconstrained in sign. It suffices to compute y for |x| and then re-enter the signs of x into y.
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The input vector x is first projected onto the hyperplane
∑

i xi = l1 to give y. Then y is
projected onto the l2-hypersphere under the constraint that it stays in the hyperplane. In
other terms, y is projected onto the intersection of the l1-sum-constrained-hyperplane and the
l2-hypersphere, i.e. on a hypercircle whose center c is a vector with all components equal to
l1
n
. The projection onto this hypercircle is done by moving radially outward from c to the

hypersphere, what requires solving the following quadratic equation for α > 0:

‖y + α(y− c)‖2
2 = l2

2 ⇐⇒ α2‖y− c‖2
2 + 2α 〈y,y− c〉+ ‖y‖2

2 − l2
2 = 0 (2.10)

If the projection y on the hypercircle is non-negative, then it is the solution. Otherwise,
the components that are negative are set to zero, and the algorithm is repeated with these
components fixed null. In principle, as many as n iterations may be needed, but in practice,
the algorithm converges much faster.

Algorithm 2.3 Non-negative `1-`2 projection.
Input: x ∈ Rn, 0 6 l1 <

√
n l2 6

√
n l1

Output: y the closest vector to x for ‖·‖2 s.t. y ∈ Rn
+, ‖y‖1 = l1, ‖y‖2 = l2

1: yj ← xj + l1−
∑
i xi

n
∀j

2: J ← ∅
3: loop
4: cj ← l1

n−card J ∀j /∈ J
5: y← y + α(y− c) where α is the positive root of Equation 2.10
6: J ′ ← {j : yj < 0}
7: if J ′ = ∅ then
8: return y
9: end if
10: J ← J ∪ J ′
11: yj ← 0 ∀j ∈ J
12: k ← l1−‖y‖1

n−card J
13: yj ← yj + k ∀j /∈ J
14: end loop

2.2.2. Second-order cone programming

Second-order cone programming (SOCP) is a framework for convex optimization (Boyd & Van-
denberghe, 2004) that addresses problems of the form:

minimize fTx w.r.t. x ∈ Rn

subject to ‖Ai x + bi‖2 6 ciTx + di ∀i
(2.11)

The constraints ‖Ai x + bi‖2 6 ciTx + di are second-order cone constraints. They allow for
example to model linear inequalities (e.g. non-negativity of x) for Ai and bi null. Geometrically,
they require the affine functions

(Ai x+bi
ciTx+di

)
to lie in the second-order cone of Rn+1 defined as

Ln+1 =
{(x

t

)
: ‖x‖2 6 t

}
.
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For example, the following non-negative least squares problem is a particular case of SOCP:

arg min
W∈Rn×r+

‖V−WH‖2
F (2.12)

The standard formulation can be easily deduced once we have remarked that the problem can
be reformulated using a second-order cone, the vectorization operator vec(·) and the Kronecker
product ⊗, leading to:

minimize t w.r.t. W, t

subject to W ∈ Rn×r
+ ,

(
vec(V)− (HT ⊗ I) vec(W)

t

)
∈ Lnm+1

(2.13)

From a computational viewpoint, second-order cone programs are convex and robust solvers are
available. In our implementations we employed the open source SeDuMi 1.1.R3 solver (Sturm,
2001) in combination with the open source YALMIP R20090505 modeling language (Löfberg,
2004).

SOCP has been used by Heiler & Schnörr (2005a,b, 2006) in the context of SNMF, to generalize
the approach of Hoyer (2004). The idea is to relax the hard sparseness constraints imposed on
W and HT by allowing them to lie between two sparsity cones, rather than projecting them
onto one sparsity cone. As a diagonal rescaling does not change the cost function nor the
sparseness of W and HT , we can also constrain the columns of W to have a `2-norm equal to
1. The optimization problem then becomes:

Given V ∈ Rn×m
+ , r ∈ N∗ s.t. r < min(n,m)

0 6 sminw < smaxw 6 1 and 0 6 sminh < smaxh 6 1

minimize 1
2‖V−WH‖2

F w.r.t. W,H

subject to W ∈ Rn×r
+ , H ∈ Rr×m

+ , ‖wj‖2 = 1 ∀j
sminw 6 sp(W) 6 smaxw , sminh 6 sp(HT ) 6 smaxh

(2.14)

To simplify this formulation, let us consider the following convex sets parametrized by a sparsity
parameter s:

C(s) =
{

x ∈ Rn :
(

x
1
cn,s
· eTx

)
∈ Ln+1

}
with cn,s = (1− s)

√
n+ s (2.15)

where e denotes a column vector full of ones. The intersection of C(s) with the non-negative
orthant Rn

+ is exactly the set of the non-negative vectors with a sparseness less than s:

Rn
+ ∩ C(s) = {x ∈ Rn

+ : sp(x) 6 s} (2.16)

To represent the feasible set (excluding the unit-norm constraints), we can combine the convex
non-negativity constraint with the convex upper bound constraint Rn

+ ∩ C(smax), and impose
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the reverse-convex lower bound constraint by subsequently removing C(smin). We thus define
the following sets:

Cw(s) =
{

W ∈ Rn×r : wj ∈ C(s) ∀j ∈ {1, . . . , r}
}

Ch(s) =
{

H ∈ Rr×m : hiT ∈ C(s) ∀i ∈ {1, . . . , r}
} (2.17)

The problem 2.14 can now be re-written as follows:

minimize 1
2‖V−WH‖2

F w.r.t. W,H

subject to W ∈
(
Rn×r

+ ∩ Cw(smaxw )
)
\ Cw(sminw ), ‖wj‖2 = 1 ∀j

H ∈
(
Rr×m

+ ∩ Ch(smaxh )
)
\ Ch(sminh )

(2.18)

This formulation explicitly introduces reverse-convex constraints for W and H. In the standard
NMF problem, we have seen that the individual optimization with respect to W or H is convex.
The introduction of reverse-convex constraints however makes the problem more complex. As
a result, not only the joint optimization with respect to W and H is not convex, but also
individual optimizations with respect to W or H.

To solve this optimization problem, Heiler & Schnörr (2005b, 2006) proposed an alternating
minimization scheme similar to the alternating least squares algorithms in Section 1.1, but where
the least squares problems are replaced with reverse-convex problems as shown in Algorithm 2.4.
The unit-norm constraint can be enforced by a diagonal rescaling step at the end of each
iteration.

Algorithm 2.4 SNMF with alternating reverse-convex minimization and diagonal rescaling.
Input: V ∈ Rn×m

+ , r < min(n,m), 0 6 sminw < smaxw 6 1 and 0 6 sminh < smaxh 6 1
Output: W,H that try to solve the optimization problem in Equation 2.18
1: Initialize W with strictly positive random values or with an ad hoc method
2: Project W anywhere in

(
Rn×r

+ ∩ Cw(smaxw )
)
\ Cw(sminw )

3: W←WD with D > 0 diagonal s.t. the resulting W has columns of `2-norm equal to 1
4: repeat
5: H← arg minH∈Fh ‖V−WH‖2

F where Fh =
(
Rr×m

+ ∩ Ch(smaxh )
)
\ Ch(sminh )

6: W← arg minW∈Fw ‖V−WH‖2
F where Fw =

(
Rn×r

+ ∩ Cw(smaxw )
)
\ Cw(sminw )

7: W←WD with D > 0 diagonal s.t. the resulting W has columns of `2-norm equal to 1
8: H← D−1H
9: until convergence

A powerful framework for global optimization called reverse-convex programming (RCP) (Tuy,
1987) has been developed to solve reverse-convex problems such as the ones used for the updates
of W and H in Algorithm 2.4. However, for the large-scale problems that are often considered
in machine learning, more realistic methods that find a local solution need to be used. As the
two reverse-convex problems in Algorithm 2.4 are equivalent up to a transposition, it suffices
to focus on the problem for the update of W:

minimize 1
2‖V−WH‖2

F w.r.t. W

subject to W ∈
(
Rn×r

+ ∩ Cw(smaxw )
)
\ Cw(sminw )

(2.19)
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Two approaches were proposed by Heiler & Schnörr to solve this specific problem, namely
the tangent plane approximation algorithm and the sparsity maximization algorithm. Both
rely on approximating the reverse-convex problem in Equation 2.19 by a sequence of convex
problems that lead to a local optimal solution. However, the two algorithms have not the same
convergence properties concerning the sequence of alternating optimizations in Algorithm 2.4.
The sparsity maximization algorithm guarantees convergence to a local optimal solution of
the problem 2.18, whereas the tangent plane approximation algorithm may oscillate in rare
situations (but it does lead to a local optimal solution of the problem 2.18 when it converges).
In our experiments, we implemented the both and obtained similar results. For the sake of
concision, we only detail the tangent plane approximation algorithm for three reasons: (1) it
is much faster than the sparsity maximization algorithm, (2) it can easily be modified using
convex quadratic programming instead of SOCP as explained in Section 2.3, and (3) in the
case of SND we are not concerned with the problem of potential oscillation due to alternating
optimization since W is fixed.

The tangent plane approximation algorithm as shown in Algorithm 2.5 solves a sequence of
SOCPs where the reverse-convex constraint is linearized, that is the min-sparsity cone is ap-
proximated by its tangent planes at some particular points. This algorithm can be discussed
as follows.

As a first step, W is initialized by solving a SOCP without the min-sparsity constraints:

minimize t w.r.t. W, t

subject to W ∈ Rn×r
+ ∩ Cw(smaxw ),

(
vec(V)− (HT ⊗ I) vec(W)

t

)
∈ Lnm+1

(2.20)

If the columns of the resulting W all have a sparseness greater than sminw , then W is a global
optimal solution of the problem 2.19 and the algorithm terminates. Otherwise, the indexes of
the columns wj that violate the min-sparsity constraint are added to the set J . The columns wj

for j ∈ J are projected onto the min-sparsity cone, and the exterior normals nj of the tangent
planes at these projections pj are computed. Another SOCP is solved with additional tangent
plane constraints for the columns wj with j ∈ J . This SOCP can be formulated as follows:

minimize t w.r.t. W, t

subject to W ∈ Rn×r
+ ∩ Cw(smaxw ),

(
vec(V)− (HT ⊗ I) vec(W)

t

)
∈ Lnm+1

〈nj,wj − pj〉 > 0 ∀j ∈ J

(2.21)

J is updated and a new SOCP is solved until W becomes feasible. Once W is feasible, it
is a local solution of the problem in Equation 2.19. The process can then be repeated until
convergence to give a better local optimal solution, but there is no guarantee to reach a global
optimal solution. Throughout the algorithm, J keeps in memory the indexes for which wj

violated at least once the min-sparsity constraint along the updates of W, and thus the indexes
of the columns that must be constrained to lie outside the volume delimited by the min-sparsity
cone.

The projections onto the min-sparsity cone are considered at constant `2-norm. They can be
done with Algorithm 2.3, but Heiler & Schnörr also proposed an efficient way to approximate
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them by an exponentiation and rescaling, that is each component xi is replaced with xiα where
α > 1 is chosen such that sp(x) = sminw , and x is then rescaled to have unaffected `2-norm.

The exterior normal n = ∇C(sminw )(p) of a tangent plane at p ∈ C(sminw ) can be calculated
analytically since C(sminw ) is parametrized by f(x) = 0 with f(x) = sp(x) − sminw . Thus, the
direction of a normal at p ∈ C(sminw ) is given by∇f(p) = ∇sp(p). As the gradient∇sp(p) points
outwards from the volume delimited by the min-sparsity cone (because sparseness increases in
its direction), n is given by ∇sp (see Equation 2.7) evaluated at p and normalized.

Algorithm 2.5 Tangent plane approximation.
Input: V ∈ Rn×m

+ , H ∈ Rr×m
+ , 0 6 sminw < smaxw 6 1

Output: W local optimal solution of the RCP 2.19
1: Initialize W by solving the SOCP 2.20
2: J ← ∅
3: J ′ ← {j : wj ∈ C(sminw )}
4: if J ′ = ∅ then
5: return W
6: else
7: repeat
8: repeat
9: J ← J ∪ J ′
10: pj = πsminw (wj) ∀j ∈ J
11: nj ← ∇C(sminw )(pj) ∀j ∈ J
12: Update W by solving the SOCP 2.21
13: J ′ ← {j : wj ∈ C(sminw )}
14: until J ′ = ∅
15: until convergence
16: end if

In our implementation of the tangent plane approximation algorithm, we had to add small
constants ε in several inequalities of the SOCPs in Equation 2.20 and 2.21. This helped prevent
from numerical imprecisions, mainly of the solutions output by the solver, that sometimes
caused a violation of the non-negativity and sparseness constraints. This also helped staying
in the interior (in a topological sense) of the non-negative orthants where ∇sp is properly
defined. Finally, the attentive reader could have remarked that removing the min-sparsity
cones implies sp < sminw/h and not sp 6 sminw/h as considered in 2.14. However, because of the
numerical imprecisions, there is a slight tolerance around the values of sminw/h and smaxw/h and the
strict inequality does not make sense in practice.

2.3. Sparse non-negative decomposition

In this section, we adapt the previously presented optimization methods and develop specific
algorithms for the case of SND. We recall that SND aims at decomposing successive column
vectors vj on a fixed matrix W of learned templates, and where the encoding coefficients hj are
wanted as sparse as possible. To simplify the notations, we restrict without lack of generality
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to the case where there is only one column vector v to decompose as v ≈Wh. We now present
the optimization techniques we have developed to obtain this decomposition.

2.3.1. Gradient optimization

The projected gradient approach used for SNMF in Section 2.2 can be readily adapted for SND.
The corresponding optimization problem can be formulated as follows:

Given v ∈ Rn
+, W ∈ Rn×r

+ , 0 6 s 6 1

minimize 1
2‖v−Wh‖2

2 w.r.t. h

subject to h ∈ Rr
+, sp(h) = s

(2.22)

This problem can be solved by modifying Algorithm 2.2 accordingly, as shown in Algorithm 2.6.

Algorithm 2.6 SND with projected gradient optimization.
Input: v ∈ Rn

+, W ∈ Rn×r
+ , 0 6 s 6 1

Output: h that tries to solve the optimization problem in Equation 2.22
1: Initialize h with non-negative random values or with an ad hoc method
2: h← πs(h)
3: repeat
4: h← πs

(
h− µ ·WT (Wh− v)

)
with µ chosen s.t. the cost decreases

5: until convergence

We found that other ways to control sparsity with gradient optimization could also be used for
the particular case of SND. Since W is fixed, no unit-norm constraint is needed anymore. As a
result, we can make use not only of scale-invariant terms but also of scale-dependent terms to
create penalties J (h) and include them into the cost function. The optimization problem with
a penalty can be formulated as follows:

Given v ∈ Rn
+, W ∈ Rn×r

+ , λ > 0

minimize 1
2‖v−Wh‖2

2 + λ J (h) w.r.t. h

subject to h ∈ Rr
+

(2.23)

For the penalties, the idea is to employ the sparseness measures differentiable on Rn
++ that were

presented in Section 2.1. In the present work, we propose three different penalties: (1) J (h) =∑
i tanh

(
|ahi|b

)
, (2) J (h) = ‖h‖pp, and (3) J (h) = (σ‖h‖2 − ‖h‖1)2 where σ = (1− s)

√
r+ s

and 0 6 s 6 1. The latter is not a sparseness measure but a measure on how close to s is sp(h).
It is null if and only if sp(h) = s, and increases as sp(h) moves away from s. We did not use
sp(h) with gradient optimization because we found a better suited optimization technique with
convex quadratic programming to include this term as a penalty.
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The problem in Equation 2.23 can be solved with Algorithm 2.6, which consists in a projected
gradient scheme, with projection on the non-negative orthant using the max(ε, ·) operator, and
where the step size is chosen by dynamic programming such that the cost decreases.

Algorithm 2.7 SND with projected gradient optimization and penalty.
Input: v ∈ Rn

+, W ∈ Rn×r
+ , λ > 0

Output: h local optimal solution of the optimization problem in Equation 2.23
1: Initialize h with non-negative random values or with an ad hoc method
2: repeat
3: h← max

(
ε,h− µ ·

(
WT (Wh− v) + λ∇J (h)

))
with µ chosen s.t. the cost decreases

4: until convergence

2.3.2. Convex quadratic programming

Convex quadratic programming (CQP) is a specific field of SOCP that addresses problems of
the form:

minimize 1
2xTPx + qTx w.r.t. x ∈ Rn

subject to Ax 6 b
(2.24)

where P is supposed to be positive-semidefinite. Such a problem is convex, and if P is positive-
definite and the feasible set is non-empty, then the problem is strictly convex and thus has a
unique global optimum.

For example, the following regularized non-negative least squares problem is a particular case
of CQP:

arg min
h∈Rr+

1
2‖v−Wh‖2

2 + λ1‖h‖1 + λ2

2 ‖h‖
2
2 (2.25)

where λ1, λ2 > 0 are regularization parameters. It can be reformulated as follows:

minimize 1
2hT (WTW + λ2I)h + (λ1eT − vTW)h w.r.t. h

subject to h ∈ Rr
+

(2.26)

The `1-norm regularization term is introduced to penalize less sparse vectors since it decreases
with sparseness (see Section 2.1). The `2-norm regularization term is a particular case of
Tikhonov regularization which is often used in CQP (Boyd & Vandenberghe, 2004) because it
makes WTW + λ2I positive-definite for λ2 > 0 and thus makes the problem strictly convex.

As suggested by Heiler & Schnörr (2006), we have modified the tangent plane approximation
algorithm presented in Section 2.2 to replace the SOCPs with CQPs. From a computational
viewpoint, CQPs can be solved more efficiently than SOCPs. In the implementation, we have
used the quadprog function available in the MATLAB optimization toolbox. We have also
found that the use of CQPs instead of SOCPs allows the introduction of additional penalty
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terms to control sparseness more precisely. The problem we have considered is the following:

Given V ∈ Rn×m
+ , W ∈ Rn×r

+ , λ1, λ2, λs > 0, 0 6 smin < smax 6 1

minimize 1
2‖v−Wh‖2

2 + λ1‖h‖1 + λ2

2 ‖h‖
2
2 − λssp(h) w.r.t. h

subject to h ∈ Rr
+, smin 6 sp(h) 6 smax

(2.27)

With the notations for SOCP defined in Section 2.2, this problem can be formulated as follows:

minimize 1
2‖v−Wh‖2

2 + λ1‖h‖1 + λ2

2 ‖h‖
2
2 − λssp(h) w.r.t. h

subject to h ∈
(
Rr

+ ∩ C(smax)
)
\ C(smin)

(2.28)

To solve this problem, we developed Algorithm 2.8 that we call multiple tangent plane approx-
imation (MTPA). The idea is to solve a sequence of CQPs where both the reverse-convex and
convex sparsity constraints are linearized, that is the min and max-sparsity cones are approx-
imated by their tangent planes at some particular points. sp(h) is also linearized, that is we
approximate sp(h) by its first-order Taylor expansion around a particular point.

The principle is the same as for the tangent plane approximation algorithm (see Section 2.2)
except that the max-sparsity cone is linearized and that the cost function is extended to include
regularization terms. We can use CQPs instead of SOCPs leading to advantages in terms of
efficiency. Leaving out the three regularization terms in Equation 2.28, our algorithm coincides
with the idea suggested by Heiler & Schnörr (2006) and can readily be used instead of the
tangent plane approximation algorithm to solve the problem 2.18. Leaving out the `1 and
`2-norm regularization terms and the sparseness constraints smin, smax, the problem becomes
closely related to the relaxed problem proposed in Heiler & Schnörr (2005a), except that our
cost function can be interpreted as a separable divergence with an additional penalty term and
that we can use CQPs instead of SOCPs. The algorithm can be explained as follows.

As a first step, h is initialized by solving a CQP without the sparsity constraints and without
the sp(h) regularization term:

minimize 1
2hT (WTW + λ2I)h + (λ1e−WTv)Th w.r.t. h

subject to h ∈ Rr
+

(2.29)

If h has a sparseness equal to smax or (λs = 0 and h is feasible), then h is a global optimal
solution of the problem in Equation 2.28 and the algorithm terminates. Otherwise, if λs > 0, we
iteratively solve the following CQP until convergence, where h0 is the previous solution around
which we linearize sp(h) ≈ sp(h0) +∇sp(h0)T (h− h0):

minimize 1
2hT (WTW + λ2I)h +

(
λ1e−WTv− λs∇sp(h0)

)Th w.r.t. h

subject to h ∈ Rr
+

(2.30)

If the resulting h lies between the min and the max-sparsity cones, then the algorithm ter-
minates. Otherwise, we set the booleans bmin and bmax true respectively if sp(h) < smin and
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if sp(h) > smax and update h by solving the following CQP with additional tangent plane
constraints:

minimize 1
2hT (WTW + λ2I)h + (λ1e−WTv)h w.r.t. h

subject to h ∈ Rr
+

〈nmin,h− pmin〉 > 0 if bmin is true〈
n(j)
max,h− p(j)

max

〉
6 0 ∀j ∈ [1, . . . , N ]

(2.31)

If λs > 0, a sequence of CQPs is then solved until convergence, with additional tangent plane
constraints and approximation of the sp(h) regularization term around the previous solution
h0:

minimize 1
2hT (WTW + λ2I)h +

(
λ1e−WTv− λs∇sp(h0)

)Th w.r.t. h

subject to h ∈ Rr
+

〈nmin,h− pmin〉 > 0 if bmin is true〈
n(j)
max,h− p(j)

max

〉
6 0 ∀j ∈ [1, . . . , N ]

(2.32)

Once this sequence has converged, the booleans, the projections and the normals are updated,
and the scheme is repeated until h becomes feasible. Once h is feasible, the process can be
repeated until convergence to give a better solution. We hope to give a full proof of convergence
of this algorithm in future work.

Throughout the algorithm, the booleans bmin and bmax respectively keep in memory whether
h violated at least once the min-sparsity constraint and whether the current h violates the
max-sparsity constraint, and thus whether the min-sparsity constraint need to be enforced and
whether an additional max-tangent plane constraint need to be considered. N keeps in memory
the number of times h violated the max-sparsity constraint, and thus the number of max-tangent
planes constraints that are needed. The projections onto the min and max-sparsity cones, and
the exterior normals can be computed as in the tangent plane approximation algorithm (see
Section 2.2). We present applications of Algorithm 2.8 in Chapter 3.
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Algorithm 2.8 SND with the multiple tangent plane approximation algorithm.
Input: v ∈ Rn

+, W ∈ Rn×r
+ , λ1, λ2, λs > 0, 0 6 smin < smax 6 1

Output: h that tries to solve the optimization problem in Equation 2.28
1: Initialize h by solving the CQP in Equation 2.29
2: if sp(h) = smax or (λs = 0 and h is feasible) then
3: return h
4: end if
5: if λs > 0 then
6: repeat
7: h0 ← h
8: Update h by solving the CQP in Equation 2.30
9: until convergence
10: end if
11: if smin 6 sp(h) 6 smax then
12: return h
13: end if
14: bmin ← false
15: N ← 0
16: repeat
17: repeat
18: if sp(h) < smin then
19: bmin ← true
20: end if
21: if sp(h) > smax then
22: bmax ← true
23: else
24: bmax ← false
25: end if
26: if bmin then
27: pmin ← πsmin(h)
28: nmin ← ∇C(smin)(pmin)
29: end if
30: if bmax then
31: N ← N + 1
32: p(N)

max ← πsmax(h)
33: n(N)

max ← ∇C(smax)(pmax)
34: end if
35: Update h by solving the CQP in Equation 2.31
36: if λs > 0 then
37: repeat
38: h0 ← h
39: Update h by solving the CQP in Equation 2.32
40: until convergence
41: end if
42: until h is feasible
43: until convergence
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3. Results

In Chapter 2, we have shown how to control sparsity in non-negative decomposition from a
theoretical viewpoint. The need for such a control has also been motivated and illustrated
in the context of the present work. Several algorithms for sparse non-negative decomposition
(SND) have been developed. In this chapter, we now focus on applying the devised algorithms
on a synthetic task for validation, and on more concrete and realistic tasks for illustration. In
Section 3.1, the synthetic experiment proposed by Paatero (1997) is repeated to illustrate our
points about the necessity of a control of sparseness in NMF. This experiment reveals that
an explicit control of sparsity helps to overcome the limits of standard NMF. In Section 3.2,
we concentrate on multi-pitch and multi-instrument recognition. We explain the learning step
where templates are determined for each note of the instruments. The system is then evaluated
on a real transcription task with recorded polyphonic music. In Section 3.3, the system is applied
to the analysis of complex auditory scenes. Templates are learned for different everyday sound
events, and a realistic auditory scene is created and analyzed.

3.1. Paatero’s experiment

In this section, we repeat the experiment proposed by Paatero (1997) to illustrate the neces-
sity of controlling sparseness even in lab situations. The experiment has been explained and
performed with NMF in Section 2.1. It has underlined the real need for an explicit control of
sparsity. The algorithms for SNMF proposed in Section 2.2 are here applied to the same task
to assess their reliability compared to NMF.

The same data set for V, W and H is used (see Figures 2.1(a) and 2.1(b)). A rank of fac-
torization r = 4 is chosen for the analysis. No sparseness constraint is enforced on Ĥ, that is
sh is not specified for the projected gradient method, and we set sminh = 0, smaxh = 1 for the
SOCP method. No sparseness upper bound is enforced on Ŵ for the SOCP method, that is
we set smaxw = 1. We thus only consider one sparsity parameter, sw for PG and sminw for SOCP,
for which we tried the values 0.2, 0.5, 0.6, 0.65, 0.7, 0.8 (remembering that the sparseness of
the ground truth basis vectors is 0.6877). For the two methods, the alternating updates of
Ŵ and Ĥ are stopped when the cost function does not change from more than a termination
tolerance ε = 10−7. The results are represented in Figure 3.1. They show that an adhoc control
of sparseness allows to recover the ground truth factors, where standard NMF failed.

As the sparseness parameter used increases, the estimated basis vectors get sparser and closer
to the ground truth, and for a value of 0.65, W and H are recovered quasi-exactly by the two
methods (see Figures 3.1(d) and 3.1(j)).
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0

50

100

0 5 10 15 20
0

50

100

0 5 10 15 20

Estimated encoding coefficients ĥ3
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(a) Ŵ, Ĥ (PG, sw = 0.2).
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0

100

200

0 5 10 15 20

Estimated encoding coefficients ĥ4
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(b) Ŵ, Ĥ (PG, sw = 0.5).
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(c) Ŵ, Ĥ (PG, sw = 0.6).
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(d) Ŵ, Ĥ (PG, sw = 0.65).
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(e) Ŵ, Ĥ (PG, sw = 0.7).
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(f) Ŵ, Ĥ (PG, sw = 0.8).
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(g) Ŵ, Ĥ (SOCP, sminw = 0.2).
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(h) Ŵ, Ĥ (SOCP, sminw = 0.5).
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0

0.5

0 10 20 30 40

Estimated basis vector ŵ3
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(i) Ŵ, Ĥ (SOCP, sminw = 0.6).
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(j) Ŵ, Ĥ (SOCP, sminw = 0.65).
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(k) Ŵ, Ĥ (SOCP, sminw = 0.7).
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0

0.5

1

0 10 20 30 40

Estimated basis vector ŵ3
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0

50

100

0 5 10 15 20

Estimated encoding coefficients ĥ4
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(l) Ŵ, Ĥ (SOCP, sminw = 0.8).

Figure 3.1.: Paatero’s experiment with sparse non-negative matrix factorization. This reveals
that an explicit control of sparsity in NMF may help to recover the ground truth
matrices W and H, where NMF failed. The ground truth factors however are not
always recovered, depending on the parameters.
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On the contrary of the projected gradient method, the SOCP method seems to already lead to
a sparse Ŵ with small values 0.2 or 0.5 of the sparsity parameter (see Figures 3.1(a), 3.1(b),
3.1(g) and 3.1(h)). This can be explained easily: the PG method enforces the sparseness by
projecting onto the sparsity cone even if factors with a greater sparseness could explain the data
better, whereas the SOCP method is more flexible and allows the factors to have a sparseness
greater than a specified lower bound.

With a sparsity parameter of 0.6, which is slightly less than the sparseness of the ground truth
basis vectors, the projected gradient method seems to recover better the basis vectors than the
SOCP method (see Figures 3.1(c) and 3.1(i)). We ran the algorithms several times and observed
that the projected gradient method was quite robust and not sensitive to the initialization,
despite the SOCP method. The same phenomenon is also observed with a sparsity parameter
of 0.65, which is very close to the sparseness of the ground truth basis vectors. For that value,
the projected gradient method appeared quite robust, whereas the SOCP method sometimes
did not recover the basis vectors, as shown in Figure 3.2 which represents two different runs of
the SOCP method.

Estimated basis vector ŵ1
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0

50

100

0 5 10 15 20

Estimated encoding coefficients ĥ4
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0

100

200

0 5 10 15 20

Estimated encoding coefficients ĥ2
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Figure 3.2.: Two runs of the SOCP method on Paatero’s data. This shows that for a sparsity
parameter of 0.65, which is close to the sparseness of the ground truth basis vectors,
the SOCP method does not always recover the ground truth factors.

As the sparsity parameter increases and exceeds the sparseness of the ground truth basis vectors
for the values 0.7 or 0.8, the SOCP method seems more robust than the projected gradient
method which completely fails in recovering the basis vectors (see Figures 3.1(e), 3.1(f), 3.1(k)
and 3.1(l)). We ran the algorithms several times and observed that the projected method was
much more sensitive to the initialization than the SOCP method in that case.

Overall, these results confirm our assumption that controlling sparseness is necessary to obtain
a relevant factorization. Sparseness sometimes also helps robustness of the algorithm in the
presence of noise. However, the experiment shows that the algorithms can be sensible to
the parameters and the initialization, so that the ground truth basis vectors are not always
recovered. This phenomenon has also been observed by Heiler & Schnörr (2006).

Our results suggest that it could be interesting to use the projected gradient method as a way
to initialize W in the SOCP method. This would help in the general and practical cases where
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the sparseness of the factors is not known in advance. Alternative methods such as replacing
the additional constraints with penalties could also be tried (Hoyer, 2002; Heiler & Schnörr,
2005a). These approaches need to be investigated further in the context of SNMF, but we now
concentrate on applications of SND.

3.2. Multi-pitch and multi-instrument recognition

3.2.1. Introduction

The problem of multiple-pitch detection has been largely investigated for speech and music sig-
nals. The literature contains a wide variety of methods to address this problem (de Cheveigné,
2006). NMF has already been used in this context, either with off-line approaches (Smaragdis
& Brown, 2003; Abdallah & Plumbley, 2004; Raczyński et al., 2007; Vincent et al., 2008; Bertin
et al., 2009) or with incremental approaches (Cont, 2006; Niedermayer, 2008).

In this section, we are not only interested in incremental multi-pitch detection, but also in
multi-instrument recognition. This means that we want to detect both the pitches and the
instruments that played the corresponding notes. Our approach follows the work initiated by
Cont et al. (2007) for multi-pitch and multi-instrument recognition with SND. The idea is
to use a recently introduced signal representation scheme based on the modulation spectrum
(Sukittanon et al., 2004). We explain the interest of this representation here on.

In the context of instrument classification, features are in general extracted from short-term
analysis windows. However, these features do not efficiently capture longer term variations of
the signals. Such variations are yet important since they can represent discriminative charac-
teristics of the sound classes. For example, it has been shown that the phase coupling properties
of instruments are characteristic of the instrument (Dubnov & Rodet, 2003). The modulation
spectrum representation contains such longer term information about the signal, more precisely
information about the time variation of the spectrum.

Modulation spectrum is a joint frequency representation P (η, ω), i.e. a two-dimensional repre-
sentation of the modulation frequency η and the acoustic frequency ω. Several techniques can
be used to obtain a modulation spectrum representation (e.g. Atlas & Janssen, 2005; Sukit-
tanon et al., 2005). We employ here an estimation of the modulation spectrum based on two
successive transformations: (1) a magnitude spectrogram calculated with a short-time Fourier
transform to give a joint time-frequency representation S(t, ω) of the input signal, (2) a mag-
nitude spectrum, obtained with a Fourier transform, applied along the time dimension of the
spectrogram S(t, ω) to estimate the joint frequency representation P (η, ω). The interpretation
of the modulation spectrum P (η, ω) is straightforward. The values for η = 0 correspond to sta-
tionary information about the signal, whereas the values for η > 0 correspond to non-stationary
information. In the particular case of instruments, the representation P (η, ω) contains thus in-
formation about the degree of modulation of the partials.

As the modulation spectrum is non-negative and gives information about the long-term varia-
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tions of the signal, it is an interesting representation to consider in the context of multi-pitch
and multi-instrument recognition with SND. Furthermore, Atlas & Janssen (2005) discussed
the additivity of the modulation spectrum, and Cont et al. (2007) provided an illustrative
example to show the superposition of the modulation spectra of two instruments playing to-
gether. For these reasons, we adopt the modulation spectrum as a representation front-end for
our system. We now show how modulation spectrum templates are learned for the incremental
decomposition with SND.

3.2.2. Learning the templates

The step of learning templates for each note of the instruments is important for the system
to work properly. Indeed, the templates should: (1) represent well the sounds and what is
invariant in the sounds so as to help generalization, and (2) allow for a good discrimination
between the different classes of sounds so as to help robustness. Without these two properties,
no matter how sophisticated is the incremental decomposition system, it will fail to deal with
real-world problems.

We have used here the templates learned with the method and the analysis parameters employed
by Cont et al. (2007) to provide a fair comparison of his decomposition algorithm with ours.
Moreover, his method has proven to provide relevant templates as illustrated in the paper.
Hence we do not seek to develop new techniques for template learning in the present study. We
discuss however other possible approaches for the learning step later.

To summarize the learning step employed by Cont et al. (2007), it consists in learning one
modulation spectrum template k for each note of each instrument. This template is learned
by applying NMF on a training sample of the corresponding note. More precisely, the training
sample is decomposed into successive time-frames in each of which the modulation spectrum is
computed. The modulation spectra in the different frames are vectorized to give column vectors
that are then stacked in a matrix V(k). NMF with the generalized Kullback-Leibler divergence
is applied to V(k) which is factorized into W(k)H(k), with a rank of factorization r = 2 and the
second column of W(k) fixed as white noise.

The templates are computed for the piano, the flute and the violin. The samples for the piano
are taken from the RWC database (Goto et al., 2002), and the samples for the flute and the
violin are taken from the SOL database (Ballet et al., 1999). Three templates obtained with
the described learning scheme for the A4 of the piano, the flute and the violin are shown in
Figure 3.3. This reveals that NMF has succeeded in learning the modulation characteristics
of the three instruments, and that the templates contain between-instrument discriminative
information which is of interest for the incremental decomposition system.
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(a) Template for the A4 of the piano.
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(b) Template for the A4 of the flute.
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(c) Template for the A4 of the violin.

Figure 3.3.: Learned templates for the A4 of three different instruments. Modulation spectrum
templates for the A4 of the piano, the flute and the violin are learned with the
method proposed in Cont et al. (2007). The x-axis represents the modulation fre-
quency η in hertz and the y-axis the acoustic frequency ω in hertz. The three
modulation spectrum templates are different, meaning that the three instruments
have their own modulation characteristics, and that the templates contain discrim-
inative information.
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3.2.3. Evaluation on recorded music

In this section, we subjectively evaluate the proposed system on a multi-pitch and multi-
instrument recognition task, that is we seek a transcription in form of a piano-roll presentation.
We focus on one of the algorithms developed in Section 2.3, Algorithm 2.8, in comparison to
simple gradient optimization techniques as proposed in (Cont et al., 2007).

Evaluation of multi-pitch and multi-instrument recognition systems are often presented as two
different tasks and are generally difficult. The general procedure often consists in evaluating the
output of the system against reference annotated music. Some databases containing annotated
music does exist, but are in the best case dedicated to polyphonic mono-instrument music
(often piano music), such that several systems for multi-instrument recognition are evaluated
without the pitch information (e.g. Essid et al., 2006; Kitahara et al., 2006). Other systems are
evaluated with a manual mixing of single note recordings of different instruments (e.g. Livshin
& Rodet, 2006).

We aim at evaluating results against acoustic recordings despite the difficulties of the approach.
To compare Algorithm 2.8 with the algorithm proposed by Cont et al. (2007), we process in
the same way as in the paper, and use the same analysis parameters. We demonstrate the
performances of the systems with a subjective evaluation on a short musical excerpt shown in
a piano roll representation in Figure 3.4, and leave an objective evaluation for future work.
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Figure 3.4.: Piano roll of the MIDI score from Poulenc’s Sonata for Flute and Piano.

Figures 3.5(a) and 3.5(b) show performances of the algorithm in (Cont et al., 2007) and Al-
gorithm 2.8 respectively on a recording of a musical phrase from Poulenc’s Sonata for Flute
and Piano. A piano roll representation of the MIDI score of the same phrase is represented
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in Figure 3.4 for visual reference. The templates used for the incremental decomposition are
computed as explained previously. A noise template is also added to absorb not only transients
and non-harmonic structures, but also the background noise and the reverberation due to real-
world recording situation. For the decomposition with Algorithm 2.8, we have only considered
the two parameters λ1 = 1 and λ2 = 0.01, that is smin, smax and λs are respectively set to 0, 1
and 0. Changing other parameters slightly would not alter the results of our algorithm.

Comparing Figures 3.5(a) and 3.5(b) alone clearly shows that Algorithm 2.8 has less tendency to
use other templates than the active ones in the reference. This is a direct consequence of (1) the
ability of Algorithm 2.8 to control the degree of sparsity freely within a given range in contrast
to (Cont et al., 2007) where sparsity is a rigid parameter, and (2) more efficient optimization
techniques in Algorithm 2.8 compared to (Cont et al., 2007) as discussed previously.

3.3. Analysis of complex auditory scenes

3.3.1. Introduction

Analysis of complex auditory scenes has received much attention mainly with the development
of computational auditory scene analysis (CASA) (Wang & Brown, 2006). The field of CASA
is wide and deals with various real-world problems such as source separation, automatic poly-
phonic music transcription, recognition of speech in noisy environments, environmental sound
recognition in realistic scenarios among others.

In this section, we showcase the problem of environmental sound recognition in complex auditory
scenes, using sparse non-negative decomposition techniques. To the best of our knowledge there
is no application of NMF to the analysis of complex auditory scenes in the literature. Our goal
here is not to propose a universal framework to address the problems of CASA but rather to
demonstrate capabilities of simple sparse non-negative methods for such tasks.

We concentrate on a basic example to assess the reliability of the proposed system. The idea is
to create a realistic scenario with several sound sources and background noise. The proposed
system is able to deal with complex scenes where the sound sources overlap. We choose however
to begin with a less complex scene where the sound sources do not overlap, but where we still
consider background noise. This should provide a preliminary example to test the system, and
assess its drawbacks. Future improvements of the system for the analysis of more complex
scenes will be addressed later.

The context of this experiment is more or less the same as in Section 3.2, by employing templates
learned off-line in a decomposition setup, but with different representation front-ends. In the
context of environmental sound recognition, as for the task of instrument recognition, features
are in general extracted from short-term analysis windows. For a recent review of the common
methods for environmental sound classification, we refer the reader to (Chu et al., 2009). We
have used a simple time-frequency representation with the short-time Fourier transform. We
discuss later the possibility to use other sound representations.
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(a) Activation coefficients obtained with the algorithm in (Cont et al., 2007).
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(b) Activation coefficients obtained with Algorithm 2.8.

Figure 3.5.: Subjective evaluation with recorded music. The system with Algorithm 2.8 is
evaluated and compared to the algorithm in (Cont et al., 2007) on a real recording of
a musical phrase from Poulenc’s Sonata for Flute and Piano. The results obtained
with these two algorithms are shown respectively on Figures 3.5(a) and 3.5(b).
These figures represent the respective encoding matrices H obtained during the
decomposition. The x-axis corresponds to the time while the y-axis corresponds to
the pitches of the instruments (flute on top and piano at the bottom, separated by
the noise template) sorted in ascending order.
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3.3.2. Validation of the system

We aim at testing the proposed system on a realistic complex auditory scene. The learning
phases as before is achieved with the method from Cont et al. (2007), except that instead of
the modulation spectrum we use a short-time Fourier transform, with a window length of 2048
samples and a hop size of 256 samples, for a sampling rate of 44100 hertz. The templates are
computed for three different environmental sounds which were used by Houix et al. (2007) in the
context of experimental classification of everyday sounds. The three chosen sounds represent
common sound events that occur in the everyday life context of a kitchen: the clinking of
glasses, the closing of a door cupboard, and the scraping of a metal pan. In the sequel, these
sounds are referenced respectively with the labels S1, S2 and S3.

We have mixed S1, S2 and S3 with some background noise recorded in the real-world context of
a railway station by Tardieu (2006) to provide the problem setup. The resulting mix constitutes
a complex auditory scene which is shown as a waveform representation in Figure 3.6(a). This
reference scene is composed sequentially as follows: S1, S1, S3, S2, S2, S2, S3, S3, S1, S3, S2,
S2, S3. The scene is analyzed with Algorithm 2.8 using λ1 = 2.5, λ2 = λs = 0, smin = 0
and smax = 1. The template matrix W, contains only the three templates for S1, S2 and S3,
without a noise template. The analysis parameters of the short-time Fourier transform during
the incremental analysis are the same as the ones used for learning the templates.

The results of the incremental analysis are shown in Figure 3.6. Figures 3.6(b) and 3.6(c) show
the normalized activation coefficients hj corresponding to each sound template j over time, as
a result of non-sparse and sparse non-negative decomposition respectively. Following the time
lines in both figures, it can be seen that the system has correctly identified the existence of
each sound source. However, comparing Figures 3.6(b) and 3.6(c), we can observe more clear
activities on the sparse version. Notably in the time interval between 2.9 and 5.0 seconds, the
non-sparse version reports activations for two templates whereas the sparse version correctly
reports one activation. This is a direct consequence of adaptive sparse scaling of Algorithm 2.8,
leading to a more robust system.
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Analysis of complex auditory scenes Results
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(b) Activation coefficients using non-sparse ND.
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(c) Activation coefficients using sparse ND with Algorithm 2.8.

Figure 3.6.: Analysis of a complex auditory scene. An auditory scene is created by mixing three
environmental sounds with some background noise. The scene is then analyzed
with non-sparse and sparse non-negative decomposition. The resulting activation
coefficients show that the two versions have succeeded in identifying the sound
sources. The sparse version however seems more robust than the non-sparse version.
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Conclusion

Summary of the work

The present work has been dedicated to incremental multi-source recognition using non-negative
matrix factorization, with an important focus on providing a mathematical framework for sparse
coding schemes. Following an introduction of NMF problems and optimization techniques in
Chapter 1, we discussed their applications to sound recognition and positioned our work in this
context. We chose to address the problem of incremental recognition within the framework of
non-negative decomposition, a modified NMF problem where the incoming signal is projected
onto a basis of templates learned off-line prior to the decomposition. We have more specifically
extended the framework proposed by Cont et al. (2007) in the context of non-negative matrix
factorization for multi-pitch and multi-instrument recognition, where the need for an explicit
control of sparsity has been underlined.

The main contribution of the present work is in the formulation of a sparse NMF framework
where the sparseness of the factors is adaptively scaled to the data, whereas it has been assumed
fixed in several previous approaches. We addressed this problem in Chapter 2 by employing
convex optimization techniques. In this chapter, the need for sparsity controls in the context
of NMF was motivated and illustrated with a synthetic experiment showing the limits of stan-
dard NMF even in lab situations. To overcome the issue, projected gradient optimization and
second-order cone programming were introduced and employed to develop sparse NMF algo-
rithms. Furthermore, alternative algorithms using gradient optimization and convex quadratic
programming were also revised for the particular case of non-negative decomposition.

Following this theoretical development, some of the proposed algorithms were applied to pre-
liminary evaluations in Chapter 3. The synthetic experiment that had shown the limits of
standard NMF in Chapter 2 was repeated using two sparse NMF algorithms, validating both
algorithms and the initial assumption of a real need for sparsity control to achieve desired re-
sults. We took one step further by applying the proposed algorithms to two sample real-world
applications, notably that of incremental multiple-pitch and multiple-instrument recognition,
and that of incremental analysis of complex auditory scenes. In both applications, we affirmed
the interest for sparsity controls for recognition purposes. We leave a more rigorous evaluation,
using common reference databases on the described problems for future work.
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Perspectives

The present work mainly focused on proposing more rigorous optimization techniques with
explicit controls for sparsity. However, to better approach the real-world problems of computa-
tional auditory scene analysis, other issues should also be taken into account. We try to expose
some of the most important issues for future development of this work.

One of the main problems with NMF approaches is the implicit assumption that templates in
W are considered inherently as stationary. Despite this assumption, NMF approaches have
been successful in generalizing their knowledge in uncertain situations thanks to their inherent
sparsity. One way to overcome this limitation is to consider front-end representations that are
able to capture variability of the data over a short time-span. This was inherently the reason
behind our choice of employing modulation spectrum representations in Section 3.2 for music
transcription. This representation appeared relevant for the between-instrument discrimination.
While this can address to some extent the problem of musical instrument discrimination, it will
be not sufficient for complex auditory object analysis with long-term structural variations (e.g.
a car engine sound). We believe that a more rigorous approach to address the non-stationarity of
real-world objects would be to consider the temporality of object templates directly within the
optimization scheme and representations of NMF. Such an approach was proposed by Smaragdis
(2004) with an extended model of NMF capable of dealing with time-varying objects. Another
possible approach for the case of non-negative decomposition would be to combine NMF with
a state representation of sounds, and use one template for each state (e.g. attack and sustain
part of a note). Regularization terms could then be used to express the potential transitions
between the different states. These two approaches should be investigated further.

The optimization schemes proposed in this work, focused on the problem of sparsity control
within a geometric space with the Euclidean distance. However, other structural components
could be considered more rigorously for specific applications. Among these are the cost func-
tions used in the optimization techniques which we did not consider thoroughly in this study.
Other works suggest significant improvement of results by reformulating problems using other
divergences than the Euclidean distance, leading to other interpretations of NMF problems. For
example, Févotte et al. (2009) proved the relevance of the Itakura-Saito divergence in the con-
text of sound analysis, and interpreted NMF problems with this divergence within a Bayesian
framework. There is a close relationship between the choice of cost function and the geometry
of the solution onto which we employ our optimization schemes. This relationship must be
thoroughly formulated within each optimization framework, left out in the present work for
future development.

Besides the optimization algorithms, the inherent additivity of the NMF framework invites
other potential representation schemes to be considered for our applications. In the present
work, we have considered a modulation spectrum and a magnitude spectrum representations.
In the future, we would like to address the use of a wavelet transform in combination with the
modulation spectrum, to provide a multi-scale analysis of the spectro-temporal modulations as
proposed in (Sukittanon et al., 2005). Complex representations using the framework proposed
in Appendix A could also be used. For example, keeping the phase information in the second
transform of the modulation spectrum could provide a more informative representation that
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would not only consider the amplitude modulation of the different partials, but also the phase
coupling. Another idea would be the extension of the frequency shift model proposed by Mørup
& Schmidt (2005) to a phase shift model, so as to keep the phase information in the frequency
representations. In a more general setup, the extension of NMF to tensors could provide a
new intuition about the geometry of both the problems and the representations, allowing for
instance to use multi-channel information, or to keep the fundamental geometry of some multi-
dimensional representations that need to be vectorized in the standard approach (e.g. the
modulation spectrum).

Finally, we would like to improve the power of generalization and the robustness of the proposed
system. Concerning the question of generalization, we think that second-order cone program-
ming could help relaxing the hard constraints imposed on W which is kept fixed during the
decomposition. The idea would be to have an adaptive template matrix W whose columns are
allowed to move inside the volume delimited by a cone centered around the respective learned
templates. A similar idea has already been proposed by Heiler & Schnörr (2006) in the con-
text of supervised classification with NMF. Future work should address the adaptation of the
approach to sparse non-negative decomposition. Concerning robustness, we believe that inves-
tigating further the use of a noise template would be of interest. We have thought of adding
a column in W that would be updated in a similar scheme as in incremental NMF (Bucak &
Günsel, 2009). This could help to absorb not only the background noise but also some un-
known present sources, which is important in a real-world scenario where we do not know all
the present sources in advance.
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A. Relaxation of the non-negativity
constraints

In this appendix, we show how to relax the non-negativity constraints on V and W so as to
use complex matrices. In the case of standard NMF, the issue can be addressed easily using an
alternating least squares scheme as described in Section 1.1, but where only the least squares
problem for the update of H is constrained. We concentrate on the more demanding step of
relaxing the non-negativity constraints on v and W in the different problems of SND formulated
in Section 2.3.

Using the Euclidean distance and the presented optimization techniques, we can relax the
non-negativity constraints on v and W in the algorithms for SND developed in Section 2.3.
Considering complex matrices v, W and h, we can rewrite the Euclidean distance as follows:

1
2‖v−Wh‖2

2 = 1
2‖v‖

2
2 + 1

2‖Wh‖2
2 −<e (〈v,Wh〉) (A.1)

= 1
2vHv + 1

2hHWHWh−<e
(
vHWh

)
(A.2)

Assuming now that h is non-negative, we can deduce the following expression:
1
2‖v−Wh‖2

2 = 1
2vHv + 1

2hTWHWh−<e
(
vHW

)
h (A.3)

As the matrix WHW is positive-semidefinite, we have hTWHWh > 0, and in particular we
have hTWHWh ∈ R. As a result, we can derive the following equalities:

hTWHWh = <e
(
hTWHWh

)
= hT<e

(
WHW

)
h (A.4)

We notice that since <e
(
WHW

)
is symmetric and that hT<e

(
WHW

)
h = hTWHWh > 0,

we can deduce that <e
(
WHW

)
is positive-semidefinite. This property will be helpful to extend

the MTPA algorithm to complex matrices v and W. But for the moment, we derive a last
expression for the Euclidean distance:

1
2‖v−Wh‖2

2 = 1
2vHv + 1

2hT<e
(
WHW

)
h−<e

(
vHW

)
h (A.5)

The latter expression allows to relax the non-negativity constraints on v and W in both the
gradient optimization and the CQP algorithms we developed for SND.

Gradient optimization algorithms are derived by calculating the gradient of the Euclidean
distance with respect to h. Using the expression in Equation A.5, the gradient is calculated as
follows:

1
2 ∇h‖v−Wh‖2

2 = 1
2

(
<e
(
WHW

)
+ <e

(
WHW

)T )h−<e
(
vHW

)T (A.6)
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Relaxation of the non-negativity constraints

As the matrix WHW is hermitian, the matrix <e
(
WHW

)
is symmetric and the gradient

becomes:
1
2 ∇h‖v−Wh‖2

2 = <e
(
WHW

)
h−<e

(
WHv

)
(A.7)

We can now extend the presented gradient optimization algorithms to complex matrices v and
W. It suffices to replace the gradient WTWh −WTv for real matrices, with the gradient
<e
(
WHW

)
h−<e

(
WHv

)
for complex matrices in the Algorithms 2.6 and 2.7.

The extension to complex matrices v and W is more direct for the MTPA algorithm with
CQPs. As stated above, the matrix <e

(
WHW

)
is positive-semidefinite. Therefore, it suffices

to replace WTW and WTv respectively with <e
(
WHW

)
and <e

(
WHv

)
in the problems

given in Equations 2.29, 2.30, 2.31 and 2.32 which are still CQPs under these modifications.

To conclude, all the algorithms we have developed for SND can be extended to complex matrices
v and W. The different SND problems that we can solve with these algorithms are summed
up in Table A.1.

Problem Cost function Constraints

SND PG1 1
2‖v−Wh‖22 + λ(σ‖h‖2 − ‖h‖1)2 h ∈ Rr

+

SND PG2 1
2‖v−Wh‖22 + λ

∑
i tanh

(
|ahi|b

)
h ∈ Rr

+

SND PG3 1
2‖v−Wh‖22 + λ‖h‖pp h ∈ Rr

+

SND PG 1
2‖v−Wh‖22 sp(h) = s, h ∈ Rr

+

SND SCQP 1
2‖v−Wh‖22 + λ1‖h‖1 + λ2

2 ‖h‖
2
2 − λssp(h) smin 6 sp(h) 6 smax, h ∈ Rr

+

Table A.1.: Different sparse non-negative decomposition problems. The name of the problems
specifies the optimization technique needed to solve them: (PG) projected gradient
and (SCQP) sequential convex quadratic programming with the MTPA algorithm.
The corresponding cost functions and constraints are also given. All of these prob-
lems can be extended to complex matrices v and W.
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