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Abstract

Augmented violin gives access to an several of instrumental gesture’s para-
meters. We are interested in accelerations of the bow. Those signals contain the
major part of informations concerning the instrumental gesture. In particular,
we studied the acceleration in the bow axis. Our final goal is to segment bow-
strokes during the player’s performance. Here, we are using the Hidden Markov
Model (HMM) in order to recognize and segment different bowing style, as fol-
low: Détache, Spiccato and Martelé. We exposed results we obtained and we
discuss possible improvements we may bring to this method to adapt it for more
complex experimental data.

Résumé

Le violon augmenté donne accès à de nombreux paramètres du jeu instru-
mental. Nous nous sommes intéressés aux accélérations de l’archet. Ces signaux
contiennent une grande partie des informations du geste instrumental. Nous
avons, en particulier, étudier l’acceleration selon l’axe défini par l’archet. Notre
motivation finale est de segmenter les coups d’archet pendant la performance
du violoniste. Nous utilisons ici les Modèles de Markov Cachés (HMM) afin
de reconnâıtre et segmenter différents type de jeu, à savoir: Détaché, Spiccato
et Martelé. Nous exposons ici les résultats obtenus et les améliorations futures
à apporter à cette méthode pour l’adapter aux données expérimentales plus
complexes.
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interresting topic of research, and who gave me lot of precious advise.

My collabaration with Nicolas Rasamimanana was fruitfull. His motivation
was very communicative. For his support, I will thank him. Discussions we
have were so interresting.

At last, I will acknowledge all collegues who support me everyday: Frédéric
Leau, Julien Rachedi, Julien Bloit, Philippe Zemar, Baptiste De la Gorce,
Patrice Tisserand and Isabel Pires.



iv



Contents

1 Introduction 1

2 State of The Art 5
2.1 Computer based Analysis . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Acoustic Violin Studies . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Augmented Violin . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Datas Segmentation and Analysis . . . . . . . . . . . . . . . . . . 8
2.5 Gesture interface in virtual environnements . . . . . . . . . . . . 9

3 General Description of the Signal 11
3.1 Method of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Definition of a Bowstroke . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Détaché strokes . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Spiccato strokes . . . . . . . . . . . . . . . . . . . . . . . . 13
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Chapter 1

Introduction

Since twenty years interest for gesture increased consequently. For years,
the only aspect studied in instrumental research was the sound. Naturally, it
seemed to be the most important aspect to study, and it is. Analysis and ,later,
synthesis focused on sound and acoustical proprieties to create musical mate-
rial. To control sound synthetized with those signal processing methods, the
controllers employeed are the mouse and the keyboard. In MIDI interfaces,
the control is obtained with minimalist information. A number represents the
beginning, the end and all low level informations.The controllers derived from
computer’s technology reduce possibilities of an expressive and natural con-
trol. Instrumental gesture is gesture performed by any instrumentist when he
is interacting with its instrument. In [1] and in [2] purposes are centered on
instrumental gestures. Goal of research on gesture are numerous: increase our
knowledge on the instrumental gesture, develop new interfaces and integrate
gesture in new process of artistic creation.

Violin represents a special case in instruments. Its family of instrument is
particular. The sound is produced thanks to a permanent contact between the
vibrating structure: strings, and excitating device: the bow. Sounds are, how-
ever, particularly connected to gesture proprieties. Plucked instruments are not
so sensitive to instrumental gesture. Once the vibrating structure is in move-
ment, influence of the exciting gesture is different from the case of violin.Thus,
violin becomes an interesting subject of research for the instrumental gesture.

At IRCAM, gesture acquisition became an important subject of interrest since
2000. Prime works where achieved by Marcelo Wanderley in 2000 and in 2001.
His contributions is mentionned in [3], [4]. Marcelo Wanderley related his work
on gesture control of music and on performer - instrument interactions. Emilie
Morin in [5] and in [6] related his work on analysis of gesture features on violin.
Gestures acquisition used the Digibow system. This prior work gave concrete
solutions for datas acquisitions. Thoses publications gathered all knowledges on
the current topic of research.

1
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Since 2003, a new team of research focuses on analysis and technologies in
musical and dance performances. Work of Emmanuel Fléty and al. related
in [7] in 2004, are developpement’s works. Existing system of datas acquisition
where limited. Hardware developpements of sensors in term of performance, size
and weight were achieved. Thanks to this technological improvements, datas
revealed itself more precise and more significative.

In the context of the gesture segmentation in music and dance performances,
our work consist in finding a method to segment different gestures of the violo-
nist’s play. Work achieved by N.Rasamimanana and al. [8] is the starting
point of our reflexion. This previous work revealed that bowing gesture of the
violinist could be identified with analysis based on accelerations of the bow.
Three different bowing styles were studied in this master report: the Spiccato ,
Detaché and Martele bowing styles. The bowing techniques where characterized
in a off- line process. Gestures vary from a player to another, from a tempo to
another and depends on the acoustic level of the performance.

They found significant parameters to characterize bowing styles on datas
manually segmented. To continue in this direction, we decided to work on a
segmentation method of the bowstrokes. The main difficulty for a segmentation
of the strokes, is to find the most significant parameters in bowing gesture
necessary to characterize them. Parameters must be enough significant and
not too consequent to be analysed in real time. Considering a single cartesian
direction of bowing gesture, the playing direction, we use in this report a statistic
method, called the Hidden Markov Model.

Parent domains of research are linked to our problem of data segmentation.
We here mention work made in speech recognition and in Electrocardiogram
analysis. In speech recognition, the mainly used segment is the phoneme. De-
composition of phrases in phonemes in similar to a segmentation of bow gestures
in violin play. Phonemes contain articulations of the speech, bow stroke contain
articulations of violin game. A second topic is the ECG analysis. The segment
are precise patterns of heart pulsations. In this domain, pattern are similar to
bow strokes but ECG pattern are far more periodical than bow strokes. The
datas lightly differs between two different persons. This is not the case for ges-
ture datas. ECG analysis, give us lot of ideas for our problem of segmentation.

The aim of segmentation of instrumental gesture applied to violin may be
the score following. Nowadays, score following is based on acoustic features.
In future, gestures identification may be used to follow the score. Gesture
proprieties may be used to explain sounds properties. Spectral informations
can be linked to gestures proprieties.
Segmented gesture may control video or other acoustic materials, in real time
performances, for example.
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First of all, we sum up in section 2 the litterature concerning our topic of
research. In section 3, we introduce datas we are going to study. In section 4
and in section 5 we present our experiments results. In section 6, performances
of the method are presented. And at last, in section 7, we suggest perspectives
and future work.
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Chapter 2

State of The Art

In the following section, we discuss topics directly linked to our problem:
the segmentation of bowstrokes on an augmented violin. Signals processing
is described in highlines. Then we introduced the Acoustic violin research’s
domain.The question of data segmentation is an specific domain, where lot of
applications already exist. At last we present some multimedia installations
combining all previous domains we present.

2.1 Computer based Analysis

Two different approaches exist to analyse sounds or gesture. To analyse
sound and every signal we record datas and analyse it after.This approach is
the off-line analysis. The second method is called real time analysis. In order
to analyse signal, it is recorded and treated at the same time.

Before describing the two approaches, we will discuss about the improvements
in the domain of computing. One essential tool for analysing signal is the
computer. Analysing a signal consists in making a lots of math operations. At
the beginning of computer’s era, processors were very slow and memories were
small. In this context, nobody would pretend to do real time analysis.

Fourier proposed theorems to describe the signals. These theorems were
demonstrated before the outset of computing. But thanks to computers, we
were able to analyse the signal with spectral considerations brought by Fourier’s
theorems. Lost of analysis are based on Fourier’ s methods. The spectral ap-
proch is fruitful to understand acoustic aspects of signals. Fourier’s analyse is
one of the most used methods in off-line analysis.

The computing ressources allows to do complex operations, and solve difficult
problems. The spectral analyse lead by Fourier’s method may be realized with
one single personnal computer. Fourier’s decomposition brings the spectral

5
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distribution of every periodical signal. Adaptated methods work for pseudo and
non periodical signals.

Two different methods are frequently used to analyse non periodical sig-
nals.The first one is called the Principal Components Analysis. It is used to
reduce the dimensions of a dataflow. If we want to show the most important
characteristics of a phenomenon, we use it. The PCA method reduce datas
in order to find the most important directions where the datas are changing.
Directions are the principal ones where we observe the bigger variance of datas.
A second approach, similar to the PCA, is the Linear Discriminant Analysis.
This method differs in the finding of directions. The directions found are the
ones where we can discrimate the most the datas.

To perform real time analysis of physical signals, methods should be efficient.
They are supposed not to need lot of computing ressources. Methods are mainly
statistic methods. In [9], B. Schoner, syntetize sounds from physical datas
extracted with a probabilist method. He achieves to classify entry datas in real
time. Gesture of the violionist are treated and compared to datas classes. Each
type of datas are gathered in clusters. Q comparison is made between incoming
datas and types of gesture registered before. Once the comparison is made
synthetic sounds are produced. Degrees of freedom of the violonist are limited,
but allow to control virtual enviromment in real time. Schoner’ works inspirate
itself from a well-known method: Hidden Markov Model. We are refering to [10]
for further explanations.This is a mixed method between statistic and learning
methods. This methods extract from datas differents states in which the system
can be. System can go from a state to another with a given probability. The
state is not clear, it is itself described by a probabilistic distribution. Once we
have declared the states and all the probabilities, the system can be learned. We
show it different succesions of states, and it modify the transitions probabilities
in order to describe in the best way the experienced evolution of the system.
After the learning stage, it is capable to recognize different states of the system.
Such a method is very commun in the domain of voice synthesis and speech
recognition.

2.2 Acoustic Violin Studies

In the domain of acoustic research, the violin is a particular case. Com-
plexity of sounds produced and gesture possibilities constitute a large interesting
aspect of acoustics, physics and signal analysing. The permanent contact be-
tween the bow and the strings is creating complex relationship between the
player and its instrument. To understand how the violin produce sounds, we
can study the real violin in different ways.

Spectrum analysis is very interesting in this case. The tone color of sounds can
be revealed when we examinate the spectrum. The tone color is a consequence
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of the spectral content of the signal, as an illustration, see in [11], works of
K.guettler. Transients are the most important proprieties of sounds, which let
us recognize the instruments. Suppressing initial transients and we will not
identify a violin when we are listening to a blow instrument, for example.

Violin is producing sound according to the stick slip motion. During a fraction
of the vibrating period, the bow is sticking to the string thanks to rosin. During
the rest of the period, the string is moving free. Such a succesion of stick slip
periods is repeating until the bow stops. This non linear interaction is specific
to the violin. We can explain how the playing parameters change sounds. Most
of the studies are still based on spectral analysis. In the violin playing, the bow
velocity, the bow position and the bow force are the most influencing parameters.
Askenfeld studies those parameters in [12]. Bow force applied on the strings
influences the moment when the string slips under the bow. The stronger the
force is, the later will this moment appear. Askenfelt discovers that the first
most influencing parameter is the bow position along the string. This is different
from the transversal position of the bow on strings. A short distance from the
bridge, produces a tiny and slight sound. The string can not move widely. In
the other typical case, the string is played far from the bridge, so that it can
vibrate with the maximum amplitude. It sounds raucous and low modes are
more present. The bow velocity changes the tone color. The faster you play,
the lighter it sounds. But during a slow motion of the bow, the tone is sharp
and brilliant. The bow force influences the spectrum as the position can do but
more lightly. When the bow force is high, the tone is raucous, in the other case
it sounds brilliant.

2.3 Augmented Violin

In the research on violin, some experiments will expose limits of investiga-
tions we can make with real instruments. In order to find more details on the
violin charactiristics we expend the violin by placing sensors on it. Augment
signals with sensor is a part of the augmented reatlity. We observe reality of
the violin with devices able to reveal informations we could not ’see’ with our
sensitivity. The augmented reality is the next step where datas are used to con-
trol or interact between human and computing domains. In [13], authors draw
main directions of evolution from interaction with physical objects to augmented
reality.

As an introduction a virtual violin may be considered as a collection of datas
derived from physical process of playing the violin. The first virtual violin is the
’Envelop tracker’. The envelop of a real electric violin signal is used to modulate
another signal. In 1970, Laurie Anderson replaced the horse hair of the bow
by a magnetic tape. The violin was fitted with audio tape recorder heads. The
prerecorded material on the tape was sent to an amplifier, and was modified by
the play of the violonist.
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The pitch detection consists in quantifying the only audio signal of a source.
It is not considering physical processes which produce signals. M.Pucket devel-
opped a particularly efficient method for sustained pitches and multiple pitches
simultaneous detection [14].
To conclude, such methods of envelop and pitch detection consider the violin
as a mechanism of control. It is coordinating conventional violin performance
with precomposed pieces.

In [15], Tod Machover, Neil Gerschenfeld and Joseph Paradiso are presenting
a different approach. They have built the Hyper Instrument at the MIT Labs.
They built variety of sensors and mounted them on instrument to measure per-
formance gestures. The Hypercello consists in a sensor bow. This bow measure
the finger pressure, wrist and bow position, and otherwise left hand fingerboard
position. The hypercello send its datas through a network of computers for
analysis and control of synthesis. Diana Young developped a Hyper controller.
Her works are related in [16],[17] and [18]. The acceleration sensors are placed
at the frog to. Position sensors are made of a resistive strip attached to the stick
of the bow. Downward and lateral strain are measured. The system transmit
datas with a wireless system.

In 1980, at STEIM Jon Rose built a Hyper Violin with pressure sensor to
measure finger pressure on the bow, [14]. A sonar sensor was developped to
detect bow position. Later, Chris Chafe, augmented a cello bow, [14]. He
placed bend sensor in the inside of the bow stick, and accelerometers at the
frog. C.Chafe uses two force sensing resistors placed between the stick and
hairs of the bow. At the frog, he puts a bidimensionnal acceleration sensor.
The ’BoSSA’ was designed by Perry Cook, [14]. It differs from the system
mentionned just before in the bend sensing.

2.4 Datas Segmentation and Analysis

In general, we are interested in data segmentation in order to analyse sig-
nals. And in a second time, segmented signals could control synthesis techniques
or other kind of computer based processes.

The first domain of data segmentation is the domain of sound signals. One
of the most used method is the ’Onsets, Offsets Detection’. The aim of this
method is to caracterize musical objets. One objet is composed from an attack,
a decay, a sustain and a release. In [19], the author discuss his real time detec-
tion of sets of musical objets. He tackels the problem of real time low latency
requirements. This object based construction allows to build spectral model
of musical instruments. Moreover, the onset detection is limited for gesture
datas. For a same gesture, its magnitude variance and time warping brings the
detection of onsets difficult.
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As a reference, we mention the chapter entitled ’Gesture Based Interaction’,
in [20]. In this chapter, Mark Dillinghurst presents an epistemology of the
human gesture. In a second part he lists the different types of the Gesture
based interfaces. In order to perform a gesture segmentation different methods
are available. A epistemology of gestures is presented in [21].

Some works were made to segment gestures. The work of Chad Peiper and
al. [22] exposes a computing method to classify and to segment gestures. The
program routine classify the gesture inputs from a violonist. The algorithm is
based on a decision tree witch analyse bow parameters and stores them in differ-
ent classes. The decision tree is evoluting thanks to a learning method. In spite
of the existence of the learning, some case are difficult to classify. The system
works efficiently for standard gestures. Once a singular gesture is achieved, the
system could not put it in a classe. A parent method is proposed by Bernd
Schoner and al. in [9]. This method considers clusters of bowing parameters.
Each cluster is representing a kind of bow stroke. This method may solve prob-
lems encountered by the previous method. But it is still reducing the variety of
bow strokes by putting bounderies between kinds. After work of clustering is
made, Bern Schoner’s method controls waveform sound synthesis.

In [23], it is exposed a method for analysing expressive gesture in dance and
musical performance. It is related that the movement could by analysed at
different levels. This question arise in our context too. Low level may be for a
dance performance the movement of the hand for example. The high level of
the segmentation may be the intention in the movement.

Closer to our objectives, two researches are interesting. In [24], muscle’s hand
tension of the instrumentist is used as a cue of segmentation. Variations of
electromyogram signal is used to segment gesture. In [25], accelerations sensors
are employeed to analyse gesture motions.

2.5 Gesture interface in virtual environnements

Before starting, we may refer to the article of Kristoffer Jensen [26] in which
he lists all the possibilities we have to control sounds when we play musical
instruments. We can give some examples: loudness, pitch, tone color, noise and
inharmonicity. It is interesting to know how we can modify sounds in order to
develop virtual interfaces.

The first step achieved to control virtual environnements is the data-driven
model. First, datas from real instruments are gathered, then they are analysed
and finally, they are used as input parameters to control a virtual instrument.
In [27], the virtual instrument is a bowed string synthetized by a wave guide
model. The input parameters are the bow position , the bow velocity and the
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bow force. Those paramaters control a computer animation of a virtual violin
player. In [28], another approach is presented. Parameters are cluster weighted
and store in different classes. Then, they control the synthesis of acoustical
instruments. Some new parameters are taken into account: the pressure of the
player’s finger on the bow and the acoustic input of the violin.

Those interfaces are not considering the gesture as a parameter. In [29],
Sylviane Sapir exposes a new kind of research in computing technology. The
interest given in human gesture interface is increasing since real time device are
available. Developpement of tracking system introduce the gesture as a way to
control virtual instruments. Gesture can be considered as a new musical para-
mater to play with in a context of musical performance. S. Sapir presents the
technology of a gesture tracking system in details in his paper . An application
of such a kind of systems, developped by Max Matthews, is presented in [30].
The application is called ’The Radio Drum’. This is a real time device where
input datas are the gesture of the player. Sticks in his hands are placed in front
of radio frequency sensors witch are detecting variation of the field produced
by the player’s movements. Gesture may be capture in a different way. Lot of
devices are video based. In [31], such a system is described.

A new domain of research witch differs from what we presented just above
is the domain of ’The new interfaces’. J.M.Couturier [32], presents is interface
witch controls a Bow String model. It consists in a tablet, a touching sensor
surface and a screen. Another interface is presented in [33]. The interface
described is similar to a real violin. It is called ’ The SuperPolm’ . There is no
strings mounted on it. It is made of different kind of sensors.

In 1995 Curt Bahn and Dan Truman performed a musical piece in witch they
played interfaces similar to the SuperPolm. This experience is related in [34].
C.Bahn played a augmented bow and D. Truman played a Bass with sensors.
This experience was one of the first performance made in this context.



Chapter 3

General Description of the

Signal

3.1 Method of work

The displacement of the bow in the playing direction is studied here. Both
position and acceleration of the bow are collected thanks to sensors placed on the
bow. Our research work concerns the acceleration datas of the bow. Those datas
characterize the instrumental gesture. Dynamics of gesture are more interesting
since sounds produced by violin are direcly influenced by bow velocity. Direction
of acceleration, considered, is the playing direction, perpendicular to strings
and horizontal. We study three different bowing style: Détaché, Spiccato and
Martélé.

Datas are sent through the Ethersense system to MAX/MSP. This point is
developped in chapter A page i.Then datas are converted in text files. Those
text files are loaded in MATLAB.

We work with MATLAB Software. We develop scripts in this langage for a
theoric validation of ideas for a segmentation of the bowstrokes. In the same
time, ideas revealed interesting by our work are computed in MAX/MSP. This
work is made in order to make real time segmentation of strokes.

3.2 Definition of a Bowstroke

Acceleration of the bow is plotted time-magnitude graphics. In figures 3.1,
3.2 and 3.3 three different bowing styles are represented. X axis corresponds to
the sample’s number. The sampling frequency is equal to 250 Hz. Y axis is a
Arbitrary Unit.

11
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3.2.1 Détaché strokes

Figure 3.1 shows a succesion of a Détaché Upstroke and a Downstroke.
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Figure 3.1: Détaché strokes.

Détaché stroke is the simpliest stroke. When the acceleration rises, it is
an Upstroke. When it drops, it is a Downstroke. The nearly ’constant’ part of
the signal corresponds to a constant velocity of the bow. Variations are due to
bow-string interactions.

Plot reveals an anticipation gesture. Before starting the downstroke, acceler-
ation lightly increases. The hand of the violonist gives the impulsion to start
the gesture.
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3.2.2 Spiccato strokes

Figure 3.2 shows a succesion of Spiccato Upstrokes and Downstrokes.
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Figure 3.2: Spiccato strokes

Spiccato is a constrained gesture. Acceleration and Deccelerarion are
similar. This brings a symetric aspect to the curve. The initial direction of
acceleleration curve informs us if the stroke an Up or a Downstroke is.
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3.2.3 Martelé strokes

Figure 3.3 shows a succesion of Martelé Upstrokes and Downstrokes.
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Figure 3.3: Martelé strokes

Martelé stroke, is non symetric. The dominant direction of the gesture
is the expected direction. A residual decceleration appeared to stop the bow at
the end of the stroke.
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3.3 Analysis of likelihood curve

3.3.1 Protocol

The Spiccato Downstroke, in blue in figure 3.4 is the shape tested. The aim
of the experiment is to qualify the evolution of the likelihood curve when HMM
is supposed to recognize the shape of the acceleration curve.

3.3.2 Description of the figure

The reference is a Spiccato Downstroke, in red in figure 3.4. The likelihood
is evaluate between the blue and the red plot. The black curve represents the log
probability as mentionned in section B.2 on page vi. A substantial information
is contained in the differential of this likelihood curve. It is represented with
the green plot.

The likelihood plot represents the log probability. The closer to 0 it is, the
better the pattern is matching to the reference. If likelihood drops, it means
that probability falls. The HMM no longer fit with the tested curve.

Figure 3.4: Explanations of the likelihood curve
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3.3.3 Interpreting the likelihood plot

1. Evolution of the likelihood:

· When the HMM is not fitting with the test, the likelihood remains
low .

· Once the beginning of the Test matches with the HMM, the likelihood
curve increases rapidly.

· Maximum value of the likelihood curve is reached when Test and
HMM match perfectly.

· Once HMM is moved out of the ’matching window’ the likelihood
curve drops rapidly.

2. HMM is similar to the test when:

· Likelihood curve reaches a maximum.

· When likelihood rises and drops rapidly with in between a ’stable’
decreasing period.

· In the differential of the likelihood curve, a specific pattern appears.
A short durating succession of a positive spike, constant period and
a negative spike, reveals the same information as item mentionned
before.

· Considerations made on the differential curve are sensible.



Chapter 4

Stroke recognition using a

Standard HMM

The HMM we name Standard HMM is described in section B.2 page vi.
The Emission matrix is described with a constant standard deviation for the
gaussian distribution.

17
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4.1 Tested sequence and Reference

Datas are filtered with a Savitsky Golay filter [35].The reference is a Spiccato
Downstroke. The sequence analysed with the reference is a succesion of Spiccato
Upstroke and Spiccato Downstroke.

(a) Test sequence: Spiccato Strokes (b) Reference: Spiccato Upstroke

Figure 4.1: Standard HMM: Test sequence and Reference.

In figure 4.1(a) dashed line separates an Up stroke from a Downstroke and so
on. The first pattern is a Spiccato Upstroke. In figure 4.1(b), the reference is a
Spiccato Upstroke.

Note that the figures 4.1(a) and 4.1(b) are plotted with different time scale,
but the duration of th reference and the test strokes are on the same order.
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4.2 Likelihood Evaluation

The value of likelihood at a time t corresponds to the instant where the
first sample of the reference is matching with the first sample of the window
of observation. Window of observation is a part of the tested sequence witch
duration is equal to the reference. The reference is moved sample by sample
from the beginning of the tested sequence to the end of it.

4.2.1 Likelihood

Figures 4.2(a) shows the sequence of Bowstrokes we test and the Likelihood
4.2(b)

(a) Sequence ’segmented’ thanks to likeli-
hood

(b) Likelihood

Figure 4.2: Likelihood for Standard HMM
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Analysing results for Likelihood

A vertical stem is placed where the likelihood is locally maximum. Sequence
of stems are reported on the sequence.

A vertical stem corresponds to the instant when the reference is supposed to
match with the test. In figure 4.2(b) the second and the fourth stem are not
corresponding to the expected recognition. HMM makes mistakes.

Positive part of acceleration curve for the Upstroke similar to reference is
recognized. Negative part of the curve for the Downstroke similar to reference is
recognized. No distinction is made between the stroke supposed to be recognized
and its opposite ( not supposed to be recognized ) . Likelihood is potentially as
good for a similar stroke as a different stroke. The recognition of the HMM is
not satisfying.

Moreover, a lighlty different Upstroke ( for a reference: Upstroke ) changes
the estimated likelihood. The value of likelihood is smaller. A constant standard
deviation, equal to 200 a.u, for gaussian distribution is the reason why we observ
such differencies between same strokes.
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4.3 Scale problem and suggestions

The scale is the main problem. A constant standard deviation for the Emis-
sion Matrix brings the HMM not enough flexible to scale’s variations between
Test and Reference. For a given state of the tested curve, magnitude variations
brings HMM not recognize its corresponding state in the referenced sequence.
Two opposite directions to solve this problem are exposed below.

We achieved some interesting methods to rescale the analysed datas. The first
idea constists in rescaling the signal between 0 and 1. Such a method suppress
information contained in the ratio between min and max of the curve. Second
idea was to place the mean value at 0. The minimum is set to -1, and the
maximum remained free. If we did so, a sequence with different bowing styles
became problematic. The magnitude differencies between two different bowing
style, make the HMM not efficient in the recognition process. After discussing
rescaling methods revealed itselves limited. We can easily find a case where our
rescale’s method will not work.

Opposite consideration is the modification of the HMM. Instead of finding a
method to fit datas to the model, we fit the model to datas. In the following,
we introduce Autoregressive Model.
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Chapter 5

Autoregressive HMMs

A standard HMM is non causal. In a sequence of states, the next state is
not depending on past states. Each state is independant.

With autoregressive model, states are linked. In physical process like Bowing
gesture, acceleration is a continuous phenomenon. The value of acceleration at
a time t depend on the value at a time t-1. Autoregressive model considers the
state at time t and the influence of the former states. The past of the signal is
a additional a primal information used by the modelisation.

5.1 Autoregressive Model

Principe of Autoregressive Model (AR) is to estimate the sample at a time
t, knowing the past samples. To do the prediction, a linear predictive method
is used.

5.1.1 Yule Walker Algorithm

We used the Yule Walker method ([36]) at the first order. The order signifies
how many past samples we take in account to estimate the new sample. The
YW algorithme evaluates coefficients, named the AR coefficients, wich let us
evaluate the next step sample.

The estimated state’s value is:

Ŝj = Φ1 · Sj−1 + ξi+1 (5.1)

Φ1 : AR coef., Sj : State of the HMM, ξ : Prediction error variance
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We see in figures (5.1), (5.2) below an illustration of estimation process.

0 100 200 300 400 500 600 700 800
−1

−0.5

0

0.5

1
x 10

4 Blue: Observation / Red: Prediction...AR Yule−Walker

0 100 200 300 400 500 600 700 800
0

2000

4000

6000
Difference Between Prediction and Observation

0 100 200 300 400 500 600 700 800
0

2

4

6
x 10

7 Prediction Error Variance

Figure 5.1: Yule Walker Estimation method, order 1
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Figure 5.2: Yule Walker Estimation method, order 5

The more adapted order to shapes we study is the first order. Prediction
error variance is worth for a superior order YW algorithm.
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5.1.2 Properties of the AR Model

Autoregressive model is introduced to redefine the gaussian distribution in
the Emission matrix. The mean values of gaussains are no longer mean value
between two successive states, but become the difference between the state at
time t, and the estimation of it, made at time t-1. The reference no longer
describes the acceleration curve, but a difference curve between estimation and
observation. The fundamental information is the evolution and not absolute
values of the curve. This brings HMM robust to magnitude variations of curves.

The standard deviation of gaussians is the variance of prediction’s error.
When the observed state differs from the estimated state, the prediction er-
ror is important. When it is close to estimation, error is small. In figure 5.3 ,
two different strokes are plotted. Differences between them are only a magnitude
difference.
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Figure 5.3: Magnitude differencies between a mezzoforte and a pianissimo Bow-
stroke

At extremum values of accelerations, differencies are significant. With AR
model, the prediction error variance is important. The prediction error variance
is small elsewhere. The model is flexible at extremum values, and constraint
otherwise. It is perfectly adapted to this situation.
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5.2 Modification of HMM caracteristics

Parameter we modify are the bj(k) coefficients (section (B.2), vi). Those
coefficients are the Emission matrix coefficients. likelihood evaluation is linked
to them. In [37] the refered method is explained in more details.

Here, we consider the past observation to affect the Emission coefficients. It
will straight the most probable state, considering the past state of the frame.
The ’less probable states’ contributions are reduced.

Secondly, prediction error variance defines the new Sigma of gaussian distri-
butions.

bj(k) =
1

σ′

√
2π

e

−(vk − Ŝj)
2

2(σ′)2 , 1 ≤ k ≤ N, 1 ≤ j ≤ T. (5.2)

Ŝj : estimated state define in [5.1], σ′ :
√

ξ + cst. define in [5.1]

cst. is an additionnal margin set to give HMM flexibility in the recognition
process.

5.3 Results with AR Model

5.3.1 Test and Reference

The protocol is the same as in section 4 page 17. The tested sequence is a
succession of Spiccato strokes. The reference is a Spiccato upstroke.

(a) Test sequence: Spiccato Strokes (b) Reference: Spiccato Upstroke

Figure 5.4: Autoregressive HMM: Test sequence and Reference
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5.3.2 Likelihood

Figures 5.5(a) shows the sequence of Bowstrokes we test and the Likelihood
5.5(b)

(a) Sequence ’segmented’ thanks to likeli-
hood

(b) Likelihood

Figure 5.5: Likelihood for Autoregressive HMM

Analysing results for likelihood

The likelihood reaches a maximum when the HMM perfectly matches with
the tested sequence. likelihood drops then constantly. Finally it drops rapidly
when the HMM no longer fit with the test. This particular shape of the likeli-
hood curve represents an ideal shape.

In the sequence we test, there are three occurrences of the reference. Stems
we placed sort, in this sequence, good occurrences of the reference. The AR
model is efficient with apperently difficult shapes like biphasic Spiccato shapes.
Compared to the standard HMM, results are better.
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5.3.3 Differential of likelihood

Figures show 5.6(a) the sequence we test ,figure 5.6(b) the differential of the
Likelihood .

(a) Sequence ’segmented’ thanks to Differ-
ential of likelihood

(b) Differential of likelihood

Figure 5.6: Differential of likelihood for Autoregressive HMM

Analysing results for Differential of likelihood

The differential is enough precise to extract some informations. The typ-
ical sequence of a positive spike, constant period and negative spike, is clearly
observable here. Positive spike occurs when the HMM is in phase with the test.
The negative spike occurs when the two shapes are in quadrature. The constant
period corresponds to the constant decreasing of the likelihood curve.

Plain line underlines phases period. Dashed line underlines quadrature
phases. Differential of likelihood should be consider with less weitgh than likeli-
hood. Experiments should be made to conform us in the validity of informations
contained in it.
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Chapter 6

Estimation of the AR

Model performances

In the following section, datas are musical scales played on the A and
E string. Strings are played mezzoforte in the three different bowing styles:
Détaché, Spiccato and Martelé. Small variations of acceleration magnitude in-
troduced with real datas is a new interresting specifity.

6.1 Sequence of Same bowing style

The sequence contains an Upstroke and a Downstroke. For each bowing
style, we test the sequence with the stroke of the corresponding bowing style.
We focused on likelihood curve.

6.1.1 Description

The upper left figure represent in blue the tested sequence and in red the
reference we expect to find in the sequence. The upper right, is the tested
sequence. The lower left figure is the likelihood between tested sequence and the
reference. The lower right figure is a focuse on the most important information
contained in likelihood curve. The zoom is made between start and end point
of the sequence. Only the Y axis is zoomed.

Values outlined in figure, are local maximums of likelihood. The test is match-
ing with a part of the reference or with the whole one regarding the value of
likelihood.
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6.1.2 Figures: Détaché strokes

Figures 6.1(a) , 6.1(b) shows the tested sequence. Figure 6.1(c) shows the
Likelihood, and figure 6.1(d) a zoom on Likelihood.

(a) Detaché strokes (blue), Detaché

Downstroke (red)
(b) Detaché Strokes

(c) Likelihood (d) Zoom of likelihood

Figure 6.1: Likelihood for Detaché Strokes

6.1.3 Results: Detaché strokes

· Likelihood is equal to y = −32, for the opposite stroke

· Likelihood is equal to y = −5, for the corresponding stroke.

The closer to 0 it is, the better matching it is. For this bowing style, the
HMM recognizes the right stroke. Differencies between values are significant.
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6.1.4 Figures: Spiccato strokes

Figures 6.2(a) , 6.2(b) shows the tested sequence. Figure 6.2(c) shows the
Likelihood, and figure 6.2(d) a zoom on Likelihood.

(a) Spiccato strokes (blue), Spiccato

Downstroke (red)
(b) Spiccato Strokes

(c) Likelihood (d) Zoom of likelihood

Figure 6.2: Likelihood for Spiccato Strokes

6.1.5 Results: Spiccato strokes

· Likelihood is equal to y = −12, for the opposite stroke

· Likelihood is equal to y = −7, for the corresponding stroke.

Differencies between values are smaller than for Détaché. It is due to the
biphasic shape of the curve. The HMM is still recognize the shape. HMM takes
in account the past evolution of the signal. It makes the difference between an
acceleration curve witch started to rise and an acceleration curve witch started
to drop. Permutation between positive and negative part of a Spiccato stroke
reduces variance of likelihood.
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6.1.6 Figures: Martelé Strokes

Figures 6.3(a) ,6.3(b) shows the tested sequence. Figure 6.3(c) shows the Like-
lihood, and figure 6.3(d) a zoom on Likelihood.

(a) Martele strokes (blue), Martele

Downstroke (red)
(b) Martele Strokes

(c) Likelihood (d) Zoom of likelihood

Figure 6.3: Likelihood for Martele Strokes

6.1.7 Results: Martelé strokes

· Likelihood is equal to y = −12, for the positive part of the opposite stroke

· Likelihood is equal to y = −10.65, for the negative part of the opposite
stroke.

· Likelihood is equal to y = −10.89, for the corresponding stroke.

The last two values: -10.65, -10.89 are similar. HMM do not recognize the
stroke.

If we look closer at the curve, shape of the curve near the local maximum is
different in the two situations. For the corresponding stroke, we see a constant
and slow decreasing. For the opposite stroke, we see a sharp decreasing. This
difference between the two shapes let us conclude that HMM recognize the
stroke.
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Important Remark

Context of the sequence tested here is highly influencing the results. The
constant decreasing is present because no stroke occured in the following of
the sequence. The situation will be different for a fast succession of strokes.
Such particular shapes in likelihood curve would no longer occure, if strokes are
played faster.

6.2 Conclusion: Recognition of same bowing styles

→ HMM recognizes the good stroke in Spiccato and in Détaché bowing
styles.

→ Biphasic shapes are recognized in Spiccato bowing style.

→ Martele bowing style reveals a problem. A maximum superior than the
maximum expected for a stroke supposed to be recognized occured. Local
maximum must be considered in a larger context. If we look at the zoom of
likelihood, after the maximum for the corresponding stroke, the likelihood
drops constantly and slowly. This information is necessary to conclude for
the recognition of the stroke.

→ Once likelihood started to increase, we observe that it drops rapidly and
then increase again. Such variations are due to the biphasic nature of
strokes.

Deep analyse of figure 6.3(d) (Zoom of lilkelihood for Martele strokes) will
explain our purpose. The likelihood increases when the second positive
part of the reference matches with the first positive part of the tested
stroke. Once two strokes are in quadrature, likelihood drops significantly.
Then the firtst negative part of the reference corresponds to the second
negative part of the tested stroke. Phase to quadrature transitions are
clearly defined.

→ ’Constant’ steps before increases of likelihood is a complementary informa-
tion. During such periods, the reference is not matching with the tested
sequence. When ’something’ happens in the evolution, we should look
closer at values of likelihood.

→ The more likelihood increases the more the HMM recognizes the stroke.
Considering this, we assume that the Martele stroke is recognized.
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6.3 Sequence of different bowing styles

In experiments, the sequence is one of the three bowing style. The sequence
is compared to the two others bowing styles. When the sequence is a succesion
of Martelé, reference are successively a Detaché and a Spiccato downstroke. The
same tests are made for Spiccato and Detaché.

6.3.1 Detaché compared to Spiccato and Martelé

Figures 6.4(a) , 6.4(b) shows the tested sequence. Figure 6.4(c) shows the
likelihood, and figure 6.4(d) a zoom of the Likelihood.

(a) Détaché strokes (blue), Spiccato

Downstroke (red)
(b) Détaché Strokes

(c) Likelihood (d) Zoom of likelihood

Figure 6.4: Likelihood for Détaché Strokes compared with Spiccato Downstroke

Results: Détaché / Spiccato

· Likelihood is equal to y = −14 ( −32 [DD]1 / −12 [SS] ) , for the opposite
stroke

· Likelihood is equal to y = −6.8 ( −5 [DD] / −7 [SS] ) , for the correspond-
ing stroke.

1The two letters in brakets follow the value of likelihood obtained when the test and the
reference were the same. Example: [DD] = Detaché (sequence) - Détaché (reference).
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Figures 6.5(a) , 6.5(b) shows the tested sequence. Figure 6.5(c) shows the
likelihood, and figure 6.5(d) a zoom of the Likelihood.

(a) Détache strokes (blue), Martele Down-
stroke (red)

(b) Détaché Strokes

(c) Likelihood (d) Zoom of likelihood

Figure 6.5: Likelihood for Détaché Strokes compared with Martelé Downstroke

Results: Détaché / Martelé

· Likelihood is equal to y = −83 ( −32 [DD] / −12 [MM] ) , for the opposite
stroke

· Likelihood is equal to y = −13 ( -5 [DD] / −10 [MM] ) , for the corre-
sponding stroke.

6.3.2 Conclusion: Détaché compared to Spiccato and

Martelé

→ Values of Likelihood are lower than values obtained when the Reference
and the Test were the same bowing style.

→ The Détaché stroke is closer to Spiccato than Martele. The maximum
value of likelihood is obtained for the Spiccato stroke.
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→ The direction of the stroke is recognized.
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6.3.3 Spiccato compared to Détaché and Martelé

Figures 6.6(a) , 6.6(b) shows the tested sequence. Figure 6.6(c) shows the
likelihood, and figure 6.6(d) a zoom of the Likelihood.

(a) Spiccato strokes (blue), Détaché

Downstroke (red)
(b) Spiccato Strokes

(c) Likelihood (d) Zoom of likelihood

Figure 6.6: Likelihood for Spiccato Strokes compared with Détaché Downstroke

Results: Spiccato / Détaché

· Likelihood is equal to y = −19 ( −32 [DD] / −12 [SS] ) , for the opposite
stroke

· Likelihood is equal to y = −10 ( −5 [DD] / −7 [SS] ) , for the corresponding
stroke.
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Figures 6.7(a) , 6.7(b) shows the tested sequence. Figure 6.7(c) shows the
likelihood, and figure 6.7(d) a zoom of the Likelihood.

(a) Spiccato strokes (blue), Martelé

Downstroke (red)
(b) Spiccato Strokes

(c) Likelihood (d) Zoom of likelihood

Figure 6.7: Likelihood for Spiccato Strokes compared with Martelé Downstroke

Results: Spiccato / Martelé

· Likelihood is equal to y = −58 ( −12 [SS] / −12 [MM] ) , for the opposite
stroke

· Likelihood is equal to y = −36 ( −7 [SS] / −10 [MM] ) , for the corre-
sponding stroke.

6.3.4 Conclusion: Spiccato compared to Détaché and

Martelé

→ Values of Likelihood are lower than values obtained when the Reference
and the Test were the same bowing style.

→ Spiccato is closer to Detache than Martele.

→ The direction of the stroke is recognized.



6.3. SEQUENCE OF DIFFERENT BOWING STYLES 41

6.3.5 Martelé compared to Détaché and Spiccato

Figures 6.8(a) , 6.8(b) shows the tested sequence. Figure 6.8(c) shows the
likelihood, and figure 6.8(d) a zoom of the Likelihood.

(a) Martelé strokes (blue), Détaché

Downstroke (red)
(b) Martelé Strokes

(c) Likelihood (d) Zoom of likelihood

Figure 6.8: Likelihood for Martelé Strokes compared with Détaché Downstroke

Results: Martelé / Détaché

· Likelihood is equal to y = −4.6 ( −32 [DD] / −12 [MM] ) , for the positive
part of the opposite stroke.

· Likelihood is equal to y = −4 ( −32 [DD] / −12 [MM] ) , for the negative
part of the opposite stroke.

· Likelihood is equal to y = −3.4 ( -5 [DD] / −10 [MM] ) , for the corre-
sponding stroke.
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Figures 6.9(a) , 6.9(b) shows the tested sequence. Figure 6.9(c) shows the
likelihood, and figure 6.9(d) a zoom of the Likelihood.

(a) Martelé strokes (blue), Spiccato Down-
stroke (red)

(b) Martelé Strokes

(c) Likelihood (d) Zoom of likelihood

Figure 6.9: Likelihood for Martelé Strokes compared with Spiccato Downstroke

Results: Martelé / Spiccato

· Likelihood is equal to y = −7.6 ( −12 [SS] / −12 [MM] ) , for the positive
part of the opposite stroke.

· Likelihood is equal to y = −6.5 ( −12 [SS] / −12 [MM] ) , for the negative
part of the opposite stroke.

· Likelihood is equal to y = −5 ( −7 [SS] / −10 [MM] ) , for the negative
part of the corresponding stroke.

· Likelihood is equal to y = −6.9 ( −7 [SS] / −10 [MM] ) , for the positive
part of the corresponding stroke.
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6.3.6 Conclusion: Martelé compared to Détaché and

Spiccato

→ The direction of the stroke is recognized

→ Martelé is closer to Spiccato than Détaché.

→ The evolution of the curve 6.9(d) for the comparison between Martelé and
Spiccato is interresting.

The two part of the Spiccato reference match successively with the two part
of the tested strokes. The best result is obtained for the corresponding
stroke. The reference is in a first time in quadrature with the tested
stroke,then it is in phase. For the corresponding stroke, it is firstly in
phase and then in quadrature. The typical patterns observed in likelihood
curve are representative of biphasic signals.

→ Values of Likelihood are superior compared to values obtained when the
Reference and the Test are the same bowing style, which might be seem
counter intuitive. This fact is actually due to a limitation of AR HMM.
Particularly, our procedure to set the initial variance which set to a con-
stant through the whole stroke. This setting might be optimized through
a learning algorithm.

The definition of the variance of gaussian distributions in HMM reveals it-
self as a difficult task. This is not a scale problem but a tolerance problem
for the HMM. The question tackeled here concerns the criterion of recog-
nition. A further analysis of the variance in HMM definition is required.
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6.4 Conclusion: Recognition of different bowing

styles

→ The scale of strokes is not an influencing parameter. Autoregressiv HMM
solved this problem of scale.

→ The direction of stroke: Upstroke or Downstroke is always recognized.

→ Biphasic signals are partially recognized. Spiccato than Détaché are recog-
nized. Martelé reveals a problem in AR Model definition.

→ Local maximum of likelihood is a good marker for recognition.

→ Particular pattern observed for biphasic signals are interresting. Transi-
tion between phase and quadrature periods is interresting.

→ Other particularities of the likelihood curve are significative:

· Rapid increase of likelihood.

· Constantly decrease after a local maximum.



Chapter 7

Perspectives and Future

Work

Work achieved

We used Hidden Markov Model to recognize and segment different bowing
styles: Détaché, Spiccato and Martelé. The data analysed are scales played
on violin’s strings A and E. The scales are played mezzoforte at a regular and
relatively slow tempo.

In a first time, we used Standard HMM. The method works for Détaché
strokes. The method does not work for Spiccato and Martelé bowing styles.
It is due to the biphasic shape of these strokes. Succession of different bowing
styles are problematic. Compared scales between different bowing styles is the
reason of the encountered difficulties.

In a second time, we proposed an Autoregressive HMM. The direction of
strokes, i.e Upstroke and Downstroke, is identified in all tests we made. The
method we proposed was found efficient for the segmentation in all the cases
are considered. The problem, encountered with biphasic shapes, is solved. AR
HMM recognizes biphasic strokes. Détaché and Spiccato strokes respectively
recognize, with more accuracy, sequences of Détaché and Spiccato strokes than
others. Martelé sequences are problematic. Confusion occurs between Martelé
with Détaché and Spiccato. This difficulty might be resolved by introducing a
more complex learning method.

Perspectives

In all tests we made, we considered one Reference to analyse one Sequence
of strokes. In a future work, a given sequence of strokes should be tested with

45
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the different bowing styles in a same operation. Gathering information, and
treating them in a same process should be promissing. A raised problem is
to find the best method to merge data. Computing results obtained from the
different tests made, will clarify complex situations of multiple and different
bowing styles played in a same sequence. Learning faculties of the HMM should
be used in later work.

In our experiments, we decided to find whole strokes in sequence of bow
strokes. The results we obtained are very encouraging, compared to a manual
segmentation. However, the duration of the reference could be redefined. We
may take a smaller reference, for example, the beginning of a stroke. The aim
will be to find the smallest and the most pertinent pattern.

The reference can be, otherwise, longer. Instead of considering a single
stroke, we can consider a succession of strokes. The analysis of long duration
sequences, with the aim of finding a specific sequence of strokes, can be inter-
resting for score following tasks. The analysis of long sequences may require a
new model for HMM.

Once we get the segmented sequence with pattern location, we can extract
gesture information to control sound synthesis, video animation or any kind of
interactive installation.

We took reference’s strokes from the datas we tested. The definition of ref-
erence is a delicate operation. Variability of gestures between to musical per-
formances from a same violonist introduces new questions. HMM is supposed
to recognize precise shapes. AR HMM brings the model robust to magnitude
variations. Magnitude variantions are estimated in AR HMM coefficients. Such
information is crucial and could be saved as a new parameter.

The influence of playing conditions such as nuance and tempo should be
studied. The particular situation we studied reduced Bowstroke variability.
The most influencing parameter seems to be the tempo. We observed that the
shape is consequently modified when the tempo is faster. But AR HMM seems
to be robust to tempo. Further experiments shall be done in this direction.

Reflexion

Gesture segmentation represents a large investigation’s domain. Knowledges
gathered thanks to acquisition systems will change the prime role of gesture.
The gesture remained unknown for a long time. Gesture was only though to
be as an ergodic process. Interactions between human and computers, at the
beginning of musical computing, was mainly considered like this. Extract infor-
mations from gestures, and map them to others media is very interesting. We
may access to the two other functions of the gesture. The epistemic one may be
supported by the augmented reality. Perception of our environement is deeply
modified. The semiotic function of gesture is potentially accessible. Gesture
analysis achieved with objective tools, mapping between ’psychological’ aspects
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of musical play and physical phenomenons will serve the semiotic of the gesture.
Gesture comprehension and analysis seem to be promissing, in real time appli-
cations where causes and consequences of an human - computer interaction are
naturally linked.
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Appendix A

Description of the

Augmented Violin

The augmented violin consist in a real violin with a bow on which we
placed sensors. Sensors measure accelaration in cartesian directions X,Y and Z.
Positions along bow’s hairs and between bow and bridge are measured too. The
system used in our research was developped at IRCAM, in 2004 by Emmanuel
Fléty and al. It differs from the one developped by J.Paradiso, T.Machover and
D.Young. Datas are not transmit by an USB link to the workstation, they are
transmit via Ethernet thanks to the Ethersense System. This sensor acquisition
system was built by E.Fléty and al.

A.1 Measure of Positions

The first is the distance between the tip and the frog of the bow where the
string is played. The second distance is the distance between the bow and the
bridge, see Figure A.1.

The sensor used is a electromagnetic sensor. The system is based on the
capacity coupling phenomenon to extract positions. A magnetic ribon from a
videotape, used as a resistive material, covers the stick of the bow. The second
element is a square-shaped antenna placed behind the bridge of the violin. Two
electric signals are sent, one to the tip, and one to the frog. Those two signals are
sent at different frequencies ( 50 and 100Hz ), in order to separate them during
the signal analysing process. The distance is measured through the attenuation
of the signal along the stick.The more it is attenuated, the farther from the tip
or the frog it is. Figure A.2.

i
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Figure A.1: Distances measured with Position Sensors

Figure A.2: Signals sent to antenna

Signals from the tip and the frog give two positions. the first is the bow bridge
distance (A.1). The second is the distance where the string is played (A.2).

Bow Bridge distance =
tip− frog

tip + frog
(A.1)

Position =
1

tip + frog
(A.2)
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Figure A.3: The augmented Bow

Figure A.4: The Bridge Antenna
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A.2 Measure of Accelerations

The system used is a mass-spring system. One system is a dual axis ac-
celerometer, the other is a one axis. The differences of bow acceleration along a
direction are transmitted to mass in the accelerometer. The greater the differ-
ence is the more mass move. Friction of the mass in accelerometer is compen-
sated afterwards by an offset correction.

Figure A.5: Accelerations measured with Accelerometers

Figure A.6: The 3D accelometer



Appendix B

The use of Hidden Markov

Model

B.1 Complexity of temporal Processes

A real measured signal of a natural process differs from one record to an-
other. This variability of measurements can be reduced by using statistic meth-
ods.

The traditional use of statistic tools such as variance, covariance, correlation
and so on, is limited. The two observations must be similar in term of magnitude
and time scale. Those methods can be added to filter wich may substract noise
in the signal. Stochastic distribution of signal shape is one of the major difficulty
encountered in gesture movement. We may recognize signal as a class or a family
of signals.

Once we introduce classes of signals, the problem of recognition is still not
solved. How many classes are necessary to represent all signals wich can by
observed. Thus, the study of similarity may be interesting as a first recognition
process. The next step may be achieved by using the Hidden Markov Model.

Works mentionned in [38] and in [39], conform us in the use of HMM. In [38],
the author describes a method to recognize shapes. In [39], the author used
a advanced method called Paramatric HMM to recognize the human gesture.
Such an approach, gave us the idea to use HMM for our segmentation problem.

v
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B.2 Hidden Markov Model

After a preliminary work in wich we studied the similarities between two
signals, it appeared necessary to use the Hidden Markov Models. Here we will
explain with more details what we developped in section (2.1) page 5.

Hidden Markov Model is considering the processus as a set of N states. The
processus evolution is described by transitions between states. The elements
constituting the HMM are:

- A set of states S. S = {S1, S2, ..., SN}

- A state transition probability distribution, called Transition Matrix (fig(B.1)).
A = {aij}, representing the probability to go from state Si to Sj

aij = P [qt+1 = Sj |qt = Si] 1 ≤ i, j ≤ N, aij ≥ 0,
N∑

j=1

aij = 1

State 1 State 2 State 3

AA
11 AA

22
AA

33

AA
12 AA

23

AA
33

Figure B.1: Illustration of the Transition Matrix

- A set of observations V. V = {v1, v2, ..., vM}

- An observation symbol probability distribution, called Emission matrix
(fig(B.2)). B = {bj(k)}, representing the probability of emission of symbol
{vk} when system state is {Sj}.
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bj(k) = P [vk(t)|qt = Sj ] 1 ≤ i, j ≤ M, bj(k) ≥ 0,
M∑

j=1

bj(k) = 1

- An initial state probability distribution π = {πi}, representing probabili-
ties of initials states.

πi = P [q1 = Si] 1 ≤ N, πi ≥ 0,
N∑

i=1

πi = 1

State 2

State 1

State 3

State 2

BB
21

BB
22

BB
23

Figure B.2: Illustration of the Emission Matrix

B.3 Particularities of the Model

B.3.1 Specific Transition Matrix

We are studying temporal processes. It means, in term of direction for
transitions, that it goes from left to right. The transition matrix is however,
particular. Transition matrix coefficients are null except:

ak,k = 1 − 1

d
, ak,k+1 = 1 − ak,k, 1 ≤ k ≤ N − 1

d = distance between two successive states

Auto transition ak,k are the dominant transitions. Transition from state Sk

to Sk+1 is the only other transition allowed. Distance between states is very
influencing.
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- If d is equal to 2, system has equal chance to stay in state Sk or to go to
state Sk+1.

- If d is greater than 2, system has more chance to stay in state Sk.

B.3.2 Specific Emmission Matrix

The probabilities of emission of symbols vk for the state Sj are described
with a gaussian distribution. For a given state, we consider around its location
a gaussian curve (fig(B.3)). It brings to the HMM a certain flexibility.

Definition of a gaussian distribution:

N(µ, σ) =
1

σ
√

2π
e

−(x − µ)2

2σ2

In our Model:

bj(k) = P [vk(t)|Sj ] =
1

σ
√

2π
e

−(vk − µ)2

2σ2 , µ =
Sj + Sj+1

2
, σ = cst

Time

Acceleration

State of the HMM chain

Distribution function of 

the state i

ii

Figure B.3: The HMM reference
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B.4 The recognition process

Sample the Observation Curve

To model the acceleration curve, the first step consist in sub sample the curve
to define the states of the HMM (fig(B.4)).

0 20 40 60 80 100 120
−6000

−4000

−2000

0

2000

4000

6000

8000
Markers On Observation Curve

Figure B.4: Sub sample of the Curve

From States Sequence to Transition Matrix

After this operation we are disposing of the A matrix, the Transition matrix.

Emission Matrix

B = {bj(k)}, the Emission Matrix, is defined here. The number of symbols vk

is equal to N the number of states. With all considerations made before, the
coefficient of B are:

bj(k) =
1

σ
√

2π
e

−(vk − µ(Sj , Sj+1))
2

2σ2 , 1 ≤ k ≤ N, 1 ≤ j ≤ T. (B.1)

µ(Sj , Sj+1) =
Sj + Sj+1

2
, T = length of the observation curve (B.2)
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Estimation of likelihood

1. The estimation Matrix is a [T,N] matrix initialized at α1,1 = 1

2. The first operation consist in multiplying Estimation Matrix Alpha =
{αj,k} with Transtion Matrix A = {ak,k}. Because k = nN , matrix
dimensions agree. New values expression is:

αj,k = ak,k · αj,k

3. Second Step: Each state Sj of the observation is compared to all possible
reference’s symbols. We introduce a new Matrix Bj.(fig(B.5))

The new Bj = {bj
k,j} matrix coefficients are products of the current state

with the Emission Matrix B.

b
j
j,k = Sj · bj,k

It means that the most probable symbol is straight. The others have less
weight in the calcul of probability.Then:

αj,k = b
j
k,j · αj,k

4. Third step: To estimate the global likelihood between an Observation and
the Reference, we sum rows of Estimation Matrix Alpha = {αj,k}.

xj =
N∑

k=1

αj,k

For an Observation on a T duration, The likelihood with the Reference is
estimated. For computing reasons, we are studying log(x)
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Time

Acceleration

ii

States of the 

Reference

State of the 

Observation

Curve of the 

Observation

Figure B.5: The comparison process



xii APPENDIX B. THE USE OF HIDDEN MARKOV MODEL



Bibliography

[1] Claude Cadoz. Instrumental gesture and musical composition. In Proceed-
ings of the International Computer Music Conference, ICMC.

[2] Claude Cadoz. Les nouveaux gestes de la musique. In Musique, geste,
technologie.

[3] M.M. Wanderley and M. Battier, editors. Trends in Gestural Control of
Music. Ircam, 2000.

[4] Marcelo Wanderley. Performer-Instrument interaction : applications to
gestural control of sound synthesis. Thèse, Université Paris 6, 2001.
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