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Abstract

Cepstrum coefficients are widely used as features for both speech
and music. In this paper, the use of discrete cepstrum coefficients is
considered, which are computed from sinusoidal peaks in the short
time spectrum. These coefficients are very interesting as features
for pattern recognition applications since they allow to represent
spectra by points in a multidimensional vector space. A new Mel
frequency warping method is proposed that allows to compute the
spectral envelope on the Mel scale which, by contrast to current es-
timation techniques, does not rely on manually set parameters. Fur-
thermore, the robustness and perceptual relevance of the coefficients
are studied and improved.

1 Introduction
In its elementary form, the real cepstrum of a signal is defined

as the inverse fourier transform of the log magnitude spectrum. In
practical recognition applications however, they are rarely used as
features in this form. In the case of speech recognition for example,
a filter bank is applied of which the center frequency of each bank
is scaled according to the Mel scale. This scale takes into account
the frequency resolution properties of the human ear. The inverse
fourier transform of the log output of this filter bank yields the Mel
Frequency Cepstrum Coefficients (MFCC). Various other cepstrum
like coefficients have been proposed and it is believed that further
improvement in the front-end of a speech recognition system, i.e.
the feature extraction, can be achieved (Molau, Pitz, Schlüter, and
Ney 2001; Gu and Rose 2001).

Also in the music domain, cepstrum coefficients have been ex-
tensively used in numerous applications such as the retrieval of sim-
ilar audio tracks (Aucouturier and Pachet 2002), instrument identi-
fication (Brown 1999), content based audio retrieval (Foote 1997;
Spevak 2002), synthesis (Schwarz and Rodet 1999), and they are
currently investigated for automated estimation of control parame-
ters for musical synthesis algorithms (D’haes and Rodet 2001; D’haes
and Rodet 2003).

In this work, the characterization of the spectral envelope of a
nearly periodic sound is studied. The spectral envelope is a func-
tion of the frequency that matches the amplitudes of the individual
partials in the spectrum. This captures an important aspect of the
timbre since it is generally accepted that the relative strength of the
amplitudes of the partials allows to distinguish musical instruments
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and spoken language vowels. However, a strong abstraction is still
made and not all perceptually relevant features of the timbre are cap-
tured. For example, the noise component is not taken into account
and the roughness is often diminished when the analysis window is
taken too large. Furthermore, the estimation of the partials is often
not accurate at transients.

Different representations of the spectral envelopes have been
proposed such as linear prediction coefficients (LPC), the cepstrum
and the discrete cepstrum. The discrete cepstrum was originally
proposed by Gallas and Rodet (Galas and Rodet 1990; Galas and
Rodet 1991) and later, a regularized version was developed by Cappé
and Oudot (Cappé, Oudot, and Moulines 1997; Campedel-Oudot,
Cappé, and Moulines 2001). In the work of Schwarz (Schwarz and
Rodet 1999), different spectral envelope representations were stud-
ied and compared. There, it was shown that the discrete cepstrum is
more suitable for the representation of nearly periodic sounds than
LPC or the cepstrum.

2 Discrete Cepstrum Coefficients

2.1 Definition and Computation
P discrete cepstrum coefficients cp, with p = 0, . . . , P − 1

define a magnitude envelope |H(ω)| of the form

|H(ω)| = exp

(

c0 + 2

P−1
∑

p=1

cp cos(pω)

)

(1)

cp =
1

2π

π
∫

−π

log(|H(ω)|)eiωp
dω (2)

Since the inverse fourier transform of the log amplitude yields again
the coefficients cp, this definition corresponds with the classic cep-
strum definition. Contrary to the classic cepstrum which is com-
puted directly from the spectrum, the discrete coefficients are matched
with the individual peaks in the spectrum obtained from an addi-
tive analysis (Rodet 1997). A spectrum of this form can be de-
scribed by a set of partials at frequencies ωk with amplitudes X̂k

(k = 1, . . . K). This can be written as

X(ω) =

K
∑

k=1

X̂kδ(ω − ωk) (3)

where δ(ω) denotes the Dirac delta distribution. The estimation of
the coefficients cp is realized by minimizing the square difference
of the log amplitude envelopes |H(ω)| and |X(ω)|. This equation
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defines |X(ω)| only at the peak frequencies ωk from which the fol-
lowing square error function χ(c) can be derived in function of the
cepstrum coefficients c.

χ(c) =

K
∑

k=1

(

log(|H(ωk)|) − log(X̂k)
)2

(4)

This is solved easily using a least mean squares procedure which
results in a set of linear equations from which the coefficients can be
computed.

2.2 Overfitting and Adapting the Order
Since the cepstrum coefficients are computed from a set of lin-

ear equations, the computation of P coefficients requires at least an
equal number of detected peaks. As can be seen from Fig. 1, over-
fitting occurs when the number of coefficients equals the number of
peaks. This can easily be avoided by lowering the number of coef-
ficients. However, when too few coefficients are used, a low pass
filtered envelope is obtained that fails to match the peaks accurately.
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Figure 1: Spectral envelope estimations over a range of 15.000 Hz
for a trumpet sound with f0 = 886Hz using 17 and 14 cepstrum
coefficients respectively.

Obviously, for a sound with a lower pitch, more peaks will be
detected in the same frequency interval, and as a consequence more
coefficients are needed to match them accurately. Note that when
the peaks are positioned exactly at multiples of π

K
, with K being

the number of peaks, the estimation of the cepstrum coefficients is
equivalent to a discrete inverse fourier transform which implies no
information loss. Therefore, the number of cepstrum coefficients
is scaled with the number of peaks. In addition, two extra control
point were added at the interval bounds as was proposed previously
in (Galas and Rodet 1991). This yielded a high quality synthesis
while overfitting was avoided successfully.

2.3 Why the Discrete Cepstrum ?
Comparing spectral envelopes is very interesting since it is re-

lated to the timbral similarity between two short time spectra in a
trivial way. The fact that the perceived loudness of a human listener
is approximately logarithmic with the signal amplitude suggests that
the square difference between the log magnitude spectra can be used
to express the perceived similarity. This difference, computed for
two spectral envelopes |H1(ω)| and |H2(ω)| defined by two vectors
of cepstrum coefficients c1 and c2 respectively, is equivalent to the
Euclidean distance between these vectors.

1

2π

∫ π

−π

(log(|H1(ω)|) − log(|H2(ω)|))2 dω

= (c1 − c2)
T (c1 − c2) (5)

This shows that the spectral envelopes defined by the discrete cep-
strum can be represented by points in a multidimensional vector
space where each axis corresponds with a cepstrum coefficient. This
is particularly interesting for pattern recognition applications and al-
lows for example the use of K nearest neighbor classification.

A second important property is that the spectral envelope of the
sound is relatively independent of its fundamental frequency. This is
not the case for other spectral envelope representations which tend
to follow the individual peaks (Schwarz and Rodet 1999).

Thirdly, the spectral envelope allows, in combination with the
frequencies and phases, the resynthesis of the sound. This plays an
important role in a recognition system since it allows to verify to
what extent the features are actually representative for the sound. It
is an important advantage compared to other features that are fre-
quently used as sound descriptors (Peeters, McAdams, and Herrera
2000). The importance of the avoidance of overfitting should not be
underestimated since very similar spectra can produce very different
feature vectors because of it.

3 Mel Scaled Discrete Cepstrum
Since the goal of the features is to define a perceptual distance

between two envelopes, it is more appropriate to express the en-
velope on the Mel scale. The monotone and invertible Mel scale
warping function g(ω) : [0, π] → [0, π], converting a linear scale
frequency ω to a Mel scale frequency ω̄ is given by

g(ω) =
π

log(1 + fs

2·700Hz
)

log
(

1 +
ωfs

2π700Hz

)

(6)

according to (Molau, Pitz, Schlüter, and Ney 2001) where fs denotes
the sampling frequency.

3.1 Regularization
Analogue to the MFCC’s used in speech, Galas and Rodet pro-

posed the discrete MFCC’s (Galas and Rodet 1990; Galas and Rodet
1991) which are computed by first warping the peaks on the Mel
scale and then computing the envelope over these peaks. The disad-
vantage of this technique is that after the warping, all high frequency
peaks are positioned closer to one another than the low frequency
peaks. As a result, the high frequency peaks predominate the esti-
mation resulting consistently in overfitted envelopes. The solution
that was proposed consisted of introducing to each observation a
cluster of neighboring points which yields satisfying results in many
cases but increases the numerical complexity and depends on the
initial choice and number of points. Cappé and Oudot proposed to
cope with the ill-posed nature of the problem by adding a penalty
function (Cappé, Oudot, and Moulines 1997)

1

2π

∫ π

−π

[

∂

∂ω̄
log(|H(ω̄)|)

]2

dω̄ (7)

to the error criterion given in Eq. (4). This penalty function is multi-
plied by a regularization parameter λ controlling the relative impor-
tance of the smoothness of the envelope versus the exactness of the



envelope fit. Regularization and cloud smoothing were also com-
bined to obtain smooth envelopes which can be controlled locally
by adding additional points (Schwarz and Rodet 1999).

3.2 Posterior Warping
The techniques described in the previous subsection convert the

peaks to the Mel frequency scale before the envelope is estimated,
what we named prior warping. In addition, the envelope depends
on parameters that need to be set manually by the user which have
a large influence on the exactness and smoothness of the fit. As
stated in section 2.2, it is rather easy to obtain a spectral envelope
on the linear scale that is at the same time accurate and smooth by
automatically adapting the number of used cepstrum coefficients to
the number of peaks. This led to the idea of first estimating the
envelope on the linear scale and computing the warping from the
linear scale cepstrum coefficients a posteriori.

A spectral envelope on the Mel scale ω̄ defined by the Mel scaled
cepstrum coefficients d is given by

|G(ω̄)| = exp

(

d0 + 2

P−1
∑

p=1

dp cos(pω̄)

)

(8)

We show that Mel scale coefficients d can be computed directly
from the linear scale coefficients c defining an envelope |H(ω)| on
the linear frequency scale (see Eq. (1)). The computation of the co-
efficients d from the warped linear envelope, given by |H(ḡ−1(ω̄)|,
results in

dk =
1

2π

π
∫

−π

log(|H(g−1(ω̄)|)ejω̄k
dω̄

=

P−1
∑

p=0

cp

2 − δ0p

π

π
∫

0

cos
(

pg
−1(ω̄)

)

cos(ω̄k)dω̄ (9)

where δ0p denotes the Kronecker symbol. Note that this is equiv-
alent to the minimization of the error between the Mel scale log
envelopes in function of d given by

χ(d) =
1

2π

π
∫

−π

[

log(H(g−1(ω̄))) − log(G(ω̄))
]2

dω̄ (10)

Eq. (9) shows that a Mel scale coefficient can be computed from a
linear combination of linear scale coefficients what can be written as
a matrix multiplication

d = Ac (11)

with

Ak+1,l+1 =
2 − δ0l

π

π
∫

0

cos
(

lg
−1(ω̄)

)

cos(kω̄)dω̄

∼=
2 − δ0l

N

N−1
∑

n=0

cos
(

lg
−1

(

πn

N

))

cos
(

πnk

N

)

(12)
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Figure 2: Regularized discrete cepstrum using 40 cepstrum coeffi-
cients with λ = 0.1 and λ = 0.01 respectively.
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Figure 3: Discrete cepstrum using 40 cepstrum coefficients com-
puted from 14 cepstrum coefficients on the linear scale using poste-
rior warping.

This was named posterior warping, since the warping is com-
puted after the estimation of the linear scale coefficients. Evidently,
the approximation of the integral by the sum series introduces an
error which approximates zero when N is large. The analytic solu-
tion of A was also computed and resulted in a sum of complex in-
complete gamma functions. This derivation is omitted due to space
limitation.

In Fig.1, a linear frequency scale envelope is shown which is
at the same time accurate and smooth. Fig. 2 shows Mel scale
envelopes of the same spectrum computed by the regularized dis-
crete cepstrum. These figures show that in the case that λ = 0.1,
a smooth envelope is obtained but it fails to match the peaks accu-
rately in the high frequency band. Decreasing λ does not seem to
solve the matching accuracy and introduces overfitting in the lower
frequency band of the envelope. However, it is known that the res-
olution of the human ear is less accurate at these frequencies. The
posterior warped version shown in Fig. 3, is at the same time very
smooth and very accurate. In addition, no extra parameters must be
determined manually.

4 Stability and Perceptual Relevance
When the cepstrum coefficients of consecutive frames were plot

in time, considerable variations in these coefficients were observed
although the perceived timbre remained constant. The cause of this
problem is clarified in Fig. 4. On the left hand side of the figure it is
shown that envelope in the lower frequency band is very stable over
consecutive frames while considerable differences are shown in the
high frequency band. These differences come from very small am-



plitude variations which are amplified enormously by the log func-
tion which approaches −∞ when the amplitude approaches zero.
The absolute threshold in quiet, represented by the dashed line sug-
gests that these variations are not perceived by a human listener. The
cepstrum coefficients on the right hand side of the image are clearly
influenced by the variation in the high frequency band. From this
it must be concluded that the variation in the cepstrum coefficients
does not correspond with the perceived variation in timbre although
these variations are actually present in the sound. This compromises
the cepstrum based distance metric that was proposed previously.
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Figure 4: Spectral envelopes and cepstrum coefficients for consec-
utive time frames.

The stability of the cepstrum coefficients was improved by using
a lower bound threshold on the amplitude of the peaks. By replacing
amplitudes that were below the threshold with the threshold itself,
the influence of these noisy low amplitude partials was significantly
reduced. Since most of these partials are situated in the high fre-
quency band, a second method consists in estimating the envelope
over a limited spectral band. However, when only the frequency
band in synthesized, the perceived quality deteriorates significantly.
Fig. 5 shows that the linear scale discrete cepstrum coefficients are
very noisy what makes them difficult to interpret. When the lower
bound threshold is applied, the features become much more stable.
One can clearly observe the silence at the beginning and end of the
excerpt, the onsets between different notes and a tremolo (as a result
of vibrato) from frame 1000 to 1100.
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Figure 5: Linear scale cepstrum coefficients: i) Without Prepro-
cessing, ii) Lower Bound thresholded over limited spectral band.

5 Conclusions
The use of Mel scaled discrete cepstrum coefficients as features

is studied to express the perceptual similarity between two short time
spectral envelopes. The observation that accurate and smooth spec-
tral envelopes are easily obtained on the linear frequency scale re-
sulted in the idea to compute the Mel scaled cepstrum coefficients
from the linear scale coefficients. This technique was named poste-
rior warping and has the advantage that no manual parameters must
be set. Furthermore, it was shown that small amplitude variations
are amplified enormously by the log function, compromising the
perceptual relevancy of the features. This was improved by com-
puting the envelope over a limited spectral band and applying lower
bound thresholding. Since the discrete cepstrum is meant to charac-
terize the deterministic component of the sound, not all perceptual
relevant information is captured. However, a great advantage of the
discrete cepstrum is that a resynthesis can be obtained from the fea-
tures allowing a user to judge whether the features are representative
for the original sound.
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