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Overview

This disseration addresses the problem of determining the control parameters of a musical
synthesis algorithm in order to simulate a given signal. In the field of music synthesis,
two paradigms are distinguished namely; signal modelling synthesis which is based on a
mathematical model and physical modelling synthesis which is based on the simulation
of the acoustical and mechanical properties of an acoustic instrument.

Signal modelling techniques describe a sound signal in terms of a mathematical model
for which the parameters are computed by minimizing the difference between the signal
and the model. A commonly used method method is sinusoidal modelling where the
signal is described by a sum of sinusoids with time-varying amplitudes and frequencies.
Typically, the residual is modelled by filtered white noise. Many techniques are known
that allow to determine these parameters in an accurate way, resulting in a synthesis of
a very high quality.

For physical models, the estimation of the control parameters is far more difficult
since the control parameters are not related to the produced sound signal in a trivial
way. The behavior of most musical instruments is highly nonlinear. This is for instance
the case for the collision of the lips of a trumpet player, the bow that excites the string of
a violin and the closure and opening of the vocal tract. In addition, a delayed feedback
must be taken into account such as the pressure wave which is reflected at the end of
a tube or transversal waves which are reflected at the end of a string. In this work,
the objective is to use as little prior knowledge about the physical model as possible so
that the estimation procedures can be applied easily to other models than the one which
is studied throughout the thesis. The proposed methods originate from the pattern
recognition field and are purely based on a data set containing input and output values.

The structure of the dissertation is depicted in Fig. 0.1. Each node represents a
chapter and each arrow illustrates their dependence.



2 List of Figures

In chapter 1, a generic non parametric approach is proposed for the estimation of
control parameters for musical synthesis algorithms. The method consists of modelling
a multidimensional function which takes as input a vector of perceptually relevant signal
features and returns the control parameters. This estimation is realized by K-nearest
neighbor classification which retrieves the most similar vector from a data set. This
data set is realized by synthesizing a large set of sounds and storing the signal features
concatenated with the corresponding control parameters.

Since the computational complexity of a nearest neighbor classifier can prohibit its
practical use when the data set is large, branch and bound search algorithms are devel-
oped in chapter 2. These algorithms decompose the data in a hierarchic manner. This
decomposition is traversed in a depth first order while nodes that cannot contain nearest
neighbors are avoided.

One shortcoming of the non parametric approach is that the physical constraints of
the real instrument are not respected. For instance, for a sound with vibrato, control
parameters are returned containing a periodically varying tube length. Chapter 3 dis-
cusses the physical model and its implementation, and derives a set of tube lengths that
are adapted to a given tuning frequency.

In order to express the spectral similarity between two sounds, discrete Mel frequency
cepstrum coefficients are used. However, when these coefficients are plot over time, it
is shown that they are very sensitive to noise. One reason is that overfitting can occur
since the envelope is only defined at discrete points and not in between these points. A
second problem is that the high frequency band contains many low amplitude partials
with a low signal to noise ratio. The noise of these partials is amplified enormously by
the log function. These problems are addressed in chapter 4.

In chapter 5, the results of the previous chapters are applied in order to obtain a
data set for which the physical constraints are respected and contain stabilized features.
A new estimation method was developed which takes into account the coupling between
the different control parameters.

The feature extraction that is used to estimate the parameters is based on sinusoidal
modelling. However, the method which was initially used, estimates the complex ampli-
tude and frequency in an iterative manner. This requires the use of rather large analysis
windows since the frequency responses may not overlap. As a result, no fast variations
in amplitude or frequency can be captured implying that the feature extraction fails
during the transients. When smaller analysis window are used, the frequency responses
of the sinusoidal components will overlap, requiring the computation of all amplitudes
simultaneously. This method is not frequently used because of its high computational
complexity. In chapter 6 and 7 it is shown that this can be improved considerably by
including an analysis window with a bandlimited frequency response in the least square
derivation.
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CHAPTER 1

Non Parametric Control Parameter Estimation

1.1 Chapter Overview

A non parametric method is described for the estimation of the control parameters of a
physical model of a trumpet. This method can be applied on a large class of systems for
which a simulation, or “model” is available. We describe its application on a physical
model of a trumpet where the “system” is an acoustical instrument, a trumpet, and the
“model” a computer program that simulates trumpet sounds. A non parametric method
was developed that determines the control parameters of the physical model from a set
of features of the desired sound. This approach is particularly interesting since it is not
strictly limited to this particular synthesis algorithm.

When describing the problem formally, the estimation problem can be considered as
a multidimensional function that computes the control parameters from the extracted
features (1.3). Since no analytic form of this function can be assumed, a non paramet-
ric estimation technique is used, based on K-nearest neighbor classification (1.4). The
implementation (1.5) and results (1.6) of this method are discussed. Finally, some con-
clusions are given, including an overview of encountered problems that led to the work
in subsequent chapters (1.7).

1.2 Introduction

When using a physical model to simulate an acoustic instrument, the way it is controlled
is as important as the quality of the model itself. A physical model that is potentially
capable of simulating any sound of an acoustic instrument will still sound very unnatural
if it is not controlled correctly. Therefore, in order to produce realistic approximations
of instrument tones, it is important to use appropriate time-varying control functions. A
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real-time implementation of the model controlled by an adapted instrument-like interface
may provide a preliminary solution, however it is not known how the interface parameters
must be mapped to the control parameters of the synthesis model. In addition, it is
impossible for a musician to control such an interface in order to obtain a professional
musical performance. Therefore, techniques that can determine the control parameters
in order to simulate a given sound are very interesting.

For synthesis techniques based on a signal model (for example sinusoidal modelling),
efficient estimation techniques are available leading to sound manipulations of a very high
quality [5, 71]. Some recent advances are presented in the last chapters and in [18, 17].
For physical models, techniques that determine automatically the control parameters
for a given sound are actively researched. We cite work on plucked strings [60, 88, 89],
bowed strings [79], the Sho1[83] and the trumpet [38, 16, 23, 25].

Although one approach to finding control parameters would be to invert the math-
ematical equations on which the model is based [38], the non parametric approach con-
siders the model as a “black box” neglecting the inner workings of the system. Only the
output of the system is observed for different inputs. The method is described specifi-
cally for the parameter estimation of musical synthesis algorithms, but can be applied
on any system-model couple for which the inputs and outputs are recordable and small
in number. If the parameters of the model can be calculated so as to reproduce accu-
rately a recorded trumpet performance of a professional musician playing a high quality
instrument, very interesting applications arise such as coding and sound modifications.

Related research involving the control of synthesis algorithms, waveform synthesis in
particular, has been done by [14]. Neural networks and memory based machine learning
were used in the work of [100]. In these examples a signal model was controlled by
the fundamental frequency and amplitude envelope functions. This work addresses the
problem of the control of physical models using continuous time-varying parameters that
have a physical meaning but are less directly related to characteristics of the produced
sound. A similar technique is Code-Excited Linear Prediction (CELP) speech coding
where the most appropriate innovation sequence is searched from a code book to optimize
a given similarity criterion [76].

1.3 Formalization of the Problem

The problem of determining automatically the control parameters of a musical synthesis
algorithm is formalized as follows. An acoustic system S is considered which is controlled
by a set of parameters p(t) and produces a signal s(t) = S(p(t)). This system is
simulated by a model X with similar (but not necessarily exactly the same) control
parameters q(t) which produces a signal x(t) = X(q(t)). The main goal of the proposed
method consists of determining an estimate of the control parameters q̃(t) so that it
simulation by the synthesizer s̃(t) = X(q̃(t)) is most similar to the original signal s(t).

In order to determine the similarity between the original signal and its resynthesis,
a distance measure must be developed. This distance measure is defined in terms of

1 Chinese flute
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perceptually relevant features K(s(t)) that are estimated from the signal s(t) for regular
time intervals. In the case of the trumpet, the sustained part of the sound is harmonic
and can be described appropriately by its fundamental frequency and a characterization
of its spectral envelope, such as linear prediction coefficients or cepstrum coefficients.
Since the cepstrum coefficients do not adequately represent the spectrum of a pitched
sound, the discrete cepstrum is preferred, which is calculated from peaks in the short
time spectrum [31, 78]. The curve defined by the discrete cepstrum is divided in eight
equal bins according to the Mel scale yielding a feature vector of eight elements that
indicate the similarity between two spectra. Thus, the operator K denotes the feature
extraction and computes the discrete cepstra c̄ and the fundamental frequency ω from
the signal

(ω, c̄) = K(x(t)) (1.1)

The distance metric d(., .) between two sets of features computed from the short time
signals s(t) and x(t) is defined as

(ω1, c̄1) = K(x(t))

(ω2, c̄2) = K(s(t))

d(K(x(t),K(s(t))) ≡ λ(log(ω1)− log(ω2))
2 + (c̄1 − c̄2)

T (c̄1 − c̄2) (1.2)

Since the perceived pitch is approximately logarithmic in function of the fundamental
frequency, the log difference is taken to express the tonal similarity of the sound. Also
the perceived loudness is approximately logarithmic in function of the amplitudes which
motivates the use of the Euclidean distance between the cepstrum coefficients. The
parameter λ allows to control the relative importance of the tonal and spectral similarity
manually. Since it is unacceptable that the model plays out of tune, this value is chosen
rather high so that the tonal similarity will dominate. A disadvantage however is that
this combined distance metric does not have a physical meaning.

Unfortunately, most methods that determine the fundamental frequency fail when
transients (fast variation in amplitude or frequency) occur. In this case, the fundamental
frequency and the spectral envelope are unreliable, resulting in a false characterization
of the signal.

1.4 Modelling of Multidimensional Functions

After the feature extraction, the estimation of the control parameters can be seen as
the modelling of a multidimensional function f that takes as input the signal features
K(s(t)) and returns the control parameters

q̄(t) = f(K(s(t))) (1.3)

The pattern recognition field offers powerful techniques to model this function from a
training set of feature vectors containing the input and output values [4, 29]. In this
case, the training is supervised, since both the input and the output of the system are
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presented for the training. Unsupervised methods search for clusters in multidimensional
data where each cluster is considered a separate class [2, 49].

In contrast to classification problems where one seeks to approximate the probabili-
ties of membership to a number of classes, this is a regression problem since the values
of q(t) are continuous. In general, three alternative approaches can be distinguished

• For the parametric approach, a specific analytical form of f is assumed containing
a number of parameters which are optimized in order to fit the data set.

• By contrast, the second technique of non-parametric estimation does not assume
any functional form and relies entirely on the data.

• The third approach, called semi-parametric estimation allows a very general class
of functional forms, for instance neural networks, in which the number of adaptive
parameters can be increased in a systematic way.

Since no mathematical form for f can be assumed, a non-parametric k-nearest neigh-
bors estimation technique is used. This technique searches the most similar feature vector
in the data set and returns the corresponding output. This technique is also known in
the field of machine learning where it is called instance-based learning [56]. The learning
procedure consists simply of storing new input-output pairs in a data set S which yields
for the control parameter estimation problem

S = {(q(t1),K(X(q(t1))), (q(t2),K(X(q(t2))), . . . , (q(tN ),K(X(q(tN ))))} (1.4)

The evaluation of the function f consists simply of retrieving the feature vector K(X(q(ti)))
which is most similar to the features K(s(t)). The corresponding control parameters q(ti)
are then returned.

q̃(t) = min
q(ti)

d(K(s(t)),K(X(q(ti)))) (1.5)

Finally, these control parameters are used to for the synthesis of a simulation s̃(t) of the
signal s(t)

s̃(t) = X(q̃(t)) (1.6)

A disadvantage of the instance-based approach is that it requires a large number of
distance computations in order to find the k-nearest neighbors. Therefore, branch and
bound search algorithms are used that facilitate the rapid calculation of the k nearest
neighbors [30, 61]. A branch and bound algorithm is a tree search algorithm that uses a
hierarchical decomposition of the sample set of vectors. It does not compute a distance
to all patterns in the data set but only to a certain node in the tree representing a subset
of the sample. By using proper rules it is decided whether a vector in this node can be
a nearest neighbor. If this is not the case, the complete node and all patterns belonging
to it may be discarded.

For the experiments conducted in [16, 23, 20], the search algorithm described in
[61] was applied. However, this search algorithm has several shortcomings. Namely, its
decomposition method was not fully automated and could result in tree nodes that did
not contain any vectors. Therefore, this method is not optimal. A fully automated and
optimized method was developed, which is presented in chapter 2 [21, 19, 26].
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1.5 Implementation

1.5.1 The Physical Model

The control parameter estimation was applied on a physical model of a trumpet [90, 93]
developed at the Analysis/Synthesis team of IRCAM. Also a real-time implementation
of this model was available [84].

A trumpet consists of a mouthpiece on which the player places his lips, followed by
the instrument body which is basically a tube. The length of this tube can be modified
by pressing the valves. The tube ends in the bell from which the outgoing pressure
wave results in the perceived sound. In the physical model, the lips are modelled by a
mass-spring-damper system to which a non-linearity is introduced when the lips collide.
The tube is simulated by a transfer function measured from a real trumpet and a delay
that depends on the tube length. Finally, the effect of the bell is modelled by a high
pass filter.

The control parameters q(t) of the model are: the pressure in the mouth, the fre-
quency of the lips, the damping factor of the lips and the tube length. The relationship
between the tube length and the lip frequency is very important since it determines
which mode of the tube is excited.

1.5.2 The Training Phase

Figure 1.1 shows an overview of the training and simulation phases of the system. The
training consists of

• 1) Synthesis of the sounds that will be used in the data set.

• 2) Feature extraction from these sounds.

• 3) Concatenation of the control parameters and features. Storage of this vector in
the data set.

The first data set for the inversion of the physical models was realized by controlling
the real-time implementation of the model. During the real-time synthesis, the control
parameters and synthesized sounds were recorded. All notes on the chromatic scale were
played with a slow crescendo and diminuendo in order to have all possible intensities.
Then a slow vibrato was added so that more variation in timbre could be achieved.

A second data set was obtained by sampling the control parameter space. Slow
crescendos were obtained by augmentation the mouth pressure for every combination of
lip frequency, lip damping and tube length.

1.5.3 The Simulation Phase

The simulation of a given sound s(t) is achieved by the following steps:

• 4) The features K(s(t)) of the sound are calculated at a frame rate of 100 Hz.
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• 5) For each frame, the vector with the most similar characteristics K(x(t)) is
searched in the database returning the corresponding control parameters q(t).

• 6) These parameters are written to file and used for the resynthesis of a sound s̃(t)
that is close to the original sound s(t).

1.6 Results and Discussion

1.6.1 Simulations

For the first data set that was produced with the real-time implementation of the physical
model, different sounds were simulated starting with sounds that were part of the training
set. For these sounds the simulation was very accurate since the same exact feature
vectors were available in the database. However, when attempting to simulate a sound
that was not represented well in the data set several problems occurred due to sparse
regions in the feature space. This sparsity can cause that sound characteristics that
vary significantly around one isolated feature vector return always the same control
parameters. In this case the resynthesized sound will remain stable while the original
sound varies dynamically. By contrast, a small change of the signal characteristics may
yield large variations in control parameters when the two closest feature vectors are very
distant from each other.

Finally, recordings of an acoustic instrument were simulated. Since the training set
contains only a chromatic scale of notes, and thus only a few discrete fundamental fre-
quencies are well represented in the data set, a problem might occur when the recording
of the real trumpet is not in tune with the scale that was played in the training set. In
order to solve this problem a histogram for both the database and the sound file was
made. The pitch feature of the original sound was adjusted slightly in order to guarantee
that the feature vectors did not fall in a sparse region of the feature space. After some
manual corrections of the control parameters at the transients a satisfactory simulation
was obtained.

In order to avoid the sparse locations in the control parameter space, a second set was
generated by a uniform sampling of this space. For the shortest tube length (no valves
pressed) crescendos were generated for lip frequencies that excite the sixth mode of the
tube. This was repeated for a number of values for the lip damping. A trumpet sound
with a close fundamental frequency was simulated that contained dynamic variation in
amplitude and a considerable vibrato. During the first simulation, it was observed that
the variation in the fundamental frequency was obtained by changing the length of the
tube. However, this would be impossible on a real instrument. Therefore, the length of
the tube was determined first for each note. Then, when the other control parameters
were determined, the only part of the data set considered was that produced by this
fixed tube length.

Although the control parameter space can be sampled, this can not be realized for
the feature space since the synthesizer can produce only a limited set of sounds. The
dimensionality of the feature space is much larger than for control parameter space which
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implies that the data lies in a lower dimensional subspace. This implies that when one
wishes to simulate a sound which is not well represented in the data set, its feature
vector will fall into a sparse region in the feature space. Therefore, the proposed non
parametric approach is not robust and has weak generalization properties.

1.6.2 Transients

The approach that is described above assumes implicitly that the relationship between
the control parameters and the sound characteristics is instantaneous or time-independent.
This assumption is valid when the control parameters are varied slowly, but when the
parameters are changed rapidly it takes several frames for the model to converge to a
stable sound. As a result, very similar characteristics could yield very different control
parameters. One solution might consist of considering consecutive frames as a single
feature vector permitting to capture the dynamic evolution of the control parameters.
This will result in enormous data sets since the quantity of training data needed to
specify the mapping grows exponentially with the number of dimensions.

A second problem is that when transients occur, the characteristics that are estimated
from the sound are very unreliable resulting in a false characterization of the signal. In
this case, the control parameters cannot be retrieved by the proposed inversion method.
However, experiments with the real-time implementation prove that the model is able
to produce very natural transients. These transients can be detected by observing the
the evolution of the fundamental frequency and the energy of the signal. Afterwards,
the control parameters during the transients can be extrapolated from the context. In
the case of the trumpet, two main types can be distinguished: a sudden augmentation
or diminution of the pressure (onset or offset), and a sudden change in tube length and
lip frequency (slur). It is assumed that during the onset, the same tube length and lip
frequency is used as during the stable part of the note. During a slur, the lip frequency
and tube length are changed instantaneously while the pressure is interpolated linearly.
This results in quite natural sounding transients.

1.7 Conclusions

This chapter presents an initial attempt to estimate the control parameters of a physical
model of a trumpet in an automatic manner. During this work, many problems were
encountered which have led to the work presented in the subsequent chapters.

• High Evaluation Cost:

It is commonly known that the main disadvantage of non parametric estimation
techniques is their high evaluation cost. In its elementary form, the retrieval of
K nearest neighbors requires the computation of the distance to all vectors that
belong to the data set. When taking into account that the data sets contain about
40000 vectors and that the the features are computed at a rate of 100 Hz, this
yields 4000000 distance computation to compute the parameters for each second
of signal one wishes to simulate. Therefore, branch and bound search algorithms
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were developed which allow to compute the K nearest neighbors in sublinear time.
Initially the technique of Niemann and Goppert was implemented [61]. This algo-
rithm however, did not provide an automatic decomposition, and could yield empty
nodes in the search tree. Therefore, a new method based on principal component
analysis was developed, which is fully automatic. This algorithm is presented in
chapter 2 and is compared with the state of the art methods.

• Respecting Physical constraints

When simulating a sound with vibrato, it was observed that the returned parame-
ters attempted to simulate this by varying the tube length of the model. Evidently,
this is not acceptable since this contradicts with how a real instrument is controlled.
In addition, it is known that several notes can be obtained by different combina-
tions of mode and tube length. For en entire trumpet performance, only seven
tube lengths can be used. In chapter 3, the physical constraints of the physical
model are discussed, and it is derived how the tube lengths can be adjusted to a
given tuning frequency.

• Unstable Features

When the discrete cepstrum coefficients were plot over time it was observed that
these coefficients were very noisy although the sound was perceived as very stable.
In chapter 4, two causes are described, being overfitting and the amplification of low
amplitude variations by the log function. We propose a new method to compute the
discrete Mel frequency cepstrum coefficients which was named posterior warping.

• Conditional Estimation

As stated before, the dimensionality of the feature space is considerably larger
then the dimensionality of the control parameter space. As a result, it will occur
frequently that the feature vector computed from a sound one wishes to simulate
lies in a sparse region of the data set. An alternative method consists of iteratively
optimizing the control parameters with respect to the the similarity criterium.

In chapter 5, a method is proposed which uses two distance metrics, being the tonal
and spectral similarity. The parameters are determined in such a manner that the
tonal similarity is optimal and that for this optimal tonal similarity, the optimal
spectral similarity is obtained. This method was named conditional optimization
since the second criterium is optimized under the condition that the optimal value
for the other criterium is obtained.

• Sinusoidal Modelling on Small Windows

The computation of the discrete cepstra that are used to define the spectral simi-
larity relies on a sinusoidal modelling of the short time signal. The method which
was initially used for the sinusoidal modelling computed the amplitude, phase and
frequency of each sinusoidal component iteratively which requires the use of large
analysis windows. In addition, this modelling is based on the assumption that
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the amplitudes and frequencies are constant over the analysis frame which makes
them inappropriate to track fast variations in frequency and amplitude as they
occur during the transients.

Iterative optimization methods allow to use much smaller analysis windows but
require a considerably higher computation cost namely O(K2N) where K denotes
the number of sinusoidal components and N the window length. The contribu-
tion made in chapter 6 consists of improving the computational efficiency of the
amplitude estimation to O(N log N). The same was realized for two frequency
optimization methods which are discussed in chapter 7.



CHAPTER 2

Fast K-Nearest Neighbors Computation

2.1 Introduction and State of the Art

Searching the K nearest neighbors in a multidimensional vector space is a very common
procedure in the field of pattern recognition where it is used for non parametric density
estimation and classification [12, 29, 4]. However, when the number of samples is large,
the computational cost of the nearest neighbor search can prohibit its practical use.
Various techniques that improve the computational efficiency have been proposed and
are discussed in this chapter.

2.1.1 The Basic Principle

All search algorithms require a preprocessing step in which the data set is hierarchically
decomposed. This decomposition is represented by a tree where each node represents a
subset of the data.

The nearest neighbor search traverses the tree in a depth first order. When the search
algorithm encounters a leaf node, the distance to all vectors belonging to that node is
computed and a new value for the distance to the Kth nearest neighbor is obtained.
This distance is used to determine whether nodes that have not been evaluated can be
excluded from the traversal. This is realized by defining a lower bound distance metric
between the vector for which the nearest neighbors are searched and all vectors that
belong to a given node. The exclusion of these nodes avoids distance computations for
entire sets of vectors what implies a significant computational improvement.

The depth first tree traversal is implemented efficiently by using a stack on which
all nodes that still need to be evaluated are stored. The nodes are traversed iteratively
by popping the current node off the stack and pushing the child nodes on the stack. In
Fig. 2.1, a snapshot of a depth first traversal is shown when the search has reached the
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Fig. 2.1: Snapshot of a Depth First Tree Traversal.

first leaf node. The nodes that are represented by the dashed line have already been
evaluated. The colored nodes are currently on the stack.

2.1.2 Literature

According to the type of space in which the data is represented, two groups of algorithms
can be distinguished. A first group of algorithms can only be applied on data represented
in a vector space and are called branch and bound search algorithms. The first branch
and bound algorithm was developed by Fukunaga [30] and extended by Kamgar-Parsi
[44]. The data set was decomposed hierarchically using a clustering algorithm. Nie-
mann proposed to divide the sample space in hypercubes by segmenting the coordinates
and adapted the distance measure between a node and a vector to this decomposition.
However, the determination of these segment borders was still an open problem [61].
An automated segmentation method called ordered partitioning was presented in [47].
All these algorithms have a linear space complexity and a sublinear time complexity.
Another interesting overview can be found in [42].

A second group of algorithms determine the nearest neighbors in a metric space
[11]. The approximating and eliminating search algorithm (AESA) [94, 95, 43] has a
quadratic space complexity, a linear time complexity and an average number of distance
computations bounded by a constant term. Therefore, its application domain consists of
problems for which the data cannot be represented in a vector space and the dissimilarity
measure is computationally expensive. In [27], a probabilistic analysis is presented which
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proves that the asymptotic average complexity measured by the number of dissimilarity
calculations is constant. Also, a linear version of the algorithm (LAESA) was proposed
that has a linear space complexity and keeps the other features unchanged [54, 55]. The
TLAESA algorithm (a tree version of LAESA) applies the branch and bound algorithmic
strategy on a metric space and has a sublinear time complexity at the expense of more
distance computations [53]. Another sublinear AESA algorithm was developed in [96].
An overview of fast nearest neighbor search algorithms based on the approximation and
elimination principle can be found in [69].

Recently, several branch and bound search algorithms were proposed that use a
decomposition method based on Principal Component Analysis (PCA) [52, 21, 19, 26].
These algorithms search the nearest neighbors in a vector space where the dissimilarity
between two vectors is expressed by the euclidian distance. Therefore, they belong to
the first group of algorithms described previously. In the cited references, it was shown
that these algorithms have a linear space complexity, an average number of distance
computations bounded by a constant term and a time complexity that is very close to
logarithmic for a small number of dimensions.

2.1.3 Chapter Overview

The efficiency of branch and bound search algorithms for the computation of K nearest
neighbors is studied. The main aspects that influence its efficiency:

1. the decomposition method

2. the elimination rule

3. the traversal order

4. the level of decomposition

First, a hierarchical decomposition method is developed that separates the data set
iteratively using hyperplanes (2.2). A statistical model of the computation cost (2.2.2),
allows to define two efficiency criteria. It is shown that these criteria are optimized by
choosing hyperplanes that are perpendicular to the maximal variance (2.2.3) while taking
into account that each subnode should contains an equal number of vectors (2.2.4). A
possible variation consists in using hyperplanes perpendicular to the axis (2.2.5).

For this decomposition to be used in the context of a branch and bound search
algorithm, an appropriate elimination rule must be defined (2.3) which is then used to
optimize the search algorithm (2.4). The number of distance computations (2.4.2) and
total computation time (2.4.3) are studied in function of the number of dimensions, the
number of nearest neighbors and the number of vectors.

Then, different possible traversal orders are described which can be optimized glob-
ally or locally (2.5). Also the level of decomposition is a user defined parameter which
has a significant impact on the performance of the algorithm. A method is developed
which allows to optimize the decomposition level from a few simple experiments.
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The different decomposition methods, elimination rules and traversal orders yield ten
different algorithms (2.7.1). The algorithms were compared for gaussian (2.7.3) and non
gaussian (2.7.4) data distributions after determining the optimal decomposition level.
Finally, the conclusions (2.8) and some applications are discussed (2.9).

2.2 Hierarchical Decomposition

2.2.1 Definition of the Decomposition

The decomposition of the sample is represented by a binary tree of which each node
p represents a subset Sp of the total data set S0 = {x̄1, x̄2, . . . , x̄N} with x̄i ∈ R

D.
Each branch denotes the decomposition of the sample according to a D− 1 dimensional
hyperplane in a D dimensional space. In general, a hyperplane can be determined by a
point µ̄p contained within and a vector v̄p perpendicular to it. It is then defined by the
equation

v̄T
p (x̄− µ̄p) = 0 (2.1)

where x̄ ∈ R
D and v̄T

p denotes the transpose of v̄p. The values of µ̄p and v̄p are determined
in the following sections. When v̄p is normalized, the absolute value of the expression
v̄T
p (x̄− µ̄p) yields the perpendicular distance between the vector x̄ and the hyperplane.

The sign of this expression indicates on which side of the plane the vector x̄ lies, and
therefore, to which child node it belongs. When the nodes are enumerated starting from
zero, the root node S0 represents the total data sample. The child nodes of a node p are
defined by induction using

S2p+1 = {x̄i ∈ Sp : v̄T
p (x̄i − µ̄p) < 0)}

S2p+2 = {x̄i ∈ Sp : v̄T
p (x̄i − µ̄p) ≥ 0)} (2.2)

implying Sp = S2p+1 ∪ S2p+2 and S2p+1 ∩ S2p+2 = ∅.
In Fig. 2.2, an example is given of a hierarchical decomposition in two dimensions

up to two levels. The plane is first divided according to the straight line v̄T
0 (x̄− µ̄0) = 0.

Vectors on the left side of this line belong to S1, the others belong to S2. This is
continued for two levels, resulting finally in four leaf nodes and an equal number of
corresponding regions in the plane. On the right of the figure, a tree representation of
the decomposition is depicted.

2.2.2 A Statistical Model of the Evaluation Cost

In this subsection, a statistical model is described that expresses the average computation
cost in function of the node traversal cost Ctrav and the distance computation cost Cdist.
For any node p containing Np vectors that is branched, the conditional probability that
a child node of p is traversed can be expressed using

P (2p + 1|p) =
N2p+1

Np
+ E2p+1

N2p+2

Np

P (2p + 2|p) =
N2p+2

Np
+ E2p+2

N2p+1

Np
(2.3)
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Fig. 2.2: Example of a hierarchical decomposition in two dimensions.

The first term in the first equation expresses the probability that x̄ lies on the same side
of the plane as the child node 2p + 1. This node will be evaluated first. The goal of
the elimination rule (see section 2.3) is to avoid the evaluation of the other child node.
However, it is possible that the elimination rule fails. This is expressed by the second
term which is the product of the probability that x̄ belongs to the other node

N2p+2

Np
and

the probability that the elimination fails E2p+1.

The absolute probability P (p) that a node is traversed is expressed in function of
these conditional probabilities by induction

P (2p + 1) = P (2p + 1|p)P (p)

P (2p + 2) = P (2p + 2|p)P (p) (2.4)

with P (0) = 1. Thus, each probability P (p) is the product of all conditional probabilities
over the tree path from the root node 0 to p, for example P (3) = P (3|1)P (1|0)P (0).

The average evaluation cost Cp of a node p which is branched up to one level is given
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by

Cp = P (2p + 1|p)N2p+1Cdist +

P (2p + 2|p)N2p+2Cdist + Ctrav

=

(

N2p+1

Np
+ E2p+1

N2p+2

Np

)

N2p+1Cdist +

(

N2p+2

Np
+ E2p+2

N2p+1

Np

)

N2p+2Cdist + Ctrav (2.5)

Taking into account that N2p+2 = Np − N2p+1, this cost is minimized by taking the

derivative
∂Cp

∂N2p+1

∂Cp

∂N2p+1
=

∂

∂N2p+1

[(

N2p+1

Np
+ E2p+1

Np −N2p+1

Np

)

N2p+1Ctrav +

(

Np −N2p+1

Np
+ E2p+2

N2p+1

Np

)

(Np −N2p+1)Ctrav + Cdist

]

=
Ctrav

Np
[(1− E2p+1)N2p+1 + N2p+1 + E2p+1(Np −N2p+1)

+(−1 + E2p+2)(Np −N2p+1)− (Np −N2p+1 + E2p+2N2p+1))]

=
Ctrav

Np
(2− E2p+1 − E2p+2)(2N2p+1 −Np)

When this is put to zero, one obtains

∂Cp

∂N2p+1
= 0

⇒ Ctrav

Np
(2− E2p+1 − E2p+2)(2N2p+1 −Np) = 0

⇒ N2p+1 =
Np

2

This implies that the evaluation cost of node p will be minimized when each child node
contains an equal number of vectors.

When a node p is further decomposed, its evaluation cost Cp is expressed in function
of the cost of its children C2p+1 and C2p+2 by

Cp = P (2p + 1|p)C2p+1 + P (2p + 2|p)C2p+2 + Ctrav (2.6)

The total computation cost C0, starting from the root node and traversing the tree up
to a level L, yields

C0 = Ctrav

2L−2
∑

p=0

P (p) + Cdist

2L+1−2
∑

p=2L−1

P (p)Np (2.7)
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The left term expresses the average number of branched nodes that is traversed, multi-
plied with the traversal cost. The second term, denotes the average number of distance
computations, multiplied with the distance computation cost.

From this probabilistic model of the average computation cost, some important ob-
servations are already made

1. The decomposition is most efficient when the tree is balanced.

2. The goal of the elimination rule is to make Ep as small as possible in order to
minimize the probability that a node is traversed. This minimizes the total com-
putation cost as shown in equation (2.7). On the other hand, the equation shows
also that the evaluation cost of the elimination rule, denoted Ctrav, plays an impor-
tant role. An elimination rule with a larger value of Ep but with a lower evaluation
cost Ctrav may result in a smaller overall computation time.

3. The level of decomposition L has a strong influence on the computation time. The
first term of Eq. (2.7) increases in function of it while the second term decreases.
Therefore an optimal level exists, providing the trade-off between both terms.
Note that this is a user specified parameter that has to be set manually. The
optimization of this parameter is discussed further in section (2.6).

2.2.3 PCA-Based Decomposition

From the previous section was concluded that a balanced tree results in the lowest
computation cost. In this section, a second efficiency criterium is proposed. Vectors
that lie close to the separating hyperplane have nearest neighbors in both child nodes,
which implies that none of the child nodes can be eliminated. Therefore, we wish to
determine the hyperplane that minimizes the number of vectors that lie close to it. This
results in the following efficiency criteria

1. Both child nodes contain an equal number of vectors.

2. The number of vectors close to the plane is minimal.

The set of vectors lying close to the hyperplane eventually results in the hyperplane itself
when the number of samples approaches infinity. This implies that the second criterium
is equivalent with determining the hyperplane over which the integral of the probability
density function is minimal.

We examine how the efficiency criteria can be applied to a D dimensional gaussian
function

exp

{

−1

2
(x̄− µ̄)TΣ−1(x̄− µ̄)

}

(2.8)

that is fit to a data set Sp where µ̄ is the mean vector

µ̄ =
1

Np

∑

x̄i∈Sp

x̄i (2.9)
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and Σ the D ×D covariance matrix

Σ =
1

Np

∑

x̄i∈Sp

(x̄i − µ̄)(x̄i − µ̄)T (2.10)

Any hyperplane that contains the mean vector µ̄ divides the gaussian in two equal
halves what directly optimizes the first criterium. In order to apply the second criterium,
we wish to minimize the probability that vectors lie on the separating hyperplane. In
other words, the hyperplane must be determined for which the integral of the gaussian
over that plane results in the smallest value. The following equations show that this is
the hyperplane perpendicular to the maximal variance of the gaussian.

The principal axes of the gaussian are given by the eigenvectors ūi of Σ satisfying

Σūi = λiūi (2.11)

where λi is the variance or eigenvalue according to the eigenvector ūi. The eigenvectors
can be normalized in order to form a complete orthonormal set

ūT
i ūj = δij (2.12)

where δij denotes the Kronecker symbol. When a vector x̄ is expressed as a linear
combination of the eigenvectors ūi

x̄ = µ̄ +
D
∑

k=1

αkūk (2.13)

with

αk = (x̄− µ̄)T ūk (2.14)

equation (2.8) can be written as

exp

{

−1

2

D
∑

k=1

αkū
T
k Σ−1

D
∑

l=1

αlūl

}

(2.15)

which can be simplified to

exp

{

−1

2

D
∑

k=1

α2
kλ

−1
k

}

(2.16)

using (2.11) and (2.12).

When integrating the distribution over all axes determined by the eigenvectors, the
integral decouples and yields

D
∏

k=1

∫

exp

(

− α2
k

2λk

)

dαk =
D
∏

k=1

√

2πλk (2.17)



2.2. Hierarchical Decomposition 25

The inverse of this integral is the normalization factor that is used when a multivari-
ate gaussian is applied as a probability density function. The integral of the gaussian
distribution, using this normalization factor, over the hyperplane perpendicular to the
principal component ukmax

is given by

D
∏

k=1,k 6=kmax

√
2πλk

D
∏

k=1

√
2πλk

=
1

√

2πλkmax

(2.18)

Since the principal component gives the direction of the maximal variance, this equation
shows that the integral over the hyperplane perpendicular to the eigenvector ūi with
the largest eigenvalue λi (i.e. the principal component) is minimal. Therefore, the
decomposition according to this plane will result in the least vectors having nearest
neighbors in both subsets. This is the second efficiency criterium given at the beginning
of this subsection. As a result, a split of the sample according to this hyperplane is
proposed of which the equation is given by v̄T

p (x̄− µ̄p) = 0 with

µ̄p = µ̄ (2.19)

imax = argmaxi{λi} (2.20)

v̄p = ūimax (2.21)

The efficiency of this decomposition was previously shown experimentally in [52]. How-
ever, no theoretical derivation had been provided so far. Fig. 2.3 shows the contour of
a two-dimensional gaussian with its corresponding eigenvalues and eigenvectors. On the
right, the separating hyperplane and the decomposition parameters of the optimal split
are depicted.

2.2.4 Tree Balancing

Although it was shown theoretically that the decomposition as described above provides
the optimal split for a gaussian distribution, the tree might not be balanced for real data
sets. This means that for a given node one child node may contain significantly more
vectors relative to the other. In order to balance the tree, the value of µ̄p is chosen to be
the median in the direction of v̄p, instead of the mean µ̄. This makes the algorithm more
robust when the distribution of the data set is not gaussian. The balancing is realized
defining a scalar β

β = median{v̄T
p (x̄i − µ̄)}, x̄i ∈ Sp (2.22)

and calculating the value of µ̄p using

µ̄p = βv̄p + µ̄ (2.23)

Both the definition of the decomposition parameters and the balancing of the tree con-
tribute to the efficiency of the search algorithm.
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Fig. 2.3: Left: Eigenvalues and Eigenvectors Right: Optimal Separating Hyperplane

2.2.5 Axis Segmentation

In [47] and [61], the decomposition was realized with hyperplanes orthogonal to the
axis of the vector space. Applying the efficiency criteria given above and using this
restriction, we can define a decomposition with as parameters of a node p:

• ip the index of the axis with the largest variance over Sp.

• sp the median value of xj,ip with x̄j ∈ Sp.

When this decomposition is used, the elimination rule described in section 2.3.4 can be
applied.

2.2.6 The Decomposition Algorithm

The decomposition algorithm is described for a data set S0 = {x̄1, . . . , x̄N} up to a
level L ≤ ⌊log2 N⌋. The algorithm organizes the vectors so that all vectors belonging
to a node are grouped together. In [47], this organization is called an ordered partition.
For each node p the index of its first vector bp and last vector ep are stored so that
Sp = {x̄i ∈ S0 : bp ≤ i ≤ ep}. The decomposition variables that are determined for each
node p are

• bp the index of the first vector of Sp

• ep the index of the last vector of Sp

• v̄p eigenvector of Sp with the largest eigenvalue
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• µ̄p median vector of Sp, in the direction of v̄p

Note that the first two parameters must be determined for all nodes in the tree
(p = 0, . . . , 2L+1 − 2). The last two are only determined for nodes that are branched
(p = 0, . . . , 2L − 2). The decomposition parameters are computed only once, and are
then reused for consecutive searches. The complete decomposition algorithm is listed
below.

In Fig. 2.4 and 2.5 some results of the decomposition are shown. All vectors are
visualized by drawing a line from each vector to the mean vector of the node it belongs
to. In Fig. 2.4 the data set consists of 210 two-dimensional vectors drawn from a normal
distribution with mean 0̄ and unit covariance matrix. The decomposition is realized up
to the sixth level resulting in 64 nodes each containing 16 vectors. In Fig. 2.5 the same
decomposition is shown for a distribution with a different covariance matrix.

2.3 Node Elimination

The branch and bound algorithm searches for the nearest neighbors of a given vector
x̄ and consists of a depth first traversal of the tree that represents the hierarchical
decomposition of the data set. When a node is evaluated, it is determined whether it
can contain nearest neighbors. If this is not the case, this node can be omitted from
the search procedure. The rule that is used to determine whether a node can contain
nearest neighbors is called the elimination rule. The elimination rule is adapted to the
definition of the decomposition and relies on a lower bound distance measure d(x̄, p)
between a vector x̄ and a node with index p. This distance is also called the vector-
to-node distance. By comparing d(x̄, p) with the distance to the Kth nearest neighbor,
it is determined whether this node can be discarded from the search procedure. The
correctness of the algorithm follows directly from the definition of the decomposition
and the definition of an elimination rule. Different elimination rules were proposed in
[30], [52] and [19].

2.3.1 D’haes Elimination Rule

In [19, 21], a vector-to-node distance d(x̄, p) was proposed that is defined to be 0 when
p is the root node. The distances to underlying nodes of p are determined from d(x̄, p)
using

β = v̄T
p (x̄− µ̄p)

if β < 0
d(x̄, 2p + 1) = d(x̄, p)
d(x̄, 2p + 2) = max(d(x̄, p), |β|)

else

d(x̄, 2p + 1) = max(d(x̄, p), |β|)
d(x̄, 2p + 2) = d(x̄, p)

(2.24)
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S0 = {x̄1, . . . , x̄N}
b0 = 1
e0 = N
p = 0
while p < 2L − 1

// Calculation of the decomposition parameters

Np = ep − bp + 1
µ̄ = 1

Np

∑ep

k=bp
x̄k

Σ = 1
Np

∑ep

k=bp
(x̄k − µ̄)(x̄k − µ̄)T

ūi, λi = eigenvectors(Σ)
imax = argmaxi{λi}
v̄p = ūimax

β = median{v̄T
p (x̄k − µ̄), bp ≤ k ≤ ep}

µ̄p = βv̄p + µ̄
// Organization of the order

i = bp

j = ep

while j > i
while v̄T

p (x̄i − µ̄p) ≤ 0

i = i + 1
end

while v̄T
p (x̄j − µ̄p) > 0

j = j − 1
end

// Exchange position of x̄i and x̄j

if j > i
SWAP (x̄i, x̄j)

end

end

b2p+1 = bp

e2p+1 = j
b2p+2 = i
e2p+2 = ep

p = p + 1
end

Algorithm 1: Hierarchical decomposition algorithm.
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Fig. 2.5: Decomposition of a distribution with a non unit covariance matrix.
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Fig. 2.6: Illustration of the D’haes elimination rule.

For the child node that contains the vector x̄, the same distance is taken as the parent
node. For the other child node, all vectors belonging to it have a greater distance to
x̄ than the perpendicular distance |v̄T

p (x̄− µ̄p)| to the hyperplane. This distance might
therefore be a valid definition for the vector-to-node distance. However, hyperplanes
on previous levels might provide larger, thus more efficient, distances. Therefore, the
maximum of d(x̄, p) and |v̄T

p (x̄− µ̄p)| is taken.

In order to clarify this distance measure, the decomposition depicted in Fig. 2.2
is taken and the distances from a given node x̄ to all nodes are depicted in Fig. 2.6.
Note especially the distance d(x̄, 3) where one has the choice between |v̄T

0 (x̄− µ̄0)| and
|v̄T

1 (x̄− µ̄1)|. Since the second distance is larger, it is more likely that it will eliminate
nodes from the search and is therefore chosen to be d(x̄, 3).

During the search procedure, the currently found nearest neighbors and their distance
to the vector x̄ are stored in the variables ȳk and dk respectively with k = 1, . . . ,K. The
values of dk are initially set at ∞. The index of the vector ȳ that is the current Kth
nearest neighbor is denoted kmax. When a vector is found that is closer than ȳkmax

, it is
replaced by this nearer vector. Then, it is determined which of ȳk is the new Kth nearest
neighbor which results in a new value for kmax. By the definition of the vector-to-node
distance, the following elimination rule can be applied. A node p can be discarded from
the search procedure if

d(x̄, p)2 > (ȳkmax
− x̄)T (ȳkmax

− x̄) (2.25)

since all the vectors belonging to p are further from x̄ than ȳkmax
.
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Fig. 2.7: Illustration of the McNames elimination rule.

2.3.2 McNames Elimination Rule

In [52], another elimination rule is used which projects x̄ iteratively on the hyperplane.
It is also defined inductively from d(x̄, p) and z̄p. The values of d(x̄, 0) and z̄0 are initially
set to 0 and x̄ respectively. Its definition is given by

β = v̄T
p (z̄p − µ̄p)

if β < 0
d(x̄, 2p + 1) = d(x̄, p)
z̄2p+1 = z̄p

d(x̄, 2p + 2) =
√

d(x̄, p)2 + β2

z̄2p+2 = z̄p − βv̄p

else

d(x̄, 2p + 1) =
√

d(x̄, p)2 + β2

z̄2p+1 = z̄p − βv̄p

d(x̄, 2p + 2) = d(x̄, p)
z̄2p+2 = z̄p

(2.26)

In Fig. 2.7, the McNames lower bound distance is illustrated.

2.3.3 Fukunaga Elimination Rule

In order to apply the Fukunaga elimination rule [30], an additional decomposition pa-
rameter must be computed. For each node p, the distance for each vector to the median
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vector µ̄p is computed and only the largest value rp is retained.

rp = max
x̄i∈Sp

(

√

(x̄i − µp)T (x̄i − µp)

)

(2.27)

Thus all vectors x̄i belonging to a node Sp lie in a hypersphere with mean µ̄p and
radius rp. When dkmax denotes the distance to the Kth nearest neighbor, the following
condition

rp + dkmax <
√

(x̄− µ̄p)T (x̄− µ̄p) (2.28)

expresses that the hypersphere cannot contain nearest neighbors of x̄. This follows
directly from the triangle inequality [30]. Therefore, node p can be eliminated.

2.3.4 Kim and Park Elimination Rule

Using the decomposition method orthogonal to the axis that was described in section
2.2.5, another elimination rule can be applied which is defined by

β = xip − sp

if β ≤ 0
d(x̄, 2p + 1) = d(x̄, p)
z̄2p+1 = z̄p

d(x̄, 2p + 2) =
√

d(x̄, p)2 − z2
p,ip

+ β2

z̄2p+2 = z̄p

z2p+2,ip = −β
else

d(x̄, 2p + 1) =
√

d(x̄, p)2 − z2
p,ip

+ β2

z̄2p+1 = z̄p

z2p+1,ip = −β
d(x̄, 2p + 2) = d(x̄, p)
z̄2p+2 = z̄p

(2.29)

In this case, z̄0 and d(x̄, 0) are initialized as 0̄ and 0, respectively. An example is
given in Fig. 2.8.
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i0 = 1, i1 = 2, i2 = 1

Fig. 2.8: Illustration of the Kim and Park elimination rule.

2.4 The Search Algorithm

2.4.1 Outline of the Algorithm

The tree that represents the decomposition of the data sample is traversed in a depth
first order, which can be implemented efficiently using a stack s which is addressed by
an index t. On this stack, the node index p of nodes that still need to be evaluated
are stored together with the data that is needed for the evaluation of the elimination
rule. This data is needed to compute the vector-to-node distances that are defined by
induction. For the D’haes elimination rule this data consists of d(x̄, p). For the McNames
elimination rule and Kim and Park elimination rule, an additional vector z̄p is needed.
The Fukunaga elimination rule is the only rule that does not require any extra data on
the stack since it is not defined by induction.

The search is started by pushing the root node on the stack. When a node is evalu-
ated, it is popped of the stack and the elimination rule is evaluated. When the elimina-
tion rule indicates that the node cannot contain nearest neighbors, the following node
on the stack is evaluated. If not, two cases can be distinguished. If the node is a leaf
node (p ≥ 2L − 1) the vectors in Sp = {x̄bp

, . . . , x̄ep} are searched which means that
their distance to x̄ is calculated and compared with dkmax

. If the node is branched, the
child nodes and their distances are pushed on the stack. The algorithm terminates when
the stack is empty (t < 0) which indicates that the entire tree was traversed and the K
nearest neighbors found.

A complete search algorithm using the D’haes elimination rule (see section 2.3.1) is
listed below. The K nearest neighbors of a vector x̄ are determined from a data set S0

using a decomposition level L.
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d1, . . . , dK =∞
S0 = {x̄1, . . . , x̄N}
kmax = 1
s0 = 0 // push the root node

s1 = 0 // push the distance

t = 1
while t ≥ 0

dxp = st // pop distance

p = st−1 // pop node

t = t− 2
if dxp < dkmax

// elimination rule

if p ≥ 2L − 1 // p is a leaf node

i = bp

while i ≤ ep

dxx = (x̄− x̄i)
T (x̄− x̄i)

if dxx < dkmax

ȳkmax
= x̄i

dkmax
= dxx

kmax = max argk{dk}
end

i = i + 1
end

else // p is a branched node

if v̄p(x̄− µ̄p) < 0
st+1 = 2p + 2
st+2 = max(dxp, (v̄T

p (x̄− µ̄p))
2)

st+3 = 2p + 1
st+4 = dxp
t = t + 4

else

st+1 = 2p + 1
st+2 = max(dxp, (v̄T

p (x̄− µ̄p))
2)

st+3 = 2p + 2
st+4 = dxp
t = t + 4

end

end

end

end

Algorithm 2: Search Algorithm.
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Number of vectors in data set N
D K 210 211 212 213 214 215

2 1 4.5 4.7 4.7 4.9 4.7 4.7
2 7.7 7.9 8.0 7.9 8.0 7.9
4 13.5 13.8 13.6 13.6 13.5 13.5
8 23.7 23.8 23.8 23.9 23.8 24.0

4 1 34 35 37 39 39 41
2 51 55 58 62 62 63
4 79 87 93 98 101 102
8 121 136 149 157 163 168

8 1 371 544 739 968 1197 1515
2 495 736 1025 1380 1789 2210
4 608 954 1388 1915 2534 3203
8 726 1185 1785 2567 3443 4483

Tab. 2.1: Average number of distance computations

2.4.2 Number of distance computations

The behavior of the algorithm was studied by means of experiments on artificial data.
Prototype sets were produced from a D-dimensional normal probability distribution with
mean 0 and unit covariance matrix. Each result was obtained from the average of 210

experiments. The performance of the algorithm was studied with respect to different
values of

• D the dimensionality of the vector space

• N the number of vectors in the data set

• K the number of nearest neighbors that are searched

• L the level of decomposition that is used for the search

In table 2.1 the average number of vector-to-vector distance computations is given.
From this table, one can observe that the average number of distance computations is
in general very small. The nearest neighbor in a 2-dimensional space was obtained after
4.7 distance computations. Other works report results of 46 [30] and 165 [44] average
distance computations. An interesting overview is given in [94]. The number of distance
computations tends to be independent of the number of prototypes (for a dimensionality
of D ≤ 4). This property was also observed from the AESA algorithm and its derivatives.

2.4.3 Total Computation Time

In addition to these distance computations, the search algorithm also spends time cal-
culating the vector-to-node distance and traversing the tree. If the cost of the distance
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computation is very high relative to this extra effort, this could be neglected. However,
when observing the average calculation time of the algorithm for increasing levels of
decomposition, the total calculation time decreases fast at the lower levels, obtains a
minimum and increases towards the highest level. Every extra level of decomposition
reduces the number of distance computations but increases the traversal cost. If this
extra cost exceeds the reduction in distance calculation time, an additional level of de-
composition will increase the total search time. This implies that there is an optimal
level Lopt for which the total computation time is minimal. Using this optimal level of
decomposition, the average computation time was determined in function of the number
of vectors N . Results for K being 1, 2, 4 and 8 are shown for different dimensionalities
D in figures 2.9 to 2.11.

2.5 Locally Versus Globally Optimized Traversal Order

As can be observed from the search algorithm, the node with the smallest value for
d(x̄, p) is pushed on the stack last so that it is evaluated first. This optimizes locally the
traversal order of the search. However, the distance to nodes at higher levels might be
smaller and more interesting to evaluate first. This can be realized by sorting the nodes
stored in s by their lower bound distance d(x̄, p) after they are pushed on the stack.
The stack s is then an ordered list where closest nodes are stored on top. Doing so, a
globally optimized traversal order can be realized. Evidently, this sorting will only imply
an efficiency gain when its computation cost is fairly low.

An example is given in Fig. 2.12 where the globally optimized traversal reduces the
number of distance computations. The figure shows a hierarchic decomposition of a data
set from which the nearest neighbors of a vector x̄ are determined. Since the vector lies
in section 5 of the decomposition the nodes 0 and 2 are traversed first while the nodes 1
and 6 are pushed on the stack for later evaluation. The locally optimized traversal will
evaluate the node 6 before node 3 although the lower bound distance to 3 is significantly
smaller. By comparing the lower bound distances to the nodes it is determined that it
is more efficient when node 1 is traversed first which will eventually lead to node 3.
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Fig. 2.9: Average computation time for D = 2
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Fig. 2.10: Average computation time for D = 4
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Fig. 2.11: Average computation time for D = 8
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2.6 Optimization of the Decomposition Level

Although the goal one wishes to achieve is the minimization of the total calculation time,
most articles only report the average number of distance computations. This allows to
compare different search algorithms but does not take into account the overhead for the
tree traversal and vector-to-node distance computation. The distance computation cost
decreases up to the maximal level of decomposition Lmax, being ⌊log2 N⌋. By contrast,
the total node traversal cost increases in function of L. Therefore, there is an optimal
level of decomposition Lopt which minimizes the total computation time, as expressed
by equation (2.7).

An estimation technique is proposed that determines the optimal level of decomposi-
tion Lopt from a few simple experiments. When doing I experiments for different levels
of decomposition Li with i = 1, . . . , I, a set of total traversal cost values C0,i is obtained.
When the search is executed, a counter tp is incremented each time a node p is traversed.
This counter is only incremented when the elimination of the node fails. The conditional
and absolute probabilities are determined using

P (2p + 1|p) =
t2p+1

tp
(2.30)

P (p) =
tp
t0

(2.31)

from which the total number of traversed branched nodes Ttrav and distance computa-
tions Tdist can be computed for each experiment i yielding

Ttrav,i =
2Li−2
∑

p=1

tp
t0

Tdist,i =

2Li+1−2
∑

p=2Li−1

tpNp

t0

From Eq. (2.7), the following error function can be derived

χ(Ctrav ,Cdist) =
I
∑

i=1

(C0,i −CtravTtrav,i + CdistTdist,i)
2 (2.32)

The minimization of this function by putting the partial derivatives with respect to Cdist

and Ctrav to zeros yields








I
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I
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I
∑

i=1
Tdist,iC0,i









(2.33)

The solution of these equations yields the least squares estimate for the traversal cost
and distance computation cost which are denoted C̃trav and C̃dist respectively. With
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these values and the absolute probabilities P (p), the estimated computation time C̃0,L

is determined for each decomposition level L

C̃0,L = C̃trav

2L−2
∑

p=0

P (p) + C̃dist

2L+1−2
∑

p=2L−1

P (p)Np (2.34)

from which the optimal level Lopt can be derived

Lopt = arg min
L

C̃0,L (2.35)

In addition, the total node traversal cost and distance computation cost can be
determined separately. In figure 2.13, the computation time is plot for 210 searches of
the nearest neighbor from a two-dimensional uniform data set containing 215 vectors.
This figure shows how the traversal cost increases and the distance computation cost
decreases in function of the level of decomposition. In this example, a minimum is
obtained at level 12.

Since Eq. (2.33) determines two unknown variables, minimum two experiments are
required. One of the experiments must use the maximal level Lmax of decomposition so
that the traversal probabilities for all nodes are known.
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2.7 A Comparative Evaluation of PCA-Based Search Algorithms

2.7.1 PCA-Based Algorithms

So far, different decomposition methods, elimination rules and traversal orders were
described which can be combined in order to obtain different branch and bound search
algorithms. The decomposition methods are:

1. decomposition orthogonal to the maximal variance (2.2.3)

2. decomposition orthogonal to the axis with the maximal variance (2.2.5)

The elimination rules are:

1. D’haes elimination rule (2.3.1)

2. McNames elimination rule (2.3.2)

3. Fukunage elimination rule (2.3.3)

4. Kim and Park elimination rule (2.3.4)

The traversal order can be optimized

1. locally

2. globally

Not every combination of these aspects of the search algorithm is possible. For
example, the Kim and Park elimination rule can only be applied when the decomposition
is orthogonal to the axis. One can also combine different elimination rules, however not
all combinations are useful. For example, the McNames elimination rule will always
yield a larger value for the lower bound distance d(x̄, p) than the D’haes elimination
rule. Therefore, the combination of the two rules will only increase the node traversal
cost without decreasing the number of distance computations.

In table 2.2, a number of valid and useful combinations of the different aspects of
the search algorithms are given resulting in ten algorithms that will be evaluated in the
next sections.

2.7.2 Experiments

The behavior of the algorithm is studied by means of experiments on artificial data.
Prototype sets were produced from a D-dimensional normal probability distribution
with mean 0 and unit covariance matrix. The performance of the algorithm is studied
with respect to different values of the following parameters

• D the dimensionality of the vector space

• N the number of vectors in the data set
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Nr. Decomposition Elimination Order

1 2 1 2 3 4 1 2

1
√ √ √

2
√ √ √

3
√ √ √ √

4
√ √ √ √

5
√ √ √

6
√ √ √

7
√ √ √ √

8
√ √ √ √

9
√ √ √

10
√ √ √

Tab. 2.2: Different types of search algorithms

• K the number of nearest neighbors that are searched

• L the level of decomposition that is used for the search

Since L is a value that can be set by the user, we optimize this value first using the
statistical model of the total computation cost that was described previously in section
2.6.

2.7.3 Results for Gaussian Distributions

The efficiency of the algorithms was tested on artificial data sets of 215 vectors drawn
from a uniform distribution. In the following tables the total computation time is given
for 210 experiments and using the optimal level of decomposition Lopt. The total com-
putation cost over all experiments is

C0 = CtravTtrav + CdistTdist (2.36)

where Ttrav and Tdist denote now the total number of traversed nodes and the total
number of distance computations.

In table (2.3) and (2.4) the total computation time for the experiment C0 is given for
all algorithms. In addition, the values of Ttrav , Ctrav, Tdist and Cdist are given. From
this data, the contradiction between the evaluation based on the number of distance
computations and the total computation time is clearly shown. For example, for algo-
rithm 1 (D’haes elimination rule and locally optimized traversal) the highest number
of traversed nodes and distance computations is observed. However, for D = 2 still
the lowest computation time is achieved due to the low node traversal cost Ctrav . The
total computation time for 210 exhaustive searches of the nearest neighbor from the two-
dimensional data set containing 215 nodes was 2407 seconds. Note that the Fukunaga
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Lopt C0 Ttrav Ctrav Tdist Cdist

1 12 6.31 14325 34.4 × 10−5 16216 7.83 × 10−5

2 12 8.96 14291 52.8 × 10−5 15912 7.88 × 10−5

3 12 7.71 14265 44.8 × 10−5 16160 7.82 × 10−5

4 12 11.0 14231 67.1 × 10−5 15856 8.14 × 10−5

5 12 8.95 14289 49.6 × 10−5 15992 8.24 × 10−5

6 12 11.4 14254 69.4 × 10−5 15688 8.26 × 10−5

7 12 10.0 14223 60.0 × 10−5 15920 8.23 × 10−5

8 12 12.8 14188 80.0 × 10−5 15616 8.25 × 10−5

9 12 8.05 14293 47.7 × 10−5 15400 7.79 × 10−5

10 12 11.6 14101 77.2 × 10−5 14864 7.24 × 10−5

Tab. 2.3: Total computation time for D = 2 and K = 1 for all algorithms.

elimination rule was not applied alone because its performance was significantly slower.
For K = 1 and D = 2, a computation time of 80.7 seconds was obtained.

Algorithms that incorporate the Fukunaga elimination rule (algorithms 3,4,7 and 8),
eliminate nodes more efficiently but have a slightly increased node traversal cost. Due
to this increased traversal cost, no gain is achieved for D = 2. For D = 8 however, a sig-
nificant improvement is realized. The same conclusion can be drawn for the comparison
between the D’haes elimination rule (algorithms 1-4) and the McNames elimination rule
(algorithms 5-8). For D = 2 the D’haes elimination rule outperforms the other algo-
rithms due to its low node traversal cost. The more efficient elimination capabilities of
the other elimination rules dominate for data sets with a higher number of dimensions.
The global optimization of the traversal order improves the elimination power of the
algorithm. However, due to the significant increase of the node traversal cost, no gain
in total computation time was achieved. Finally, it is interesting to note that also the
Kim and Park elimination rule (algorithm 9) performs very well.

Table 2.5 shows the computation time for different values of K. The total computa-
tion cost increases in a sublinear way in function of K.

2.7.4 Results for Other Data Sets

After performing tests on gaussian distributions, the experiment was repeated in the
two-dimensional case for two other data sets:

• A correlated gaussian distribution with eigenvalues of the covariance matrix being
λ1 = 1 and λ2 = 4.

• A mixture of four gaussian distributions realized by first drawing four points from
a uniform distribution with variance one. Then, for each of these points a gaussian
cluster with variance 1

10 was drawn.



44 Chapter 2. Fast K-Nearest Neighbors Computation

Lopt C0 Ttrav Ctrav Tdist Cdist

1 11 332 307053 34.4× 10−5 3142880 7.21 × 10−5

2 10 370 180196 66.9× 10−5 3581952 7.08 × 10−5

3 11 124 134118 54.0× 10−5 716720 7.23 × 10−5

4 10 159 91924 91.5× 10−5 1097376 7.08 × 10−5

5 11 201 191189 43.5× 10−5 1628992 7.22 × 10−5

6 10 245 120090 99.6× 10−5 1960672 7.08 × 10−5

7 11 123 120262 62.9× 10−5 666336 7.18 × 10−5

8 10 159 81905 118 × 10−5 988320 6.89 × 10−5

9 11 190 184627 44.3× 10−5 1474272 7.52 × 10−5

10 10 256 118018 140 × 10−5 1817600 6.14 × 10−5

Tab. 2.4: Total computation time for D = 8 and K = 1 for all algorithms.

D 2 4 8
K 1 2 4 8 1 2 4 8 1 2 4 8

1 6.31 7.45 9.37 14.1 19.6 26.2 35.8 53.5 332 456 616 814
2 8.96 10.3 12.3 16.8 24.2 30.9 40.9 59.3 370 504 676 872
3 7.71 9.01 11.1 16.1 20.1 25.7 34.2 49.6 124 168 228 309
4 11.0 11.9 14.2 19.0 24.8 30.8 40.0 56.3 159 219 294 403

5 8.95 9.52 11.5 16.3 20.6 26.2 34.6 62.3 201 266 350 456
6 11.4 12.3 14.4 18.9 24.9 30.9 39.9 91.9 245 318 405 527
7 10.0 11.1 13.2 18.1 21.4 26.8 35.1 58.0 123 168 228 310
8 12.8 13.6 15.8 20.5 25.7 31.5 40.2 92.3 159 222 297 400

9 8.05 10.3 12.5 17.9 23.0 29.3 38.7 54.9 190 253 339 463
10 11.6 13.2 16.2 22.0 36.9 46.2 59.4 81.0 256 327 422 551

Tab. 2.5: Computation time for different values for D and K
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normal correlated clustered

6.31 6.21 6.26
8.96 8.68 8.68
7.71 7.64 7.67
11.0 10.76 10.78

8.95 8.89 8.92
11.4 11.15 11.13
10.0 9.95 9.98
12.8 12.53 12.56

8.05 7.86 7.90
11.6 11.27 11.3

Tab. 2.6: Computation time for D = 2 and K = 1 for different data sets.

The results of these tests are listed in table 2.6 from which it is observed that the
computation time is slightly but consistently lower than for the uniformly distributed
gaussian. This can be explained by the second efficiency criterium that was expressed
in section 2.2.3. Since the decomposition divides the data orthogonal to the maximal
variance, the correlated gaussian will have less vectors lying close to the hyperplane.
Also for the clustered data, the hyperplanes will pass through very sparse regions in the
feature space which implies less vectors close to the plane and a lower computation time.

2.8 Conclusions

In this chapter, branch and bound search algorithms are evaluated that use a PCA-
based decomposition. These algorithms were initially proposed in [52] and [19] where it
was shown that they have a linear space complexity, a number of distance computations
bounded by a constant term and a sublinear time complexity. The time complexity was
even logarithmic for a small number of dimensions D ≤ 4.

By using a probabilistic model that expresses the total computation cost in function
of the tree traversal cost and the distance computation cost, two efficiency criteria were
proposed. It was shown that for a gaussian distribution these criteria were optimized by
using a separating hyperplane orthogonal to the largest variance and passing through
the median vector. This provides a strong theoretical motivation for the proposed de-
composition method.

Ten different algorithms were developed by combining different decomposition meth-
ods, elimination rules and traversal orders. In order to compare the efficiency of these
algorithms, the optimal decomposition level was determined using a probabilistic model
of the computation cost. The performance for all decomposition levels can be estimated
from only two experiments, and then the most efficient level can be selected.

When comparing the results of different algorithms, it was concluded that contradic-
tory results were obtained depending on the chosen efficiency criterium. Many results
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reported in the cited references are based on the number of distance computations while
the real goal one wishes to achieve is the lowest computation cost. For a low number
of dimensions, the differences between the number of traversed nodes was quite small
and the evaluation cost of a single node was the predominant factor. For a high number
of dimensions, the efficiency of the elimination rule was more important than the node
evaluation cost. The incorporation of the Fukunaga elimination rule resulted in a signif-
icant gain when the number of dimensions was large. The globally optimized traversal
order introduced too much overhead and failed to realize a lower computation cost.

As stated in [52], the elimination rules become less effective when the number of
dimensions increases. Fortunately, real high dimensional data sets are often highly de-
pendent which makes that they can be represented in a lower dimensional vector space.
The strength of our decomposition method is that it adapts itself automatically to the
distribution of the vectors and takes into account local correlations of the data. Inter-
estingly, lower computation costs were obtained for correlated and clustered data.

2.9 Musical Applications

Although this chapter focused on some very technical details of branch and bound search
algorithms for K nearest neighbors computation, a lot of musical applications can benefit
from these methods. Since the method is applicable to any non parametric classification
technique it can for instance be used for instrument identification and classification [6,
67]. Another strongly upcoming field is content based music information retrieval (MIR)
[28, 65, 13] and audio information retrieval (AIR) [81, 1]. A set of multidimensional
search algorithms for music information was discussed in [41]. Most applications use
cepstrum based features to define the similarity metric [28, 81, 24]. In the field of audio
coding these techniques can contribute to the fast retrieval of the most similar dictionary
element when a matching pursuit technique is applied [50, 36, 40].



CHAPTER 3

Physical Model of a Trumpet and its
Constraints

In this chapter, a physical model of a trumpet is described. Although this model clearly
defines the mechanical and acoustical phenomena that are perceptually relevant, addi-
tional constraints must be imposed on the control parameters. In contrast with the model
where the tube length can be varied continuously, only seven different tube lengths can
be obtained with a real instrument. By studying the physical model and its implemen-
tation, different relationships between the control parameters and signal characteristics
are identified. These relationships are then used to obtain the best set of tube lengths
with respect to a given tuning frequency. In addition, it is known that several notes can
be obtained by using different combinations of tube length and lip frequency. However,
a player knows exactly which mode and fingering must be played in order to obtain a
desired note. This prior knowledge will be included in the estimation method described
in chapter 6.

3.1 Introduction

Physical modelling consists of describing the mechanical and acoustical phenomena that
take place in a musical instrument in terms of a system of equations and in solving
(numerically) these equations to obtain the sound output. The sound signal is computed
from a set of time-varying control parameters that correspond with the gestures of the
player.

In the Analysis/Synthesis team of IRCAM, a physical model of a trumpet was
developed [91, 75, 74, 90, 92, 93]. Also, a real-time implementation of the model was
provided that allowed to control it with an adapted instrument-like interface (sax MIDI,
Yamaha WX7) [84]. Helie [38] proposed to invert the equations on which the model
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is based, resulting in an algorithm that automatically determines the lip frequency and
damping factor from a synthesized sound for which the tube length and mouth pressure of
the player are known. In chapter 1, a non parametric estimation technique was proposed
based on nearest neighbor classification using fast nearest neighbor search algorithms.
A disadvantage of this approach was that no constraints were imposed on the control
parameters of the physical model resulting in control parameter sequences that were not
physically acceptable. For example, when simulating a sound with vibrato the control
parameters tried to simulate this by varying the tube length. This contradicts the control
of a real instrument where the tube length is fixed for each note.

3.2 Physical Model of a Trumpet

3.2.1 Basic Functioning of a Trumpet

The physical model which is described below was developed by Christophe Vergez in
[90]. We describe a somewhat simplified version and discuss its implementation.

A trumpet is a brass instrument consisting of a mouth piece, a resonating body with
three valves and a bell. The body of the instrument consists mainly of a tube of which
the length can be varied by pressing the valves. This change in tube length results in the
fact that the instrument body resonates differently. The player excites the instrument by
contracting his lips and augmenting the pressure in his mouth. When the force exerted
by the mouth pressure is large enough, the lips are pushed open. As a result the air is
released, and the force exerted by the lips make that the lips close again. This movement
is repeated periodically and is nonlinear because of the collision between the lower and
upper lip.

The outgoing volume flow from the lips results in an outgoing pressure wave which
propagates through the instrument. At the end of the instrument, a part of this wave is
reflected while a second part of the wave is transmitted into the acoustic environment
and results in the perceived sound. This results in an incoming that this system is
nonlinear because of the lip collision and has delayed feedback because of the reflected
wave.

3.2.2 The Lips: a Non-Linear Mass-Spring-Damper System

It is known that mainly the upper lip of the trumpet player oscillates while the lower
lip moves very little. The upper lip is modelled by a parallelepipedic mass attached to
a damped spring. The position of the mass is indicated by x(t) while m, r and k denote
the mass, damping and stiffness of the spring. This system is depicted in Figure 3.1. The
equilibrium between all forces that are exerted on this mass, when the lips are opened
(x(t) > 0), results in the following equation

mẍ(t) + rẋ(t) + kx(t) = A cos(α)(PM (t)− p(t)) (3.1)

The left hand side of the equation is the differential equation that describes the dynamic
behavior of the mass, while the right hand side expresses the external forces. These



3.2. Physical Model of a Trumpet 49

m

r k

0

x

Mouth Lips Instrument 

MP )(tp

)(tpo

)(tpi

Fig. 3.1: Nonlinear mass-spring-damper system.

external forces are the result of the pressures that are exerted on the left a and right
surfaces of the mass. This surface is denoted A from which follows that A cos(α)p(t)
denotes the force component in the x direction. The pressure that is exerted by the
player PM (t) pushes the lips open, i.e. in the direction of the x axis. The pressure on
the side of the instrument p(t) results in a movement of the lips in the inverse direction.

The behavior of this system changes when the lips collide which is the case when
x(t) < 0. The closure of the lips is modelled by changing the spring characteristics. The
stiffness is increased with a factor 4 and the damping with a factor 5 [90].

mẍ(t) + 5rẋ(t) + 4kx(t) = A cos(α)(ps(t)− p(t)) (3.2)

This sudden change introduces a nonlinearity to the oscillation.

3.2.3 Wave Propagation in the Body of the Instrument

The pressure in the body of the instrument at a position z at a time t is denoted p(z, t).
When the propagation in the instrument is linear and plane, one can write p(z, t) as the
sum of an incoming wave pi(t) and an outgoing wave po(t) yielding

p(z, t) = po(t−
z

c0
) + pi(t +

z

c0
) (3.3)

where c0 denotes the propagation speed of sound in air. For the volume flow one obtains

u(z, t) = uo(t−
z

c0
) + ui(t +

z

c0
) (3.4)
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For a progressive plane wave, the acoustic impedance Zc(z) expresses the ratio of the
pressure over the volume flow, at a given point z

Zc(z) =
po(t)

uo(t)
= −pi(t)

ui(t)
(3.5)

yielding

p(z, t) = Zc(z)(uo(t−
z

c0
)− ui(t +

z

c0
)) (3.6)

It is known that

Zc(z) =
ρ0c0

A(z)
(3.7)

where ρ0 denotes the density of the air, and A(z) the surface at position z.

3.2.4 The Linear Response of the Body

When the body of the instrument is considered to be a linear resonator, the incoming
pressure wave can be written as the outgoing pressure wave convoluted with the impulse
response of the instruments body.

pi(t) = (hλ ∗ po)(t) (3.8)

This impulse response hλ was measured on a real instrument [10] and was then simplified
for computational reasons [90]. When looking at this impulse response which is depicted
in Figure 3.2, the following parts of the reflection function hλ are observed

• h1, the direct response at the mouthpiece

• a delay of λ zeros, corresponding with the cylindrical part of the tube where there
is almost no reflection

• h2, the reflection after travelling back and forth the instrument body

An example of the total reflection function hλ is shown in figure 3.2. By changing the
number of zeros between these two reflections, different tube lengths are simulated which
imitates the effect of the valves of the trumpet [91].

In the implementation that was provided in [84], the number of zeros λ was is com-
puted from the tube length control parameter PT by

λ = ⌊ Fs

2PT
⌋ (3.9)

The interval between the two maxima in the reflection function can be computed approx-
imatively by adding the number of samples from the peaks to the zeros and is denoted
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λ0. This implies that the total time for the wave to run back and forth the instrument
body is given by

τ =
λ + λ0

Fs
(3.10)

Therefore the resonance frequencies of the tube tube will be multiples of

fτ =
Fs

λ + λ0
(3.11)

which are depicted in figure 3.2. When the total reflection function is expressed as

hλ,n = h1,n + h2,n−τ (3.12)

its fourier transform yields

Hλ(f) = H1(f) + H2(f)e−2πifτ (3.13)

Maxima and minima of |Hλ(f)| are obtained when H1(f) and H2(f) are in phase or
antiphase respectively, implying that

|H1(f)| − |H2(f)| ≤ |Hλ(f)| ≤ |H1(f)|+ |H2(f)| (3.14)

This shows that the bounds of |Hλ(f)| are independent of λ. Therefore, the expression
|H1(f)| + |H2(f)| denotes the spectral envelope of |Hλ(f)| as shown figure 3.2. Their
phase difference is mainly due to the modulator term e−2πifτ which determines the
position of the resonances which are approximately equally spaced with an interval fτ .

3.2.5 Nonlinear Acoustic Coupling

The coupling between the lips and the instrument body is realized by applying the
stationary Bernouilli theorem. This theorem expresses the relationship between the
pressure and flow velocity inside the mouth (PM and vM ) and leaving the lips (p(t) and
v(t)) resulting in

PM +
1

2
ρv2

M = p(t) +
1

2
ρv2(t) (3.15)

The mouth is considered a reservoir with a constant pressure PM in which the flow
velocity can be neglected, meaning vM = 0. Under the hypothesis of non compressibility,
the volume flow is expressed by

u(t) = v(t)A(t) (3.16)

When the lip opening is assumed to be rectangular, the surface can be written as

A(t) = x(t)l (3.17)

yielding

Zc(t) =
ρ0c0

x(t)l
(3.18)
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where l is the width of the opening. In the case that PM > p(t), the volume flow can
now be written using

u(t) = l

√

2

ρ
x(t)

√

(PM − p(t)) (3.19)

In the case that PM < p(t) a volume flow is realized going inside the mouth yielding

u(t) = −l

√

2

ρ
x(t)

√

(−PM + p(t)) (3.20)

These two equations can be written as a single equation

u(t) = l

√

2

ρ
x(t)sgn(pM − p(t))

√

|PM − p(t)| (3.21)

where sgn(PM − p(t)) returns 1 when PM − p(t) is positive and -1 in the opposite case.
Denoting the pressure and volume flow at the lips, z = 0, by p(0, t) and u(0, t) results in

{

u(0, t) = l
√

2
ρx(t)

√

(PM − p(0, t))

u(0, t) = 1
Zc

(p(0, t) − 2pi(0, t))
(3.22)

follows that

l

√

2

ρ
x(t)

√

(PM − p(0, t)) =
1

Zc(t)
(p(0, t) − 2pi(0, t))

Zcl

√

2

ρ
x(t)

√

(PM − p(0, t)) = p(0, t)− 2pi(0, t)

when using a constant C = Zcl
√

2
q , one obtains

C2x(t)2(PM − p(0, t)) = p2(0, t) − 4p2
i (0, t)p(0, t) + 4p2

i (0, t) (3.23)

or

p2(0, t) + (C2x(t)2 − 4pi(0, t))p(0, t) + 4p2
i (0, t) − C2x(t)2PM = 0 (3.24)

This equation can be solved p(0, t), yielding

p(0, t) = 2pi(0, t)−
1

2
Cx(t)

(

Cx(t)−
√

(C2x(t)2) + 4(PM − 2pi(t, 0))
)

(3.25)

The current pressure at the lips p(t) is now expressed in function of the incoming pressure
pi, the mouth pressure PM and the lip position x(t).
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3.2.6 A Discrete Model of a Damped Oscillator

The differential equation for the lips, Eq. (3.1) can be implemented in a discrete way by
using an Euler scheme or a recursive filter.

Euler Scheme

When discretizing the continuous equation

mẍ(t) + rẋ(t) + kx(t) = F (3.26)

using a right hand Euler scheme, one obtains

m
xn − 2xn−1 + xn−2

(∆t)2
+ r

xn − xn−1

∆t
+ kxn = Fn (3.27)

where ∆t denotes the sampling interval. The value of xn can be derived in function of
previous values and the external forces by

xn = ζ1xn−1 + ζ2xn−2 + ζ3Fn (3.28)

with

ζ1 =
(

2 +
r

m
∆t
)

ζ2

ζ2 =
1

k
m∆t2 + r

m∆t + 1

ζ3 =
(∆t)2

m
ζ2

in which the physical characteristics of the oscillator in free movement appear, namely

• the eigen frequency ω =
√

k
m

• the damping factor ρ = r
2m

An inconvenience of the Euler scheme is that when an oscillator is modelled which
is not damped, meaning that r = 0, the discrete oscillator becomes

xn =
2

1 + k
m(∆t)2

xn−1 +
−1

1 + k
m(∆t)2

xn−2 (3.29)

For an oscillator which is not damped, the coefficient for xn−2 should result in -1. There-
fore the discrete case of an oscillator that is not damped results in a damped oscillator.
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Recursive Filter

The behavior of a mass-spring-damper system on which no external force is exerted
can also be described by an recursive filter with two complex conjugate poles being p
and p∗. The frequency response H(z) is then given by

H(z) =
1

(1− pz−1)(1− p∗z−1)
(3.30)

When these poles are written as p = ρ exp(2πiω), the inverse z-transform yields

xn = 2ρ cos(ω)xn−1 − ρ2xn−2 (3.31)

By extension of Eq. (3.28), the influence of the external force is included using

xn = ζ1xn−1 + ζ2xn−2 + ζ3Fn (3.32)

with

ζ1 = 2ρ cos(ω)

ζ2 = −ρ2

ζ3 = −ζ2
(∆t)2

m

3.2.7 The Complete Trumpet Synthesizer

When taking into account all mechanical and acoustical properties of the instrument
and their couplings the following trumpet synthesis algorithm is obtained.

λ = ⌊ Fs

2PT
⌋ // Delay computation

pi,n =
∑K

k=1 po,n−khλ,k // Body Resonance

if xn > 0 // Lips opened

pn = 2pi,n − 1
2Cxn(Cxn −

√

(Cxn)2 + 4|PM − 2pi,n|)
un = (pn − 2pi,n)/Zc

xn+1 = 2PD cos(2πPL/Fs)xn − P 2
Dxn−1 + 1

mF 2
s
(PM − pn)

else // Lips closed

pn = 2pi,n

un = 0
xn+1 = 2PD cos(2π(2PL)/Fs)xn − P 2

Dxn−1 + 1
mF 2

s
(PM − pn)

end

po,n = 1
2 (pn + Zcun)

Algorithm 1: Trumpet synthesizer
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In the first two lines, the number of zeros λ is computed which is used to simulate
the desired tube length and the incoming pressure wave is computed by convolution with
the outgoing wave. According to the lip position which can be opened or closed, the
new values of the pressure pn, the volume flow un and the lip position xn are computed.
This results finally in the outgoing pressure wave po,n.

To sum up, the control parameters are

• the mouth pressure PM

• the lip frequency PL

• the lip damping PD

• the tube length PT

The damping factor was generally kept fixed at a value PD = 0.999.

3.3 Physical Constraints and Prior Knowledge

As stated in the introduction, the constraint that must be imposed is that a constant
tube length must be used for each note. In contrast with the physical model where the
length can be varied continuously, a real trumpet can only obtain seven different tube
lengths. With the three valves, eight combinations can be obtained of which two result
in the same tube length. In table 3.1 each column corresponds with a tube length and
each row with a mode, resulting in a given note. As can be seen from the table, some
notes can be obtained with different tube lengths. For example G4 can be obtained by
exciting the sixth mode of tube length 1, the seventh mode of tube length 4 or the eighth
mode of tube length 6.

When controlling the physical model of the trumpet, the following constraint must
be taken into account:

Constraint 1: ”When a trumpet player interprets a score he chooses a
correct finger position and excites the correct mode of the tube in order to
obtain the desired note.”

In other words, the player uses a mapping from the note he wishes to play to a mode and
tube length couple. For simplicity, we will assume that the same combination is always
used. In reality, other combinations can sometimes be preferred but this is considered
beyond the scope of this article.

A second factor that influences the obtained fundamental frequency is the tuning of
the instrument. The tuning valve adjusts all the tube lengths in order to correspond
with a given reference frequency fref . Typically A3 corresponds with 440 Hz. This leads
to a second constraint:

Constraint 2: ”Given a reference frequency, a set of seven tube lengths
must be determined for the control of an entire trumpet performance”
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tube length
mode N 1 2 3 4 5 6 7

1 C2 B1 B♭1 A1 A♭1 G1 F♯1
2 C3 B2 B♭2 A2 A♭2 G1 F♯2
3 G3 F♯3 F3 E3 E♭3 D3 C♯3
4 C4 B3 B♭3 A3 A♭3 G3 F♯3
5 E4 E♭4 D4 C♯4 C4 B4 B♭4
6 G4 F♯4 F4 E4 E♭4 D4 C♯4
7 B♭4 A4 A♭4 G4 F♯4 F4 E4
8 C5 B4 B♭4 A4 A♭4 G4 F♯4

Tab. 3.1: Notes obtained by exciting different modes of a given tube length.

3.4 Excitation of the Modes

3.4.1 Resonance Phenomena of the Physical Model

When the model produces a stable periodic sound, each period consists of an interval
where the lips are opened and an interval where the lips are closed. We derive the
pressure value pn for large opening of the lips, xn ≫ 0. When expressing the square root
as a Taylor expansion and taking the limit for xn going to infinity one obtains

pn = 2pi,n −
1

2
Cxn

(

Cxn −
√

(Cxn)2 + 4(PM − 2pi,n)

)

= 2pi,n −
1

2
(Cxn)2

(

1−
√

1 +
4|PM − 2pi,n|

(Cxn)2

)

= 2pi,n −
1

2
(Cxn)2

(

1−
[

1 +
1

2

4(PM − 2pi,n)

(Cxn)2
− 3

232!

(

4(PM − 2pi,n)

(Cxn)2

)2

+ . . .

])

= 2pi,n + (PM − 2pi,n)

= PM (3.33)

This means that pn approaches PM when xn is large. An example is given in figure 3.3.
In this case the value of the mouth pressure PM is 5000 Pa which is exactly the value
that is obtained for pn when the lips are opened (x≫ 0). For a large opening, the state
variables take the values

pn = PM

un = (PM − 2pi)/Zc

po,n = PM − pi,n

PM − pn = 0 (3.34)

Since the term 1
mF 2

s
(PM − pn) expresses the external force that is exerted on the lips, it

follows that the lips oscillate freely when they are largely opened. When x < 0, which
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means when the lips are closed, we obtain

pn = 2pi,n

un = 0

po,n = pi,n

PM − pn = PM − 2pi,n (3.35)

indicating that now an external force is exerted on the lips is expressed by

1

mF 2
s

(PM − 2pi,n) (3.36)

For small positive values of xn, transition values for these state values are obtained.
From this computation, it can be concluded that these state variables have the same
period as the lip period. Therefore, when the fundamental frequency is measured from
the sound signal produced by the physical model (this is the high pass filtered outgoing
pressure p0,n), the periodicity of all the state variables is known. A second conclusion
that is drawn, is that the lips are excited by an external force, essentially when they are
closed. Since the strength of excitation force is dependent on PM − 2pi,n, the conditions
are examined for which the excitation is the strongest, meaning that the resonance is
maximal. For a fixed value for PM this will be obtained for a negative value of pi,n with
a maximal absolute value. Since pi,n is calculated from a convolution of the outgoing
wave po,n with the reflection function of the body hλ,n the maximal strength is obtained
when the period of po is a multiple of the resonance frequency fτ of the tube. In figure
3.4 an example is shown for the fourth mode of a fixed tube length. Both peaks of
hλ,n coincide with negative values of po which results in a negative value for pi with a
maximal absolute value. In addition, the fact that four periods of po correspond with
twice the tube length (the reflection function is measured at the mouthpiece) implies
that the fourth mode is excited. Thus, for a fixed tube length, the trumpet model will
resonate the strongest when the produced sound is a multiple of the first tube mode,
fτ . This implies that the amplitude of xn is the highest when f0 = Nfτ , where N is the
mode index.

3.4.2 Relationship with Lip Frequency PL

It would be interesting to know which lip frequency is used in order to obtain this
optimal resonance. This is difficult since the lip frequency does not correspond directly
with the produced fundamental frequency. When the lips are opened, they oscillate
freely, implying that the time interval that they are opened is 1

2PL
. When the lips are

closed, PL is doubled, resulting in an interval of 1
4PL

when no external force is exerted.

As a result, the total period has a length of of 3
4PL

and a corresponding frequency of
4PL

3 . We will examine whether this is still a good approximation for the fundamental
frequency even when the external force is exerted. At the bottom of figure 3.3 the lip
position is shown in function of time.
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Fig. 3.4: Pressure waves and reflection function.

3.5 Tube Length Determination

3.5.1 Validation Experiment

The computations in the previous sections can be validated by executing the following
experiment. By varying the lip frequency from its lowest to its highest value, the maximal
resonances of the lip position xn can be observed. If the fundamental frequencies at these
maximal resonances are multiples of fτ , and the corresponding lip frequency is 3

4PL, then
the previous reasoning is validated.

The experiment was performed for values of PT being 150 and 70. Fs and λ0 had
the values 32000 and 128 respectively resulting in the fτ -values of 136.7 and 89.9. From
the results listed in table 3.2, the following conclusions can be drawn:

• For the high modes it is observed that fτ is very close to f0/N , meaning that the
fundamental frequencies for the maximal resonances are very close to multiples of
fτ .

• The ratio PL

f0
seems to be a constant very close to 3

4

• These approximations are less accurate for the lower modes. In this case, the
actual fundamental frequency is higher then the estimated value.

In the case of maximal resonance, the following relationships can be deduced for the
physical model.

f0 = Nfτ (3.37)
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PT N f0 f0/N PL PL/f0

70 10 899 89.9 673.7 0.749
9 809 89.8 605.4 0.748
8 720 90.0 538.5 0.748
7 630 90.1 471.3 0.748
6 537 91.2 404 0.752
5 463 92.6 344 0.743
4 364 91.0 271 0.745
3 276 92.0 205 0.743
2 185 92.5 137 0.741

150 9 1231 136.7 922 0.749
8 1094 136.7 819 0.749
7 955 136.4 715 0.749
6 818 136.3 614 0.751
5 633 136.3 511 0.751
4 551 137.7 412 0.748
3 414 138 308 0.744
2 277 138.5 207 0.747

Tab. 3.2: Observations for different tube lengths.

f0 =
4

3
PL (3.38)

This corresponds with the first constraint that was expressed in section 2. When a
player wishes to play a given note, a valve position must be chosen corresponding with
a resonance frequency fτ so that the desired fundamental frequency is a multiple of fτ .
In order to excite the correct mode N , the correct value of PL must be used according
to equation (3.38). This corresponds with the control of a real instrument and yields
therefore an extra validation of the physical model.

3.5.2 Instrument Tuning

As indicated in table 3.1, seven different tube lengths are used in order to obtain all
notes. Therefore, we wish to determine seven values for PT that correspond with these
tube lengths. The frequency f0 of a note is calculated from a note index I and a reference
frequency fref in the following manner

f0 = fref2
I
12 (3.39)

Taking 440 Hz as the reference frequency, meaning that I = 0 corresponds with the
medium A, the fundamental frequencies of all notes are calculated. Knowing which
notes are played using the fourth mode (N = 4), the values of fτ and PT can be deduced
using equations (3.9) (neglecting the floor operator) and (3.11) as shown in table 3.3.
This satisfies the second constraint that was imposed.
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note I f0 fτ = f0

4 λ PT

C4 3 523.3 130.8 116.6 137.2
B3 2 493.9 123.5 131.2 122.0
B♭3 1 466.2 116.5 146.6 109.2
A3 0 440 110 162.9 98.2
A♭3 -1 415.3 103.8 180.2 88.8
G3 -2 392.0 98.0 198.5 80.6
F♯3 -3 370 92.5 218.0 73.4

Tab. 3.3: Determination of PT .

λ̂ fτ f0 I PT,min PT,max

117 130.6 522.4 2.97 135.6 136.7
131 123.6 494.2 2.01 121.3 122.1
147 116.4 465.5 0.97 108.2 108.8
163 110.0 439.9 -0.01 97.6 98.1
180 103.9 415.6 -0.99 88.4 88.9
199 97.6 391.4 -2.02 80.1 80.5
218 92.5 370 -3.00 73.1 73.3

Tab. 3.4: Determination of PT for λ̂.

Furthermore, it must be taken into account that the value of λ is an integer value.
Therefore, the integer value λ̂ value closest to λ is used in order to recalculate the
obtained fundamental frequencies to determine wether this is admissible. This results in
an interval PL ∈ [PL,min, PL,max] for which all values result in the same value of λ̂. The
results are shown in table 3.4. The recalculation of I shows that the floor function for
the computation of λ introduces a maximal deviation of three percent of a half tone.

Using appropriate combinations of tube length and lip frequency, as given in table
3.1, an ascending chromatic scale was synthesized. Figure 3.5 shows the note index
computed from the fundamental frequency, according to equation (3.39). This figure
confirms the previously drawn conclusion that the estimated f0 is less accurate for lower
modes.

3.6 Further work and conclusions

This paper describes the physical constraints that must be imposed for the control of
a physical model of a trumpet. A real trumpet only uses seven tube lengths while the
tube length parameter PT of the physical model is continuous. Although the physical
model used in this article is quite simplified, no significant changes in the synthesized
sounds were observed. By a detailed study of the implementation of this physical model
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Fig. 3.5: Note index of a chromatic scale played by the physical model.

some very simple and approximative relationships between the fundamental frequency
and the control parameters were identified. These relationships were then used in order
to determine a set of seven tube lengths with respect to a given tuning frequency fref .

In addition, a number of parameters had to be determined manually. Due to the
simplification of the reflection function hλ additional filters were used to amplify the
lower modes [91]. The resonance frequency of these filters was at the second and third
mode of the tube and the amplitude of the filter was adapted manually in order to obtain
a strength comparable with higher modes.
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CHAPTER 4

Discrete Cepstrum Coefficients as Perceptual
Features

4.1 Chapter Overview

Cepstrum coefficients are widely used as features for both speech and music. For the
representation of the spectral envelope of quasi-periodic sounds, the discrete cepstrum
was developed, which is computed from sinusoidal peaks in the short time spectrum.
In this chapter, an attempt is made to combine elements from the pattern recognition,
psychoacoustics and signal processing field to achieve a distance metric that expresses
the perceptual similarity between the spectral envelopes of two signals.

After discussing the applications in which cepstrum coefficients play an important
role (4.2), the definition of the discrete cepstrum and its computation is discussed (4.3).
It is shown that the estimation problem is ill-posed and that this can result in overfitting.
In order to take into account the frequency resolution of the human auditory system, the
envelope is defined in function of the Mel frequency instead of the linear frequency (4.4).
Current techniques that avoid overfitting are presented, including a new method which
was named posterior warping. This technique computes the Mel frequency coefficients
directly from the linear scale coefficients. In addition, the coefficients were observed
to be very sensitive to noise which is amplified enormously by the log function. This
problem was avoided succesfully using a threshold.

4.2 Introduction

In its elementary form, the real cepstrum of a signal is defined as the inverse fourier
transform of the log magnitude spectrum. In practical recognition applications however,
they are rarely used as features in this form. In the case of speech recognition for example,
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a filter bank is applied of which the center frequency of each bank is scaled according to
the Mel scale. This scale takes into account the frequency resolution properties of the
human ear. The inverse fourier transform of the log output of this filter bank yields the
Mel Frequency Cepstrum Coefficients (MFCC). Various other cepstrum like coefficients
have been proposed and it is believed that further improvement in the front-end of a
speech recognition system, i.e. the feature extraction, can be achieved [37, 57].

Also in the music domain, cepstrum coefficients have been extensively used in numer-
ous applications such as the retrieval of similar audio tracks [1], instrument identification
[6], content based audio retrieval [28, 81], synthesis [78], and they are currently investi-
gated for automated estimation of control parameters for musical synthesis algorithms
[23, 26].

In this work, the characterization of the spectral envelope of a nearly periodic sound is
studied. The spectral envelope is a function of the frequency that matches the amplitudes
of the individual partials in the spectrum. This captures an important aspect of the
timbre since it is generally accepted that the relative strength of the amplitudes of the
partials allows to distinguish musical instruments and spoken language vowels. However,
a strong abstraction is still made and not all perceptually relevant features of the timbre
are captured. For example, the noise component is not taken into account and the
roughness is often diminished when the analysis window is taken too large. Furthermore,
the estimation of the partials is often not accurate at transients.

Different representations of the spectral envelopes have been proposed such as linear
prediction coefficients (LPC), the cepstrum and the discrete cepstrum. The discrete
cepstrum was originally proposed by Gallas and Rodet [31, 32] and later, a regularized
version was developed by Cappé and Oudot [7, 9]. In the work of Schwarz [78], different
spectral envelope representations were studied and compared. There, it was shown that
the discrete cepstrum is more suitable for the representation of nearly periodic sounds
than LPC or the cepstrum since for these last two methods the envelopes follow the
individual peaks in the spectrum. This problem is illustrated in Figure 4.1.

4.3 Discrete Cepstrum

4.3.1 Definition and Computation

P discrete cepstrum coefficients cp, with p = 0, . . . , P − 1 define a magnitude envelope
|H(ω)| of the form

|H(ω)| = exp



c0 + 2

P−1
∑

p=1

cp cos(pω)



 (4.1)

cp =
1

2π

π
∫

−π

log(|H(ω)|)eiωpdω (4.2)

Since the inverse fourier transform of the log amplitude yields again the coefficients cp,
this definition corresponds with the classic cepstrum definition. Contrary to the classic
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Fig. 4.1: Spectral Envelopes using Linear Prediction Coefficients and the cepstrum
(courtesy of D. Schwarz)
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cepstrum which is computed directly from the spectrum, the discrete coefficients are
matched with the amplitudes of sinusoidal components. These amplitudes are computed
by applying a sinusoidal analysis [71, 17, 80]. A spectrum of this form can be described
by a set of partials at frequencies ωk with amplitudes X̂k (k = 1, . . . ,K). This is written
as

X(ω) =
K
∑

k=1

X̂kδ(ω − ωk) (4.3)

where δ(ω) denotes the Dirac delta distribution. The estimation of the coefficients cp is
realized by minimizing the square log difference between the amplitude envelopes |H(ω)|
and |X(ω)|. This equation defines |X(ω)| only at the peak frequencies ωk from which
the following square error function χ(c) can be derived in function of the cepstrum
coefficients c.

χ(c) =
K
∑

k=1

(

log(|H(ωk)|)− log(X̂k)
)2

=

K
∑

k=1



c0 + 2

P−1
∑

p=1

cp cos(pωk)− log(X̂k)





2

=

K
∑

k=1





P−1
∑

p=0

(2− δp0)cp cos(pωk)− log(X̂k)





2

(4.4)

this error function is minimized by putting all partial derivatives χ(c)
cq

for each q to zero
resulting in

K
∑

k=1





P−1
∑

p=1

(2− δp0)cp cos(pωk)− log(X̂k)



 cos(qωk) = 0 (4.5)

which can be written in the following matrix form

Bc = b (4.6)

with

Bq,p =
K−1
∑

k=0

(2− δp0) cos(pωk) cos(qωk)

bq =
K−1
∑

k=0

log(X̂k) cos(qωk) (4.7)

A different matrix notation which is frequently used is the following

χ(c) =

K
∑

k=1





P−1
∑

p=0

(2− δp0)cp cos(pωk)− log(X̂k)





2

= (Mc − a)T (Mc− a) (4.8)
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with

M =







1 2 cos(ω1) . . . 2 cos(Pω1)
...

...
1 2 cos(ωK) . . . 2 cos(PωK)







c =







c0
...

cP






(4.9)

a =







log(X̂1)
...

log(X̂K)






(4.10)

In this case, the error minimization yields,

∂χ(c)
∂c

= 0

⇒ MTMc−MTa = 0

⇒ c = (MT M)−1MTa (4.11)

4.3.2 Overfitting

Since the cepstrum coefficients are computed from a linear set of equations, the compu-
tation of P coefficients requires minimum an equal number of detected peaks. If not,
a singular matrix will be obtained for A in the set of equations. Although the error
function defined in Eq. (4.11) can be minimized exactly to zero when the number of
coefficients equals the number of peaks, it is not desired to do so. As can be seen from
Fig. 4.2, overfitting occurs when the number of coefficients equals the number of peaks.
This problem illustrates the ill-posed nature of the estimation problem by which is meant
that the error function is only defined at the peaks while implicitly a certain smoothness
is desired. This can easily be avoided by lowering the number of coefficients. However,
when to few coefficients are used, a low pass filtered envelope is obtained that fails to
match the peaks accurately.

Obviously, for a sound with a lower pitch, more peaks will be detected in the same
interval, and as a consequence more coefficients are needed to match them accurately.
Note that when the peaks are positioned exactly at multiples of π

K , with K being the
number of peaks, the estimation of the cepstrum coefficients is equivalent to a discrete
inverse fourier transform which implies no information loss. Therefore, the number of
cepstrum coefficients is scaled with the ratio of the frequency interval over which the
envelope is estimated and the fundamental frequency. Doing so, an accurate matching
with the peaks is obtained, while overfitting is avoiding successfully.

4.3.3 Envelope Similarity

Since the perceived loudness of a human listener is approximately logarithmic in function
of the amplitude (as in the dB scale), the integral over the square difference between
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Fig. 4.2: Spectral envelope estimation over a range of 15000 Hz for a trumpet sound
with f0 = 886Hz using 17 and 14 cepstrum coefficients respectively.
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the log envelopes can be used as a similarity criterium. The following computation
shows that this similarity is equivalent to the euclidean distance between the cepstrum
coefficients.

Consider two spectral envelopes

|H1(ω)| = exp





P−1
∑

p=1

(2− δ0p)c
1
p cos(pω)



 (4.12)

and

|H2(ω)| = exp





P−1
∑

p=1

(2− δ0p)c
2
p cos(pω)



 (4.13)

The integral over the square difference between the log envelopes is written as

1

2π

∫ π

−π
(log(|H1(ω)|)− log(|H2(ω)|))2 dω

=
1

2π

∫ π

−π





P−1
∑

p=1

(2− δp0)(c
1
p − c2

p) cos(pω)





2

dω

=

P−1
∑

p=1

P−1
∑

q=1

(2− δop)(2 − δoq)(c
1
p − c2

p)(c
1
q − c2

q)
1

2π

∫ π

−π
cos(pω) cos(qω)dω

=

P−1
∑

p=1

P−1
∑

q=1

(2− δop)(2 − δoq)(c
1
p − c2

p)(c
1
q − c2

q)

1

2π

∫ π

−π
cos((p + q)ω) + cos((p − q)ω)dω

=

P−1
∑

p=0

(c1
p − c2

p)
2 (4.14)

= (c1 − c2)T (c1 − c2) (4.15)

which is the Euclidean distance between two vectors c1 and c2 as illustrated by Figure
4.3. This provides a theoretic motivation to represent the log envelopes as points in a
vector space where each axis corresponds with a cepstrum coefficient.

4.4 Discrete Mel Frequency Cepstrum Coefficients

4.4.1 Mel Scale

As stated in the introduction, most speech recognition systems use in their front end Mel-
Frequency Cepstrum Coefficients as features, computed from the output of a filterbank.
The center of each filterbank is scaled according to the Mel scale which takes into account
the frequency resolution of the human auditory system. Recently, a technique was
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Fig. 4.3: Spectral Envelope Similarity

proposed that computes the warped coefficients directly on the power spectrum without
the use of the filterbank [57]. The function which computes the Mel scale frequency from
the linear frequency is called the Mel frequency warping function g and is defined as

g(ω) = 2595 log

(

1 +
ωfs

2π700Hz

)

(4.16)

This function is normalized over an interval [0, π] using the normalization factor π
g(π)g(ω)

resulting in the normalized warping fucntion ḡ(ω) defined as

ḡ(ω) = α(fs) log (1 + ωβ(fs)) (4.17)

with

α(fs) =
π

log(1 + fs

2·700Hz )

β(fs) =
fs

2π700Hz
(4.18)

where fs denotes the sampling frequency. The warping function ḡ(ω) : [0, π] → [0, π] is
monotone and invertible, converting a linear scale frequency ω to a Mel scale frequency
ω̄. Its inverse function is given by

ḡ−1(ω̄) =
1

β

(

exp
( ω̄

α

)

− 1
)

(4.19)
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4.4.2 Discrete Mel Frequency Cepstrum Coefficients

Analogue to the MFCC’s used in speech, the discrete MFCC’s were proposed in [31, 33,
32]. Instead of computing the envelope over the linear scale, the peaks were first warped
on the Mel-scale using ḡ(ω). Then, the discrete cepstrum is computed over the warped
peaks.

However, repositioning the partials results in large gaps in the low frequency band
where there are no observations and the envelope is unconstrained. As a result, the high
frequency peaks dominate the estimation resulting consistently in overfitted envelopes.
The solution of Galas and Rodet consisted in introducing to each observation a cluster
of neighboring points which yields satisfying results in many cases but increases the
numerical complexity and depends on the initial choice and number of points.

4.4.3 Regularized Mel-Scale Discrete Cepstrum

Cappé introduced a regularization factor to control the smoothness of the envelope by
using a modified least squares criterion [7, 8, 9]. This means that an additional term
is introduced to the error function which yields a large error for fast variations in the
envelope and a small error for slow variations. This regularization function is denoted
R [log(|H(ω)|)] and is weighted by a regularization parameter λ. This parameter controls
the relative importance of the regularization function and allows to control the trade-off
between the exactness and the smoothness of the envelope.

The modified error criterium is written as

χ(c) =

K
∑

k=1

(log(|H(ωk)|)− log(|X(ωk)|))2 + λR [log(|H(ω)|)]

A possible choice for the penalty function R is to take the integral over the square of
the first derivative [8, 9, 7] which is written as

R [log(|H(ω)|)]

=
1

2π

∫ π

−π

[

∂

∂ω
log(|H(ω)|)

]2

dω

=
1

2π

∫ π

−π





P−1
∑

p=0

−(2− δop)pcp sin(pω)





2

dω

=
1

2π

P−1
∑

p=0

P−1
∑

q=0

(2− δ0q)(2 − δ0p)pqcpcq

∫ π

−π
sin(pω) sin(qω)dω

=

P−1
∑

p=0

p2c2
p

= cT Pc (4.20)
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where P denotes a matrix of which the diagonal is [0, 12, 22, . . . (P − 1)2] and of which
all other elements are zero. Analogue to Eq. (4.11), Eq. (4.20) can be written as

(Mc − a)T (Mc− a) + λcT Pc (4.21)

for which the minimization with respect to c yields

MT (Mc − a) + λPc = 0

⇒ (MT M + λP)c = MTa

⇒ c = (MTM + λP)−1MTa (4.22)

4.4.4 Posterior Warping

The techniques described in the previous section convert the peaks to the Mel frequency
scale before the envelope is estimated. This is named prior warping. In addition, the
envelope depends on the regularization parameters λ that needs to be set manually by
the user and has a large influence on the exactness and smoothness of the fit. As stated
in section 4.3.2, it is rather easy to obtain a spectral envelope on the linear scale that is at
the same time accurate and smooth by adapting the number of cepstrum coefficients to
the number of spectral peaks. This led to the idea of computing the Mel scale cepstrum
coefficients a posteriori. This means that first, the linear scale cepstrum coefficients c
are computed from which directly the the Mel scale cepstrum coefficients d are derived,
as shown in Figure 4.4.

The transformation from c to d follows directly from their definition. In [57], a
warped cosine transform was proposed which allows to compute the warped cepstrum
directly on the power spectrum. In this section a method is proposed that does the same
for the discrete cepstrum [24].

By defining a spectral envelope over the Mel frequency scale using coefficients d, one
obtains

|G(ω̄)| = exp



d0 + 2

P−1
∑

p=1

dp cos(pω̄)



 (4.23)

We wish to determine the coefficients d of G by transforming H to the Mel scale, which
is expressed as

|G(ω̄)| = |H(ḡ−1(ω̄))| (4.24)
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When applying the definition of the discrete cepstrum one obtains

dk =
1

2π

π
∫

−π

log(|H(ḡ−1(ω̄)|)ejω̄kdω̄

=
1

2π

π
∫

−π





P−1
∑

p=0

cp(2− δ0p) cos(pḡ−1(ω̄))



 ejω̄kdω̄

=
P−1
∑

p=0

cp
(2− δ0p)

2π

π
∫

−π

cos
(

pḡ−1(ω̄
)

ejω̄kdω̄

=

P−1
∑

p=1

cp
(2− δ0p)

π

π
∫

0

cos
(

pḡ−1(ω̄)
)

cos(ω̄k)dω̄ (4.25)

where δ0p denotes the Kronecker symbol.

Eq. (4.25) shows that the warped cepstrum coefficients dk can be computed directly
by taking a linear combination of the cepstrum coefficients over the linear scale ck. This
can be written as a matrix product

d = Ac (4.26)

with

Ak+1,l+1 =
(2− δ0l)

π

π
∫

0

cos
(

lḡ−1(ω̄)
)

cos(kω̄)dω̄ (4.27)

where k and l range from 0 to K − 1. The integral can be approximated by a discrete
sum over N samples for a one sided spectrum, resulting in

Ak+1,l+1 ≈ (2− δ0l)

N

N−1
∑

n=0

cos
(

lḡ−1
(πn

N

))

cos

(

πnk

N

)

(4.28)

The similarity of two Mel Frequency spectral envelopes can be computed directly from
the linear scale coefficients c1 and c2 using

(d1 − d2)
T (d1 − d2)

= (Ac1 −Ac2)
T (Ac1 −Ac2)

= (c1 − c2)
TATA(c1 − c2) (4.29)
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Fig. 4.4: Prior warping versus posterior warping.
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4.4.5 Analytic Solution for the Mel Scale Warping Matrix

The Mel scale warping matrix can be computed analytically from

Ak+1,l+1 =
(2− δ0l)

π

π
∫

0

cos(lḡ−1(ω̄)) cos(ω̄k)dω̄

=
(2− δ0l)

π

π
∫

0

cos

(

l
1

β

(

exp
( ω̄

α

)

− 1
)

)

cos
( ω̄

α
αk
)

dω̄ (4.30)

In the case that l = 0, the expression yields 1 when k = 0 and 0 when k > 1. Therefore,
the first column of A consists only of zeros and its first element is 1. For the other cases,
exp( ω̄

α ) is substituted by x what implies that ω̄ = α log(x) and dω̄ = αdx
x resulting in

(2− δ0l)

2π

exp(π
α)

∫

1

cos

(

l

β
(x− 1)

)

(

xjαk + x−jαk
)

α
dx

x

=
α(2− δ0l)

2π

exp( π
α )

∫

1

cos

(

l

β
(x− 1)

)

(

xjαk−1 + x−jαk−1
)

dx

=
α(2− δ0l)

4π

exp( π
α )

∫

1

(

exp

(

jl

β
(x− 1)

)

+ exp

(

−jl

β
(x− 1)

))

(

xjαk−1 + x−jαk−1
)

dx

≡ ζ(k, l) + ζ(k,−l) + ζ(−k, l) + ζ(−k,−l)

with

ζ(k, l) =
α(2− δ0l)

4π
exp

(−jl

β

)

exp π
α

∫

1

exp

(

jl

β
x

)

xjαk−1dx

=
α(2− δ0l)

4π
exp

(

−jl

β

)(

−jl

β

)−jαk

[

Γ(jαk,−jl

β
)− Γ(jαk,−jl

β
exp

(π

α

)

]

(4.31)

where Γ(a, x) denotes the incomplete gamma function defined as

Γ(a, x) =

∫ ∞

t
xa−1e−xdx (4.32)

An example of a 5 × 5 posterior warping matrix for an interval from 0 to 15000 Hz
is given below. It was computed using the analytically exact solution for A given in
Eq.(4.31) with values of α and β computed using Eq. (4.18) with fs being 30000.
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Fig. 4.5: Warping matrix













1 1.0354 0.6374 0.4872 0.3727
0 0.7602 0.7755 0.6217 0.5180
0 −0.4033 0.1050 0.4431 0.5315
0 0.1820 −0.4038 −0.3673 −0.0690
0 −0.0827 0.3494 −0.0521 −0.3775













Figure 4.5 shows the first eight rows of a 50× 50 warping matrix

4.5 Examples

In Fig. 4.2, it was shown that spectral envelopes can be obtained on the linear scale that
are at the same time accurate and smooth just by reducing the number of coefficients.
Figure 4.6 and 4.7 show Mel scale envelopes of the same spectrum computed by the
regularized discrete cepstrum. These figures show that in the case that λ = 0.1, a smooth
envelope is obtained but it fails to match the peaks accurately in the high frequency band.
Increasing λ does not seem to solve the matching accuracy and introduces overfitting in
the lower frequency band of the envelope. The posterior warped version shown in Fig.
4.8, is at the same time very smooth and very accurate.
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Fig. 4.6: Regularized discrete cepstrum using 40 cepstrum coefficients with λ = 0.1.
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Fig. 4.7: Regularized discrete cepstrum using 40 cepstrum coefficients with λ = 0.01
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Fig. 4.8: Discrete cepstrum using 40 cepstrum coefficients computed from 14 cepstrum
coefficients on the linear scale using posterior warping.

4.6 Stability and Perceptual Relevance

The goal of the regularization and posterior warping methods in the previous sections
is to avoid overfitting. Because of the ill-posed nature of the estimation problem, very
similar spectra can have very different envelopes since the values between the peaks are
not defined. As a result, the distance metric given by Eq. 4.29 can yield large values
although the envelopes are very similar.

When overfitting was avoided successfully, the discrete cepstra were observed to be
very noisy when they were plot in time. This was even the case when the sound was
perceived as being very stable. An example is provided in figure 4.9.

The cause of this problem is clarified in Fig. 4.10 where the envelopes of consecutive
frames are plot. On the left hand side of the figure it is shown that the envelope of the
lower frequency band is very stable over consecutive frames while considerable differences
are shown in the high frequency band. These differences come from very small amplitude
differences which are amplified enormously by the log function which approaches −∞
when the amplitude approaches zero. The absolute threshold in quiet, represented by
the dashed line suggests that these variations are not perceived by a human listener. The
cepstrum coefficients on the right hand side of the image are clearly influenced by the
variations in the high frequency band. Therefrom must be concluded that this variation
in the cepstrum coefficients does not correspond with the perceived variation in timbre.
This compromises the cepstrum based distance metric that was proposed previously.
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Fig. 4.9: Discrete Mel frequency cepstrum coefficients over time.

The stability of the cepstrum coefficients was improved by using a lower bound
threshold on the amplitude of the peaks. By replacing amplitudes that were below the
threshold with the threshold itself, the influence of these noisy low amplitude partials
was significantly reduced. Since most of these partials are situated in the high frequency
band, a second method consists in estimating the envelope over a limited spectral band.
However, when only the frequency band in synthesized, the perceived quality deteriorates
significantly. Fig. 4.11 shows that the linear scale discrete cepstrum coefficients are
very noisy what makes them difficult to interpret. When the lower bound threshold
is applied, the features become much more stable. One can clearly observe the silence
at the beginning and end of the excerpt, the transients between different notes and the
periodic variations in the features from frame 1000 to 1100 which is the result of vibrato.

4.7 Conclusions and Further Work

It commonly known that discrete cepstrum coefficients are more appropriate to repre-
sent the spectral envelope of quasi periodic signals then linear prediction coefficients or
cepstrum coefficients. An additional advantage is that a resynthesis can be obtained
from these coefficients which allows to verify to what extent the coefficients represent
the sound. This is a property that does not hold for MFCC’s.

However, using discrete ceptrum coefficients as perceptual features appeared to be
surprising difficult because of overfitting and noise sensitivity. Overfitting is harder to
avoid on the Mel scale since the peaks are positioned far apart in the low frequency
band which results in large intervals for which the envelope is unconstrained. Sev-
eral approaches to overfitting have been proposed previously. The technique of cloud
smoothing consists of introducing additional control points manually at regions where
the envelope is unconstrained. A second method is regularization which controls the
trade-off between the exactness and smoothness of the fit by a parameter that has to be
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set manually. Since it is much easier to obtain a fit that is at the same time accurate
and smooth on the linear scale, a method was proposed that converts the linear scale
coefficients to the Mel scale coefficients. Since the warping is executed after the enve-
lope estimation, this technique is called posterior warping and is computed by a simple
matrix multiplication.

Even when the overfitting problem was avoided succesfully, the coefficients were still
varying in a very random manner over time. It is shown that these variations come from
low amplitude partials in the high frequency band which have a very low signal to noise
ratio. This noise sensitivity is amplified enormously by the log function influencing all
discrete cepstrum coefficients and was avoided by using a threshold.

Several improvements to this cepstrum based distance metric can be imagined. At
the moment, only the frequency resolution of the human auditory system is taken into
account by expressing the envelope on the Mel scale. Other important properties such
as masking phenomena are not yet taken into account. Another improvement might
consist of replacing the log function by a psychoacoustic function which expresses the
perceived loudness in function of the amplitude and frequency.
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CHAPTER 5

A Conditional Estimation technique for
Determining the Control Parameters

5.1 Chapter Overview

A new estimation technique is proposed which computes the control parameters of a
physical model of a trumpet in order to simulate a recording of a real instrument. This
method takes into account the physical constraints of the instrument and the prior
knowledge about how a player controls a trumpet (6.2). This is realized during the
design of the data set (6.4) and guarantees that these constraints are respected. Then,
an estimation procedure minimizes two perceptual similarity criteria in function of the
control parameters. The first criterium expresses the difference of the spectral envelopes
and the second one the difference in fundamental frequency (6.3). An optimization tech-
nique is proposed that yields an optimal solution for the fundamental frequency, and a
conditional suboptimal solution for the spectral envelope (6.5). A robust implementa-
tion of the technique was developed for which it is shown that the estimated parameters
are unique and that the optimization does not suffer from local minima (6.6). Successful
simulations of a trumpet phrase are obtained by the method (6.7).

5.2 Taking into Account Physical Constraints and Prior Knowledge

In chapter 3, the physical constraints are defined for the physical model of the trumpet.
Its control parameters P̄ consists of the pressure in the mouth PM , the lip frequency
PL, the tube length PT and damping factor of the lips PD. The conditions were derived
for which the maximal resonance for this non linear system with delayed feedback was
obtained [22]. It was shown that the resonance frequency fτ of the tube controlled with
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a the parameter PT could be computed using

fτ =
Fs

⌊ Fs

2PT
⌋+ λ0

(5.1)

with Fs being the sampling frequency and λ0 being a constant. By keeping all parameters
constant and varying the the lip frequency it was observed that a maximal resonance
was obtained at multiples of fτ with a value of PL being three fourth of the frequency
yielding

PL =
3

4
Nfτ (5.2)

where N is an integer value expressing the mode index. Equations (5.1) and (5.2) express
the relationship between PL and PT for which the resonance is maximal.

An important physical constraint is that the tube length of the instrument must
remain constant for each note. In addition, only seven different tube lengths can be
used for an entire trumpet performance. Seven tube lengths were determined such that
the optimal resonance was achieved for notes tuned to a frequency fref of 440 Hz. This
constraint was not respected by the instance-based approach in chapter 1 [23].

For each note, the player chooses a combination of tube length and mode in order
to obtain the desired frequency. The choice of this combination is the prior knowledge
that a player uses when he plays the instrument and is modelled by the series PT,i and
Ni. When the fundamental frequency f is expressed in half tones using

I = 12 log2

(

f

fref

)

+ 16 (5.3)

then index of the series i corresponds with the rounded value of I. The value 16 is added
to make the index of the lowest trumpet note (low F♯) correspond to 1.

Evidently, the player does not always excite the tube at the exact frequency for
which the resonance is maximal. For instance when vibrato is played, the lip frequency
varies periodically. To express this deviation we introduce a real valued parameter
∆N ∈ [−0.5, 0.5]. In order to play a given note with index i when using a deviation
∆N , the lip frequency is computed by

PL =
3

4
fτ,i(Ni + ∆N) (5.4)

where fτ,i is computed from the control parameter PT,i using Eq. (5.1).

5.3 Distance Metrics

The perceived distance between two short time spectra is defined by two components.
To express the perceptual similarity in timbre, the difference between the log spectral
envelopes was used. This envelope was expressed in terms of Mel Frequency Discrete
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Cepstrum Coefficients (MFDCC) [7, 8, 32, 78]. In this work a stabilized version was used,
computed with posterior warping and a lower bound threshold [26]. An elegant prop-
erty of the discrete MFDCC’s is that the log difference between the Mel scale spectral
envelopes is equivalent with the Euclidean distance between the cepstrum coefficients.
In other words, when two spectral envelopes are considered, defined by two cepstrum
vectors c̄1 and c̄2 respectively, the spectral similarity D1 is given by

D1(c̄1, c̄2) = (c̄1 − c̄2)
T (c̄1 − c̄2) (5.5)

The square difference of the log fundamental frequency yields the second distance metric.

D2(f1, f2) = (log(f1)− log(f2))
2 (5.6)

One can imagine to use a weighted combination of D1 and D2, but since the physical
meaning of such a combined distance metric is questionable and it is not known how
these weights should be determined, we choose to keep the criteria separated.

5.4 Data Set Design and Feature Extraction

The data set was designed by using a fixed set of seven tube lengths that were optimized
for a given tuning frequency of 440 Hz (see [22]). This automatically imposes the physical
constraints of the acoustic instrument. For every note, and for a range of values of ∆N
from −0.06 to 0.06 in steps of 0.01, crescendos were synthesized by varying the pressure
PM slowly from the 0 Pa to 30000 Pa. This data set design guarantees that all the
intensities for each note are available and that a variation in fundamental frequency can
be realized for the synthesis of vibrato. These are all the elements that are needed to
simulate an expressive trumpet performance.

After an additive analysis of the synthesized sounds [71], the discrete MFDCC’s and
fundamental frequencies were computed. The extraction of the discrete MFDCC’s is
represented formally by a 2 dimensional function of the control parameters for a given
note i as

Ci(∆N,PM ) (5.7)

and the estimation of the fundamental frequency as

F i(∆N,PM ) (5.8)

5.5 Estimation

Given a vector of cepstrum coefficients c̄ and a fundamental frequency f computed from a
short time window of a recorded sound, the goal of the estimation consists of determining
the values of ∆N and PM which minimize

D1

(

c̄, Ci(∆N,PM )
)

(5.9)
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and
D2

(

f,F i(∆N,PM )
)

(5.10)

Many parameter optimization techniques exist [4], but this case is quite particular since
there are two criteria that need to be optimized.

The first step consists of classifying the fundamental frequency to the best note
index i. This index is computed by taking the rounded value of I obtained from Eq. 5.3
and identifies the data that will be used for a given note. It follows directly from the
inner working of the physical model that the pressure in the mouth PM has the largest
influence on the spectral envelope while ∆N has a predominant influence on fundamental
frequency. Therefore, we propose an estimation procedure that consists of two steps. In
each step one distance metric is optimized. First, the mouth pressure is optimized for
each ∆N with respect to D1. This results in a function Pi(∆N ; c̄) yielding the mouth
pressure PM in function of ∆N for which D1 is minimized given c̄ and i. Note that this
yields a conditional optimum, since it yields the best value of PM for a given ∆N .

Pi(∆N ; c̄) = arg min
PM

D1

(

c̄, Ci(∆N,PM )
)

(5.11)

Inserting Eq. (5.11) in Eq. (5.10), the distance criterium D2 only depends on ∆N for a
given f and c̄. When the value ∆N∗ is determined which minimizes the second distance
metric D2 for a given f , the estimation procedure is completed.

∆N∗ = arg min
∆N

D2

(

f,F i(∆N,Pi(∆N ; c̄))
)

(5.12)

The condition for this method to work is that an optimal solution for ∆N can retrieved
for every mouth pressure value PM with respect to D1. Without the additional criterium
D2, this would yield a large set of (∆N,PM ) for the desired frequency f . The second
criterium allows to select one single value of all these solutions.

Still, the control parameter values need to be computed from ∆N∗ and i using

P ∗
M = Pi(∆N∗; c̄) (5.13)

P ∗
L =

3

4
fτ,i(Ni + ∆N∗) (5.14)

P ∗
T = PT,i (5.15)

It is important to note, that the optimization with respect to D2 is optimal for a given f .
By contrast, the value P ∗

M only optimizes D1 in a suboptimal way for c̄. This is justified
by the fact that small differences in spectral envelope, or timbre, are less disturbing than
deviations of the fundamental frequency.

5.6 Implementation

5.6.1 Estimation Example

In the previous section, the estimation procedure was described in terms of continuous
functions. Since no parametric or analytic forms of these functions are available they
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are practically realized by piecewise linear functions. Instead of repeating the entire
derivation for these discrete sampled functions, a practical example is described for a
given c̄ and f . In this example, f has a value of 786,65 Hz for which Eq. (5.3) yields
a value of 26,0588. This implies that i = 26, meaning that the 26th data set will be
used (see Eq. (5.7) and (5.8)). This data set corresponds with a high G which has been
produced by exciting the sixth mode of the tube with a length corresponding with the
fingering where all valves are released. This is how the prior knowledge is taken into
account and the physical constraints are imposed.

Fig.5.1 shows a plot of D1

(

c̄, C26(∆N,PM )
)

in function of PM for different values
of ∆N . One can observe that for each ∆N a global optimum is available but that the
error function is quite noisy. In order to make an accurate and robust estimate of the
minimum, D1 is modelled locally by a quadratic approximation for each ∆N that is fit
to the observed values by a least squares procedure. This results in

D1

(

c̄, Ci(∆N,PM )
)

≃ a(∆N)P 2
M + b(∆N)PM + c(∆N) (5.16)

In order to realize Pi(∆N ; c̄) as defined in Eq.(5.11), the minimum of the fit is taken
for each ∆N value yielding.

Pi(∆N ; c̄) =
−b(∆N)

2a(∆N)
(5.17)

The piecewise linear realization of this function is given on the left side of in Fig. 5.2.
Now, the corresponding values of the fundamental frequencies can be retrieved from the
data set which was expressed in the previous section by

F i(∆N,Pi(∆N ; c̄)) (5.18)

In Fig. 5.2, the inverse of this function was plot, since we wish to determine ∆N from
the given f . This was expressed by Eq. (5.12) and is realized by evaluating the inverse
piecewise linear function. The result is depicted by the dashed line in the figure. In
this example, the value of f expressed in half tones was 26, 0588, and yielded a value of
∆N∗ = 0.0082. When Pi(∆N ; c̄) is evaluated, a value of PM was obtained being 13756.
Fig. 5.3 shows that ∆N∗ yields a suboptimal value with respect to the spectral envelope
similarity D1.

5.6.2 Conclusion

It is shown that for each ∆N a global optimum can be found that can be determined in
a robust manner using a local quadratic approximation [4]. This motivates the function
P that expresses the optimal PM in function of ∆N with respect to D1. The func-
tion F i(∆N,Pi(∆N ; c̄)), modelled by a piecewise linear function, was observed to be
increasing monotonously. Evidently, its inverse function is also increasing monotonous
and therefore a unique solution of ∆N∗ is obtained for a given f . Also, the function P
returns a single value of P ∗

M . This implies that the obtained solution is unique and that
the optimization technique does not suffer from local minima.
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In the example, it is shown that an exact solution with respect to D2 was obtained
for f using the inverse piecewise linear function. By contrast, the retrieved value of ∆N
did not globally optimize D1, and only a suboptimal solution was obtained. We name
this the conditional optimum with respect to D1, since it yields the optimal value of
PM , given the condition that D2 is optimized first for a given f . The motivation of this
optimization is the fact that the accuracy of the fundamental frequency has a higher
priority than the optimization of the spectral envelope.

5.7 Results

In Fig. 5.4, the results are shown for a musical trumpet phrase. The phrase contains
long notes with vibrato, slurred notes and attacked notes which were all simulated suc-
cessfully. The top figure shows the original signal. The other figures show the estimated
control parameters. From these figures, one observes how the mouth pressure follows
the amplitude envelopes of the sounds while the lip frequency follows the melodic line
of the excerpt including the vibrato at the end of the long sustained notes.

5.7.1 Posterior Tuning

During the derivation in the previous sections, a fixed set of seven tube lengths was
assumed with respect to a given tuning frequency. This implied a unique solution for
the mouth pressure and lip frequency. When tuning of the instrument is allowed, a
solution will be obtained for every possible tuning frequency. Evidently, this tuning
allows only slight variations in tube length, since large variations imply that the modes
of the tube will fail to correspond with the desired note frequencies.
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When the control parameters were estimated for a given sound, the value of the
fundamental frequency was slightly adapted so that the median frequency of the note
corresponded with the median frequency of data set. This was done in order to guarantee
that the frequency range of the desired sound was available. However, this results in
a simulation which is tuned slightly different than the original sound. This tuning can
be compensated a posteriori using the following method. When the tube length and lip
frequency are changed in manner so that the ratio

PL

fτ
=

3

4
(Ni + ∆N) (5.19)

remains constant, no variation in timbre is perceived. In addition, the expression

∆f0 ≡ f0 − (N + ∆N)fτ (5.20)

was observed to be nearly identical for every tube length. Therefore, N + ∆N and ∆f0

are kept constant while fτ is adapted in order to be tuned to the desired frequency f ′
0.

The new tube length f ′
τ is then obtained by taking the median value of

f ′
0 −∆f0

N + ∆N
(5.21)

for all notes that are played with this specific tube length. The new lip frequency values
are finally obtained using P ′

L = 3
4(Ni + ∆N)f ′

τ .
Fig. 5.5 shows that without posterior tuning, a systematic tuning deviation is ob-

tained between the resynthesis and the original sound. When the tuning is applied, the
matching is shown to be very accurate.

5.7.2 Transient Handling and Attack Improvement

The features that are extracted in section 5.4 implicitly assume that the signal is de-
terministic and stable during the windowed time frame. In the case of transients, this
assumption does not hold implying that the feature extraction fails and the parameter
estimation technique cannot be applied. However, a transient must always be considered
in its context since it is the transition between two stable parts. Otherwise, we would
speak of noise instead of a transient. In the case of the trumpet, the onset, offset and slur
are the types of transients that can be distinguished. Therefore, a manual annotation
of the sound was realized dividing the sound in silence, stable sound, onset, offset and
slur. For the onset and offset, the same lip frequency and tube length were taken as
for the preceding and consecutive stable part respectively. In the case of the slur, the
response function of the tube was cross-faded between two different tube lengths and
the lip frequency and mouth pressure were interpolated linearly.

In addition, a problem was observed at the attack being that the relationship between
the control parameters and signal features was not instantaneous. In the case of a
sustained sound, the lips open and close regularly. Fig. 5.6 shows that in the case of an
attack, the lips are pushed open by the pressure in the mouth. Then, when the outgoing
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wave returns at the lips, an oscillation is initiated until finally the stable periodic state
is reached. However, this procedure takes about 200 ms to complete implying that no
sharp attack is obtained.
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Fig. 5.6: Lip positions at attack.

It can be questioned whether the lips are immobile at the beginning of a note since
the trumpet player uses the tongue at the attack. The effect of the tongue does not only
result in the fact that the pressure augments instantaneously, but also implies an initial
speed of the lips when they open. Since the goal of the attack consists in obtaining the
stable sustained state as soon as possible, an initial speed was given to the lips resulting
in sharper and more realistic attacks.

5.8 Conclusions and Further Research Directions

In this paper, a new automatic non parametric estimation technique is proposed for the
control parameters of a physical model of a trumpet. An important aspect is that the
control parameters respect the physical constraints of a real instrument and that the
prior knowledge about how the instrument is played is incorporated. This means that a
correct tube length and mode combination is selected in order to obtain a given note.

For each of these combinations, a data set was produced containing all possible inten-
sities and variations in fundamental frequency in order to allow vibrato. The similarity
between two short time segments was expressed by two complementary criteria being
the difference in log fundamental frequency, and the difference between the log spectral
envelopes. By using a conditional optimization technique and some posterior tuning of
the tube length, an exact solution of the fundamental frequency was achieved while a
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conditional suboptimal solution was obtained for the spectral envelope. Due to a robust
implementation using local quadratic approximations, the estimated control parameters
were stable and did not need any post-processing.

Since the estimation can only be applied on stable portions of the sound, an alter-
native was searched for the transients. These transients were realized successfully by
extrapolating control parameters from its context. Also the type of transient was taken
into account. Furthermore, the model failed to produce sharp attacks and needed about
200 ms to yield a stable sound. This was improved greatly by adding an additional speed
to the lips at the moment of the attack. This initial speed can be related to the effect
of the tongue.

The simulation of an expressive trumpet phrase showed that the fundamental fre-
quency could be simulated with a very high accuracy. The timbre on the other hand,
is clearly still very different from the original recording. This is due to the fact that
the data sets did not contain more similar timbres. Interestingly, the perceived loudness
of the simulation was very similar, which confirms the validity and robustness of the
distance metric based on the spectral envelope. However, this distance metric has still
some limitations. Although the fundamental frequency and the energy distribution over
the partials is characterized, the roughness of the sound and the noise component are
not taken into account. One can conclude that the estimation technique allows to realize
a simulation of the original sound with the physical model that has a similar musical
expression. The timbre however, can still be improved. Still, one must keep in mind
that the computed signal by the physical model corresponds with the pressure wave at
the bell of the instrument. This means that the effect of the room is not incorporated
while this has an influence on the timbre. In addition, the estimation technique only
allows to determine the gestures of the musician, while a large number of instrument
parameters, like for instance the reflection function of the instrument, were assumed to
be known. This implies that the resynthesis must be considered as a simulation played
with a different instrument.

Finally, we remark that this work confronts the two major synthesis paradigms being
the signal modelling paradigm and the physical modelling paradigm. For a wide range of
signal models accurate parameter estimation techniques are available. Physical models
are generally very difficult to invert. The estimation technique that is proposed is on
one hand robust and has a certain generality, but on the other hand it relies on well
known parameter estimation techniques from the signal modelling domain. This is at the
moment the strongest limitation of the technique. Since no adequate signal parameters
can be computed at the transients, it is impossible apply the parameter estimation.
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Part II

SINUSOIDAL MODELLING ON
SMALL ANALYSIS WINDOWS





CHAPTER 6

Amplitude Estimation:
From O(N 3) to O(N log N)

6.1 Chapter Overview

In the field of sinusoidal modelling, two types of least squares amplitude estimation
methods are distinguished. A first group of methods estimate the complex amplitude
of each sinusoid in an iterative manner. Although their main disadvantage is that they
are unable to resolve overlapping frequency responses, they are used frequently because
of their computational complexity being O(N log(N)). By contrast, methods that com-
pute all amplitudes simultaneously can resolve overlapping frequency responses but their
computational complexity scales with a power of three in function of the number of si-
nusoidal components. In this chapter, a method is proposed which allows to compute
all amplitudes simultaneously and still has an O(N log(N)) complexity. This is real-
ized by explicitly including an analysis window with a bandlimited frequency response
in the least squares derivation resulting in a band diagonal system of equations which
can be solved in linear time. Since overlapping frequency responses are allowed, an it-
erative method must be used to optimize the frequencies resulting in a nonlinear least
squares technique. A commonly used technique is Newton optimization which requires
the computation of the gradient and the Hessian matrix.

After giving a short overview of the literature on sinusoidal modelling and its appli-
cations (6.2), inverse FFT synthesis and the choice of the Blackmann-Harris window is
discussed (6.3). It is shown that not only the frequency response of the window wn is
bandlimited, but also the square window and their first and second derivatives. It will
be shown that these properties allow to realize a considerable computational gain.

In order to achieve a very high quality, the window length is adapted to three funda-
mental periods of the sound signal. This window length is not necessarily a power of two
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which is desired for the computation of the fourier transform using an FFT. Therefore
the scaled table look-up method is proposed in section (6.4) which allows to compute the
frequency response of a variable length window which is zero padded up to a power of
two length.

The least squares derivation and its optimization is discussed in section (6.5). In
addition, a preprocessing routine is proposed that determines the number of diagonal
bands D that must be taken into account (6.6). Finally, the robustness of the least
squares estimator is demonstrated by adding white noise (6.7).

6.2 Introduction

Sinusoidal modelling of musical signals and speech is widely recognized as a very powerful
and flexible method. One of the main reasons of its popularity is that it allows to
vary pitch and duration of the sound independently [71] allowing sound modifications
of a very high quality [5, 34, 35, 64, 101]. In the field of audio coding, perceptual
coders have become very popular over the past decade [62, 99, 63]. In the last few
years, parametric coders have emerged [77] which encode a sound signal by parameters
that describe the sinusoids, noise and transients. In addition, when the perceptual
relevance of the parameters is taken into account, one obtains a hybrid coder, meaning
both perceptual and parametric [3, 39]. A third application in which sinusoidal modelling
plays a crucial role is model based separation of sound sources [85, 87, 97, 98]. Finally,
a fourth application is feature extraction for classification of music and audio. Many
features have been proposed that are computed from the sinusoidal parameters which
are used in the context of audio annotation [65], instrument recognition [67] and non
parametric estimation of control parameters for physical models [24, 25].

In this work, a highly optimized method is developed for modelling a sampled short
time signal on which a window wn is applied. This model x̃n consists of a sum of sinusoids
which are parameterized by their frequency ωk, phase φk and amplitude ak,

x̃n = wn

K−1
∑

k=0

ak cos(2πωk
n− n0

N
+ φk) (6.1)

The offset value n0 places the origin of the timescale exactly in the middle of the window
so that it is symmetric, resulting in a zero phase response. For a signal with length N ,
n0 equals N−1

2 .

6.2.1 Amplitude Estimation

Early analysis methods estimate the parameters on individual peaks using a parabolic
interpolation over the main lobe of the log frequency response [80]. A survey on exten-
sions of this method is given in [46]. These methods however, cannot handle frequency
responses that are partially overlapping and therefore require the use of large windows.
Since often analysis windows are used of which the main lobe has a width of 4 FFT bins,
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the spectral peaks are well defined when the window length is wider then four periods
of the lowest frequency in the analyzed signal [15].

A second method is the amplitude estimation of sinusoidal components by using an
iterative least squares method [45, 34, 35]. This method, called analysis-by-synthesis /
overlap-add (ABS/OLA), detects in an iterative manner the most dominant sinusoidal
component, estimates the amplitude and subtracts this component from the spectrum.
This can be implemented efficiently by using look-up tables for the frequency responses
which results in a time complexity O(N log N). Their disadvantage however, is that
they cannot resolve close frequencies which result in overlapping frequency responses.

For many applications it is desired to use an amplitude estimator that can handle
overlapping frequency responses, for example for the separation of multiple harmonic
sound sources or when very small analysis windows are used. Even for monophonic
recordings with strong reverberation, the partials of consecutive notes can overlap in
time. This can be handled by using a least squares technique which estimates all ampli-
tudes simultaneously [15, 48, 97, 98, 85, 87, 99]. Their major drawback however is their
significantly higher computational complexity which is O(K2N) with K being the num-
ber of sinusoidal components, and N being the signal length. In addition, recent models
take into account fast variations in phase and frequency by using polynomial phase and
amplitude trajectories [66, 70, 58, 59] or by using exponentially damped sinusoids

All estimation techniques that are cited above, assume implicitly that the noise rn

is white. In the case of strongly colored noise, a weighted least squares technique can
be applied which takes into account the correlations in the noise [82]. Also in [82], it is
shown that the least squares estimation of the amplitudes using a total least squares is
asymptotically consistent.

6.2.2 Frequency Estimation/Optimization

For the parabolic interpolation method [80], the frequency is estimated by determining
the value at the optimum of a parabola that is fit to a spectral peak. In the case
of overlapping frequency responses and especially for small analysis windows where all
responses overlap, an iterative optimization is required. An efficient implementation for
this optimization is developed in the next chapter.

6.2.3 Phase Continuity

Most methods assume that the amplitudes and frequencies are constant over the analysis
window. For large windows however, an interpolation is desired since small frequency
differences between consecutive frames can lead to a phase mismatch at the frame bound-
aries. In other words, when the assumption that the frequencies and amplitudes are con-
stant does not hold, an interpolation is required to guarantee the phase continuity. A
popular method to impose the phase continuity is the cubic phase interpolation method
proposed by Mc Aulay and Quatieri [51]. In more recent work, methods are proposed
which estimate the slope of the parameters [66, 68] and use spline based trajectories [70].
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On the other hand, when the windows are small enough, the constant parameter
assumption is more likely to hold and no phase interpolation is required. As a result, an
inverse FFT synthesis method can be used with simple overlap-adding (OLA) [34, 35].
In addition, the use of phase interpolation in combination with large windows can even
introduce undesired artifacts at the transients. For example, when the signal changes
rapidly, the amplitudes and frequencies over the consecutive window will differ largely
and the interpolation will introduce an unnatural transition which is perceived as a
’click’.

Therefore, overlap-add synthesis with very short analysis windows seems the best
choice to obtain the highest synthesis quality. The small windows make phase inter-
polation obsolete and yield the additional advantage that discontinuities in amplitude
and frequency are allowed at the transients. In addition, the analysis is executed in two
phases. First a rough estimation of the frequencies is computed which is then refined on
smaller windows adapted to the fundamental frequency.

6.3 Inverse FFT Synthesis and Window Choice

If the signal model defined in Eq. (6.1) would be synthesized by a bank of oscillators, the
complexity would be O(NK) with N being the number of samples and K the number of
sinusoidal components. Because of this considerable computational cost, many additive
synthesizers construct the time domain signal model x̃n by taking the inverse fourier
transform of the reciprocal spectrum model X̃m [72, 73].

x̃n =
1

N

N−1
∑

m=0

X̃m exp(2πim
n − n0

N
) (6.2)

By using

Ak = ak exp(iφk) (6.3)

X̃m is written as

X̃m =
1

2

N−1
∑

n=0

wn

[

K−1
∑

k=0

Ak exp(2πiωk
n− n0

N
)+

K−1
∑

k=0

A∗
k exp(−2πiωk

n− n0

N
)

]

exp(−2πim
n− n0

N
)

=
1

2

K−1
∑

k=0

Ak

N−1
∑

n=0

wn exp(−2πi(m− ωk)
n− n0

N
)

+

K−1
∑

k=0

A∗
k

N−1
∑

n=0

wn exp(−2πi(m + ωk)
n− n0

N
)

=
1

2

K−1
∑

k=0

[AkW (m− ωk) + A∗
kW (m + ωk)] (6.4)
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with

W (m) =

N−1
∑

n=0

wn exp(−2πim
n− n0

N
) (6.5)

This shows that the spectrum model X̃m is a linear combination of frequency responses
of the window, which are shifted over ωk and weighted with a complex factor Ak.

Note that, in contrast to many other signal models, the analysis window is explicitly
included. In addition, a window is chosen with a bandlimited frequency response. A
possible choice is the Blackmann-Harris window given by

wn = a + b cos(2π
n − n0

N
) +

c cos(4π
n− n0

N
) + d cos(6π

n− n0

N
) (6.6)

with a = 0.35875, b = 0.48829, c = 0.14128 and d = 0.01168. The frequency response of
the Blackmann-Harris window is shown in Fig. 6.1 from which it is observed that the
width of the lobe is 2β FFT bins with β = 4.

For the computations that follow, the bandlimited property of the frequency response
plays an important role. This property is not only valid for the window but also for the
square window what can be understood easily when taking into account that taking the
square in the time domain is equivalent with a convolution in the frequency domain. It
must be noted however that this doubles the bandwidth of the main lobe. In Figure 6.1
and 6.2 it is shown that also the derivatives of these frequency responses are bandlimited.
The derivative in the frequency domain is equivalent with the multiplication with a
straight line in the time domain as can be observed from following equalities.

W (m) =

N−1
∑

n=0

wn exp(−2πim
n − n0

N
)

W ′(m) =

N−1
∑

n=0

(

−2πi
n− n0

N

)

wn exp(−2πim
n − n0

N
)

W ′′(m) =
N−1
∑

n=0

(

−2πi
n− n0

N

)2

wn exp(−2πim
n− n0

N
)

Y (m) =

N−1
∑

n=0

w2
n exp(−2πim

n − n0

N
)

Y ′(m) =
N−1
∑

n=0

(

−2πi
n− n0

N

)

w2
n exp(−2πim

n − n0

N
)

Y ′′(m) =

N−1
∑

n=0

(

−2πi
n− n0

N

)2

w2
n exp(−2πim

n− n0

N
) (6.7)

These equalities will reoccur frequently in the following sections and the next chapter.
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By using a lookup table for the main lobe, these frequency responses can be evaluated
in constant time, resulting in the fact that the summation over n can be avoided.

6.4 Frequency Response of a Zero Padded Variable Length Window

In this section, the scaled table look-up method is presented which allows to compute
the frequency response of a window with length M ′ which is zero padded up to a length
N ′. This allows to obtain a better adjustment of the window length to the fundamental
period of the sound. The purpose of the zero padding is to obtain again a power of two
length so that an FFT can be used to compute the spectrum.

6.4.1 Scaled Table Look-up

A computationally efficient method to compute this frequency response of a zero padded
variable length window is described of which a schematic representation is given in Fig.
6.3. The fourier transform of a window with length M is denoted as W M (m), being

W M (m−m0) =
M−1
∑

n=0

wM (n−m0) exp(−2πi
(n −m0)(m−m0)

M
) (6.8)

with m0 = M−1
2 . The window wM (n) is now padded up to a length N which is denoted

wN
M (n). Its frequency response W N

M (m) can be expressed in terms of the non padded
version W M(m) using

W N
M (m− n0) =

N−1
∑

n=0

wN
M (n− n0) exp(−2πi

(m− n0)(n− n0)

N
)

=

M−1
∑

n=0

wM (n −m0) exp(−2πi
(m− n0)M

N

(n−m0)

M
)

= W M(m
M

N
−m0) (6.9)

where m ranges from 1 to M and n0 = N−1
2 . This shows that when the frequency

response of a window is zero padded, a scaled version of the original frequency response
is obtained. As a result, the spectral bandwidth of the frequency response is enlarged
to −N

M β ≤ m ≤ N
M β.

Now, the truncated inverse fourier transform of W N
M (m− n0) is taken over a length

N ′. This is denoted W N ′

M ′(m − n′
0) with n′

0 = N ′−1
2 . This truncation introduces only a

very error change since the frequency response of the Blackmann-Harris window is very
small outside the main lobe. Taking into account that wN

M (n−m0) is the inverse fourier
transform of W N

M (m−m0)

wN
M (n− n0) =

1

N

N−1
∑

m=0

W N
M (m−m0) exp(2πi

(n −m0)(m− n0)

N
) (6.10)
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Fig. 6.1: Top: Frequency response of Blackmann-Harris window W (m), Middle: First
derivative of the frequency response of Blackmann-Harris window W ′(m),
Bottom: Second derivative of the frequency response of Blackmann-Harris
window W ′′(m)
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Fig. 6.2: Top: Frequency response of zero padded Blackmann-Harris window W N
M (m),

Middle: Frequency response of squared Blackmann-Harris Window Y (m),
Bottom: Second derivative of the frequency response of the Squared
Blackmann-Harris Window Y ′′(m)
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the truncated inverse fourier transform wN ′

M ′(n− n′
0) can now be written as

wN ′

M ′(n− n′
0) =

1

N ′

N ′−1
∑

m=0

W N ′

M ′(m− n′
0) exp(2πi

(n − n′
0)(m− n′

0)

N ′
)

=
1

N ′

N−1
∑

m=0

W N
M (m− n0) exp(2πin

(n − n′
0)N

N ′

(m− n0)

N
)

=
N

N ′
wN

M (n
N

N ′
− n0)

=
N

N ′
wM (n

N

N ′
−m0) (6.11)

from which follows that the truncation of the spectrum yields a scaling of the zero padded
window. This implies that after this scaling, the window length M ′ is given by

M ′ = M
N ′

N
(6.12)

By applying Eq. (6.9), the zero padded and resized window wN ′

M ′(n−n′
0) can be expressed

in function of the original frequency response W M (m−m0) yielding

wN ′

M ′(n− n′
0) =

1

N ′

N ′−1
∑

m=0

W N ′

M ′(m− n′
0) exp(2πi

(n − n′
0)(m− n′

0)

N ′
)

=
1

N ′

N ′−1
∑

m=0

W N
M (m− n′

0) exp(2πi
(n − n′

0)(m− n′
0)

N ′
)

=
1

N ′

N ′−1
∑

m=0

W M(
M

N
m− n′

0) exp(2πi
(n − n′

0)(m− n′
0)

N ′
)

=
1

N ′

N ′−1
∑

m=0

W M(
M ′

N ′
m− n′

0) exp(2πi
(n − n′

0)(m− n′
0)

N ′
)

However, Eq. (6.11) shows that the spectrum truncation results not only in a scaling of
the window but also in a multiplication of the window with a factor N

N ′ . Therefore, this

scaled window must be normalized with a factor N ′

N resulting in

N ′

N
wN ′

M ′(n− n′
0) =

1

N

N ′−1
∑

m=0

W M(
M ′

N ′
m−m0) exp(2πi

(n − n′
0)(m− n′

0)

N ′
) (6.13)

with N = N ′ M
M ′ .

6.4.2 Variable Length Inverse FFT Synthesis

The previous method can be applied to realize a variable length additive synthesis. By
using a look-up table for the main lobe of W M , computed from a window of length M ,
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any scaled and zero padded window can be realized. Since the time domain signal is
computed efficiently by an inverse fast fourier transform (IFFT), it is desired that the
zero padded window length is a power of two. For a window with size M ′, the smallest
FFT size N ′ is obtained by taking

N ′ = 2⌈log2(M ′)⌉ (6.14)

As a result, the parameters that are required to compute the variable length frequency
response given in Eq. (6.13) are

• M : window length used to compute the look-up table

• N ′: desired FFT size

• M ′: desired window size

The oversampled main lobe of W (m) is stored in a table Ti. The table has a length
iL and the first index i of the table is denoted i0. These index values correspond with
the m-values over a range [ma,mb]. This leads to the following relation between the
input value m and index i

m = ma + (mb −ma)
i− i0
iL − 1

(6.15)

i = i0 + (iL − 1)
m−ma

mb −ma
(6.16)

The values of W (m) are obtained by a simple linear interpolation between the closest
i-values yielding

W (m) = (i− ⌊i⌋)T⌊i⌋ + (1− i + ⌊i⌋)T⌊i⌋+1 (6.17)

where i is computed from m using the previous formula.
When a window with length M ′ is taken which is zero padded up to a length N ′, the

main lobe is enlarged up to a size 2 N ′

M ′ β. Therefore, the synthesis of a frequency ωk (see
Eq. 6.4) requires the computation for all frequency domain samples m for which

mmin ≤ m ≤ mmax

with

mmin = ⌈ωk −
N ′

M ′
β⌉

mmax = ⌊ωk +
N ′

M ′
β⌋ (6.18)

The inverse FFT synthesis algorithm is illustrated in Figure 6.4.
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6.5 Efficient Least Squares Amplitude Estimation

As stated in the introduction, it is desired to work on small analysis windows so that
overlapping frequency responses can be handled. This requires a least squares method
that computes all amplitudes simultaneously. The original computational complexity of
this method is O(K2N) where the K denotes the number of partials and N the window
length. In this section however, a method is proposed which solves this problem in
O(N log(N)) and reduces the space complexity, which is originally O(K2), to O(K).
The complete amplitude computation method is illustrated in Figure 6.6.

6.5.1 Complex Amplitude Computation

In order to determine the complex ampitudes, Eq. (6.1) is reformulated as a sum of
cosines and sines where the real part of the complex amplitude is denoted Ar

l = al cos φl

and the imaginary part as Ai
l = al sin φl. The signal model for the short time signal x̃n

can now be written as

x̃n = wn
1

2

K−1
∑

k=0

(

Ak exp(2πiωk
n− n0

N
) + A∗

k exp(−2πiωk
n− n0

N
)

)

= wn

K−1
∑

k=0

(

Ar
k cos(2πωk

n− n0

N
)−Ai

k sin(2πωk
n− n0

N
)

)

(6.19)

The error function χ(Ā; ω̄) expresses the square difference between the samples in the
windowed signal xn and the signal model x̃n,

χ(Ā; ω̄) =
∑

n

(xn − x̃n)2 (6.20)

This notation indicates that the error is minimized with respect to a vector of variables
Ā for a given set of frequencies ω̄ that are assumed to be known. The minimization is
realized by putting the partial derivatives with respect to the unknowns to zero

∂χ(Ā; ω̄)

∂Ar
l

= 0,
∂χ(Ā; ω̄)

∂Ai
l

= 0 (6.21)

resulting respectively in

K−1
∑

k=0

Ar
k

(

N−1
∑

n=0

w2
n cos(2πωk

n− n0

N
) cos(2πωl

n− n0

N
)

)

−
K−1
∑

k=0

Ai
k

(

N−1
∑

n=0

w2
n sin(2πiωk

n− n0

N
) cos(2πωl

n− n0

N
)

)

=

N−1
∑

n=0

xnwn cos(2πωl
n− n0

N
) (6.22)
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and

−
K−1
∑

k=0

Ar
k

(

N−1
∑

n=0

w2
n cos(2πωk

n− n0

N
) sin(2πωl

n− n0

N
)

)

+
K−1
∑

k=0

Ai
k

(

N−1
∑

n=0

w2
n sin(2πiωk

n− n0

N
) sin(2πωl

n− n0

N
)

)

= −
N−1
∑

n=0

xnwn sin(2πωl
n− n0

N
) (6.23)

These two sets of K equations have 2K unknown variables what can be written in the
following matrix form

[

B1,1 B1,2

B2,1 B2,2

] [

Ar

Ai

]

=

[

C1

C2

]

(6.24)

with

B1,1
l,k =

N−1
∑

n=0

w2
n cos(2πωk

n− n0

N
) cos(2πωl

n− n0

N
)

B1,2
l,k = −

N−1
∑

n=0

w2
n sin(2πωk

n− n0

N
) cos(2πωl

n− n0

N
)

B2,1
l,k = −

N−1
∑

n=0

w2
n cos(2πωk

n− n0

N
) sin(2πωl

n− n0

N
)

B2,2
l,k =

N−1
∑

n=0

w2
n sin(2πωk

n− n0

N
) sin(2πωl

n− n0

N
)

C1
l =

N−1
∑

n=0

xnwn cos(2πωl
n− n0

N
)

C2
l = −

N−1
∑

n=0

xnwn sin(2πωl
n− n0

N
)

Under the condition that every sinusoid has a different frequency, the matrix B cannot
have two linear dependent rows implying a unique solution for A.

The analysis of the computational complexity of this method in function of the
number of samples N and number of partials K yields

• B is a K×K matrix of which each element is computed by a sum over N elements.
This implies a complexity O(K2N).

• C is a vector of size K of which each element is computed by a sum over N
elements. This implies a complexity O(KN).

• The solution of the linear set of equations requires a complexity O(K3).
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6.5.2 Efficient Computation of B

Several optimizations for the amplitude computation are proposed. The main compu-
tational burden comes from the construction of the matrix B and the solution of the
system of linear equations which have a complexity O(K2N) and O(K3) respectively.
Following derivation shows that this can be improved considerably. Using Eq. 6.7, B
can be written in function of the frequency responses of the square window Y (m) by
writing

B1,1
l,k =

N−1
∑

n=0

w2
n cos(2πωk

n− n0

N
) cos(2πωl

n− n0

N
)

=
1

2

N−1
∑

n=0

w2
n

[

cos(2π(ωk + ωl)
n − n0

N
) + cos(2π(ωk − ωl)ω

n− n0

N
)

]

=
1

2
(ℜ(Y (ωk + ωl)) + ℜ(Y (ωk − ωl))) (6.25)

In an analogue manner one obtains

B1,2
l,k = −1

2
(ℑ(Y (ωk + ωl)) + ℑ((Y (ωk − ωl))

B2,1
l,k = −1

2
(ℑ(Y (ωk + ωl))−ℑ(Y (ωk − ωl)

B2,2
l,k = −1

2
(ℜ(Y (ωk + ωl)−ℜ(Y (ωk − ωl))) (6.26)

As was discussed previously, the frequency response of the squared Blackmann-Harris
is bandlimited. Since the window is real and symmetric, its frequency response is also
real and symmetric. This means that B1,2 and B2,1 only contain zeros. When defining
two matrices Y−

l,k and Y+
l,k as

Y−
k,l = Y (ωk − ωl)

Y+
k,l = Y (ωk + ωl) (6.27)

one obtains

B1,1 =
1

2
(Y+ + Y−)

B2,2 = −1

2
(Y+ −Y−) (6.28)

For example, when a non harmonic signal model with 4 partials is considered this results
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in

Y− =









Y (0) Y (ω1 − ω0) Y (ω2 − ω0) Y (ω3 − ω0)
Y (ω0 − ω1) Y (0) Y (ω2 − ω1) Y (ω2 − ω1)
Y (ω0 − ω2) Y (ω1 − ω2) Y (0) Y (ω3 − ω2)
Y (ω0 − ω3) Y (ω1 − ω3) Y (ω2 − ω3) Y (0)









Y+ =









Y (2ω0) Y (ω1 + ω0) Y (ω2 + ω0) Y (ω3 + ω0)
Y (ω0 + ω1) Y (2ω1) Y (ω1 + ω2) Y (ω1 + ω3)
Y (ω0 + ω2) Y (ω1 + ω2) Y (2ω2) Y (ω3 + ω2)
Y (ω0 + ω3) Y (ω1 + ω3) Y (ω2 + ω3) Y (2ω3)









what can be simplified even further for a single harmonic sound source to

Y− =









Y (0) Y (ω) Y (2ω) Y (3ω)
Y (−ω) Y (0) Y (ω) Y (2ω)
Y (−2ω) Y (−ω) Y (0) Y (ω)
Y (−3ω) Y (−2ω) Y (−ω) Y (0)









Y+ =









Y (0) Y (ω) Y (2ω) Y (3ω)
Y (ω) Y (2ω) Y (3ω) Y (4ω)
Y (2ω) Y (3ω) Y (4ω) Y (5ω)
Y (3ω) Y (4ω) Y (5ω) Y (6ω)









where ω denotes the fundamental frequency.
The crucial observation that has to be made is that the matrices B1,1 and B2,2

become band diagonal matrices when the sinusoidal components are sorted by their
frequency. If the components are sorted, the frequency differences for elements close to
the diagonal of Y− are small and will fall in the main lobe of Y (m) yielding a large
value. For the elements far from the diagonal, the frequency difference is large and will
fall outside the main lobe of Y (m) resulting in zero values.

For Y+ a similar reasoning is applicable. In this case however the values (k + l)ω
lie between zero and one. The main lobe of Y (m) is therefore divided over the left and
right hand side of the interval due to spectral replication. The smallest values result in
significant matrix elements in the upper left corner. The largest values contribute to the
lower right corner. As a result both B1,1 and B2,2 are band diagonal.

A typical method to solve a linear set of equations is the use of Gaussian elimination
with backsubstitution. This method has a time complexity O(K3). However, since the
system is band diagonal, this method requires only a linear time complexity O(K). In
addition, the space complexity can be reduced from O(K2) to O(K) by storing only the

values in the diagonal band. Therefore, a shifted matrix
←−
B l,k is defined as

←−
B l,k = Bl,l+k−D (6.29)

where D denotes the number of diagonals that are stored around the main diagonal.
Note that l = 0, . . . , L − 1 and k = 0, . . . , 2D. For (l, k) couples resulting in an index
outside B, a zero value is returned. The amplitudes are computed directly from the
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shifted versions of B1,1 and B2,2. By denoting this routine as SOLV E this is written
as

Ar = SOLV E(
←−−
B1,1,C1)

Ai = SOLV E(
←−−
B2,2,C2) (6.30)

The impact on the space and time complexity is the following:

• Since 2D + 1 is significantly smaller than the number of partials K, the use of a

shifted matrix
←−
B reduces the space complexity from O(K2) to O(K).

• By using an oversampled look-up table for the main lobe of Y (m), each element

of
←−
B can be computed in constant time resulting in a complexity O(K) for the

complete matrix.

• By solving the set of equations directly on
←−
B and C the time complexity is reduced

from O(K3) to O(K).

6.5.3 Example for a Single Harmonic Sound Source

The band diagonal property of B for a single harmonic sound source with a fundamental
frequency ω can be demonstrated in a very elegant way. In this case,the matrices Y−

l,k

and Y+
l,k yield

Y−
k,l = Y ((k − l)ω)

Y+
k,l = Y ((k + l)ω) (6.31)

Since both kω and lω lie between zero and 1
2 , their difference lies between −1

2 and 1
2 . As

was previously observed from Fig. 6.1, only values must be considered that lie within
the bandwidth of the frequency response, meaning that

−β

N
≤ (k − l)ω ≤ β

N
(6.32)

As a result only the values k− l must be taken into account between ⌈− β
Nω ⌉ and ⌊ β

Nω ⌋.
Note that since k and l denote the row and column index of Y−, k − l denotes the
diagonal. This implies that only 2D + 1 diagonal bands must be considered with

D = ⌊ β

Nω
⌋ (6.33)

The number of diagonal bands is dependent on the bandwidth β of the frequency re-
sponse, the number of samples N and the fundamental frequency ω. For instance, when
the window length is chosen to be three periods, N = 3

ω , and knowing that β = 8 for
the square Blackmann-Harris window, a value of 2 is obtained for D. This means that
only the main diagonal and the first two upper and lower diagonals are relevant.
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On the other hand, when considering the matrix Y+, the values for (k + l)ω lie
between zero and one. The frequency response of the window is in this case divided
over the left and right hand side of the interval. When considering the left half of the
response, only significant values are obtained when (k+ l)ω < β

N , which yields for N = 3
ω

that k + l ≤ 2. As a result, only significant values are obtained in the upper left corner.
For the right hand side of the interval, the main lobe ranges from 1−β/N to 1 yielding,

(k + l)ω > 1− β

N
(6.34)

⇒ k + l >
1

ω
− β

3
(6.35)

Note that 1
ω corresponds with the maximal possible value of k + l which corresponds

with the lower right corner of the matrix. Therefore, only the skew diagonals close to
these corners contain significant values. This derivation is illustrated by Figure 6.5.
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6.5.4 Efficient Computation of C

The results of the previous section move the bottleneck to the computation of C which
has a complexity O(KN). When writing

Cl =
N−1
∑

n=0

xnwn exp(2πiωl
n− n0

N
)

=

N−1
∑

n=0

[

1

N

N−1
∑

m=0

Xm exp(2πim
n

N
)

]

wn exp(2πiωl
n

N
)

=
1

N

N−1
∑

m=0

XmW (m + ωl) (6.36)

the frequency response W (m) can be computed as previously described by a scaled
table lookup. Analogue to Eq. (6.18), only samples of the main lobe must be computed,
yielding

Cl =
1

N

mmax
∑

m=mmin

XmW (m + ωl) (6.37)

By taking the real and imaginary part respectively, C1 and C2 are obtained.
Finally, the following computational complexity is obtained:

• The complexity for C is reduced from O(NK) to O(K). As a result, the complete
amplitude estimation can be performed for a given spectrum Xm in linear time.

• The computation of this spectrum however has a complexity O(N log N) which is
the final complexity of the amplitude estimation.

This complete method is depicted in Figure 6.6.
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σ 0 0.001 0.01 0.1

mean 1.56 × 10−8 2.71 × 10−8 1.10 × 10−6 1.08 × 10−4

MSE{Ar
1} 0.035 × 10−8 2.38 × 10−8 2.25 × 10−6 2.20 × 10−4

MSE{Ai
1} 0.067 × 10−8 2.49 × 10−8 2.33 × 10−6 2.32 × 10−4

MSE{Ar
2} 4.57 × 10−8 7.00 × 10−8 2.38 × 10−6 2.36 × 10−4

MSE{Ai
2} 1.11 × 10−8 3.51 × 10−8 2.37 × 10−6 2.36 × 10−4

MSE{Ar
3} 8.18 × 10−8 10.7 × 10−8 2.65 × 10−6 2.47 × 10−4

MSE{Ai
3} 2.17 × 10−8 4.68 × 10−8 2.49 × 10−6 1.80 × 10−4

Tab. 6.1: Mean Square Error of the Estimated Amplitudes

6.6 Analysis pre-processing

Before the amplitude computation, a pre-processing routine is executed. This routine
consists of sorting the sinusoidal components by their frequencies in order to obtain a
band diagonal matrix for B. In addition, frequencies that are very close to one another
are omitted since this would result in two exact rows in B making it a singular matrix.

Secondly, the pre-processing determines how many diagonals of the matrix B must be
taken into account. This is done by counting the number of sinusoidal components that
fall in the main lobe of each frequency response. The maximum number of components
over all frequency responses yields the value for D.

The amplitude estimation pre-processing routine is depicted in Figure 6.7.

6.7 Robustness

Least squares methods are widely used for amplitude estimation because they are simple
and easy to implement. However from a statistical point of view, these estimators are
suboptimal since the correlation in the noise is not taken into account. Techniques exist
which partition the signal in a number of overlapping intervals in order to estimate the
covariance matrix of the noise, resulting in weighted least squares (WLS) techniques [82].
However, because of the considerable computation cost, this is considered beyond the
scope of this research.

In order to test the robustness of the least squares estimator the following experiment
was performed. A windowed signal with a length of 200 samples was zero padded up
to a length 256, consisting of three sinusoidal components that are relatively closely
spaced ω̄ = [ 3

N
7
N

10
N ] and with amplitudes Ā = [0.6 + 0.4i, 10 + 5i, 0.2 + 0.2i]. These

frequency responses are depicted in Figure 6.8 and were computed by using a look-up
table containing the oversampled main lobe of a factor 10000.

By adding windowed white noise to the signal xn with a standard deviation σ the
noise sensitivity was tested. The resulta are shown in Figure 6.1. It can be seen that
the estimator follows closely the Cramer Rao Lower Bound which is for the amplitude
estimator 2σ2

N [45]. This was also shown in [82].
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6.8 Conclusion

Least squares amplitude estimators are frequently used in sinusoidal analysis. Most ap-
plications currently use the iterative methods because of their computational efficiency,
but since these methods are ”greedy”, they yield a suboptimal solution. The simultane-
ous estimation of the frequencies is used not very frequently because of its significantly
higher computational complexity. The results in this chapter show that the simultaneous
estimation can be realized in the same complexity as for the iterative estimation. This
makes the use of this optimized simultaneous estimator superior over the currently known
techniques. To the best of our knowledge, this is the first time that this optimization is
realized.
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CHAPTER 7

Frequency Optimization:
From O(N 3) to O(N log N)

7.1 Chapter Overview

In the previous chapter, an efficient method was proposed to compute the amplitudes
and phases for a given set of frequencies. In this chapter, methods are presented that
determine the initial values of the frequencies and optimize these frequencies with re-
spect to the error criterium in an iterative manner. To the best of our knowledge, only
two different methods are currently known for frequency optimization in the case of
overlapping frequency responses being

• Local quadratic optimization of the error function [99]

• Linearisation of the signal model [15, 97]

Both methods optimize the frequencies while the amplitudes are kept constant. The
complete sinusoidal analysis system applies the amplitude computation and frequency
optimization alternately so that they both converge to their optimal values.

By using the same methodology as in the previous chapter, the computational
complexity of the frequency optimization can again be optimized from O(K2N) to
O(N log(N)). This is shown for both the local quadratic approximation strategy (7.3)
and the model linearization strategy (7.4).

7.2 Initial Frequency Values

The error is very non linear in function of the frequencies and can therefore get stuck
in local minima. Therefore, the initial values of the frequencies plays an important role.
Different methods can be used
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• (Multi)pitch estimation: For the harmonic signal model (Eq. 7.16), any (multi)
pitch estimator can be used to compute a number of pitches from the original signal
[86]. From these pitches, sets of frequencies can be produced depending on prior
knowledge of the sound source.

• Peak picking. For the non harmonic model, individual local maxima can be
detected in the sampled spectrum obtained by an FFT. Note that in that case the
analysis window must be sufficiently large.

• Prior knowledge. In some cases, the frequencies and / or pitches can be read
from an external file such as a musical score or an annotation of the signal.

7.3 Local Quadratic Approximation

The problem of minimizing continuous differential functions of many variables is widely
studied and any of the conventional methods can be applied [4]. Many of these methods
make a locally linear or quadratic approximation of the error function.

A second order Taylor expansion of the multidimensional error function χ(ω,A)
around a vector ῡ is given by

χ(ω̄, A) ≈ C + (ω̄ − ῡ)T h|υ +
1

2
(ω̄ − ῡ)TH|υ(ω̄ − ῡ) (7.1)

where h|ω and H|ω denote respectively the gradient and Hessian of χ(ω, Ā) defined by

hk|ω ≡ ∂χ(ω̄; Ā)

∂ω̄k

Hl,k|ω̄ ≡ ∂χ(ω̄; Ā)

∂ω̄l∂ω̄k

yielding

h|ω = h|υ + H|υ(ω̄ − ῡ) (7.2)

H|ω = H|υ (7.3)

If the series is developed at the minimum of the function, it follows that

h|υ = 0 (7.4)

from which is derived that

υ = ω −H|−1
ω h|ω (7.5)

This method is called Newton optimization. From a rough estimation of the frequencies
ω̄(0), these values are optimized iteratively using

ω̄(r) = ω̄(r−1) −H|−1
ω̄(r−1)h|ω̄(r−1) (7.6)
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where the superscript (r) denotes the index of the iteration. Because of the large compu-
tational cost of the inversion of the Hessian matrix, quasi-Newton have been developed
which construct the inverse matrix iteratively [4]. In this chapter, it is shown that the
computational efficiency of Newton optimization can be improved considerably.

A second method is the gradient descent method for which the frequencies are opti-
mized using

ω̄(r) = ω̄(r−1) − ηh|ωr−1 (7.7)

where parameter η is called the learning rate. Many different variations have been pro-
posed such as using a momentum term, line search algorithms, using conjugate gradients
and scaled conjugate gradients [4].

Finally, following termination criteria can be used to stop the iterative optimization
of the frequencies, such as

• stop after a fixed number of iterations

• stop after fixed computation time

• stop when error function drops below a specified value

• stop when the error change drops below a specified value

• stop when error measure starts to increase.



130 Chapter 7. Frequency Optimization:From O(N3) to O(N log N)

7.3.1 Efficient Computation of the Gradient

An efficient method is developed which allows to compute each element of the gradient in
constant time yielding O(K) for all elements. However, the FFT of the noise residual Rm

is required implying an O(N log(N)) complexity. This noise residual rn is the difference
between the signal xn and the model x̃n. The gradient of the error function is written
as

∂χ(ω̄; Ā)

∂ωl

=
∂

∂ωl

N−1
∑

n=0

[

xn − wn
1

2

K−1
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Note that Eq. 6.7 was used and that the sum over m can be limited to the interval
around ωl, as can be computed from the bandwidth β of W ′(m) as given in Eq. (6.18).
Here a similar computational gain is obtained as for the vector C in the previous chapter.

7.3.2 Efficient Computation of the Hessian

It is derived that the Hessian matrix for the non harmonic signal model is band diagonal
and that each element of the Hessian is computed in constant time. The computation
of all band diagonal elements is computed in O(K) time. Since the fourier transform of
the noise residual Rm is required the total complexity is O(N log(N)).
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The Hessian for the non harmonic model is computed

∂χ(Ā; ω̄)
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This partial derivative results in the sum of two terms. The first term yields
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Next, the second term is computed, resulting in
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= ℜ(AlApY
′′(ωl + ωp)−ℜ(AlA

∗
pY

′′(ωl − ωp)) (7.9)

using Eq. 6.7. Here, a same conclusion can be drawn as for the matrix B which was used
for the computation of the amplitudes. The first term of the Hessian computation results
only in nonzero values for the diagonal elements of the Hessian. The second term also
produces only significant values around the main diagonal elements since the frequency
differences fall in the main lobe of Y ′′(m). As a result, the Hessian is a band diagonal
matrix, implying that only the elements close to the diagonal must be computed and
can be stored in a shifted form, denoted.

←−
H l,k = Hl,l+k−D (7.10)

Again, the gaussian elimination routine SOLV E, adapted to this shifted matrix, allows
to compute the frequency optimization step in linear time yielding

ω(r+1) = ω(r) − SOLV E(
←−
H,h) (7.11)

The complete frequency optimization routine is depicted in Figure 7.1.
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7.4 Model Linearization

In [15], a second frequency optimization method is proposed for a given set of amplitudes
Ak and a rough estimation of the frequencies ω̂k. A first order Taylor expansion of the
frequency response around the roughly estimated frequencies ω̂k yields

W (m− ωk) ≈W (m− ω̂k) + W ′(m− ω̂k)(ω̂k − ωk) (7.12)

which can be expressed in the time domain as

wn exp(2πiωk
n−n0

N
) ≈ wn exp(2πiω̄k

n−n0
N

) +

wn2πin−n0
N

exp(2πiω̄k
n−n0

N
)(ω̂k − ωk)

yielding
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1

2
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∑
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[Ak exp(2πiω̂k
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k exp(−2πiω̂k
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N
)] (ω̂k − ωk)))

This error function depends linearly on the difference with the true frequency value ωk.
By putting the partial derivative with respect to (ω̃l − ωl) to zero

∂
∑

n(xn − x̃n)2

∂(ω̂l − ωl)
= 0 (7.13)

and using rn = xn − x̃n, one obtains

2
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∑

n

(

rn −
1

2
2πin−n0

N
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K−1
∑
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[Ak exp(2πiω̂k
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k exp(−2πiω̂k
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2
2πin−n0

N
wn [Al exp(2πiω̂l

n−n0
N

)−A∗
l exp(−2πiω̂l

n−n0
N

)]

)

= 0

This expression is written in a matrix form resulting in

GA = g (7.14)
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with

Al = ω̂l − ωl

gl =

N−1
∑

n

rnwn2πin−n0
N

(Al exp(2πiω̂l
n−n0

N
)−A∗

l exp(−2πiωl
n−n0

N
))

=

N−1
∑

n

[

n−n0
N

N−1
∑

m

Rm exp(2πimn−n0
N

)

]

wn2πin−n0
N

(Al exp(2πiωl
n−n0

N
)−A∗

l exp(−2πiωl
n−n0

N
))

=
1

N

N−1
∑

m

Rm(AlW
′(m + ωl) + A∗

l W
′(m− ωl))

=
2

N

N−1
∑

m

ℜ(RmA∗
l W

′(m− ωl))

Gl,k = 2
N−1
∑

n=0

[

−wn
1

2
2πin−n0

N
(Ak exp(2πiωk

n−n0
N

)−A∗
k exp(−2πiωk

n−n0
N

))

]

[

−wn
1

2
2πin−n0

N
(Al exp(2πiωl
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−A∗
kAlY
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= ℜ(AkAlY
′′(ωk + ωl)−AkA

∗
l Y

′′(ωk − ωl)) (7.15)

When comparing the vector g with h one observes that these vectors are identical.
Also G and H are very similar and differ only by their diagonal values. The speed of
convergence of both methods is compared in the next section.

7.5 Comparison of the Speed of Convergence

The speed of convergence is compared for the local quadratic approximation method
and the model linearisation method. A short time signal with length M ′ = 200 and zero
padded up to length N ′ = 256 was synthesized containing three partials with complex
amplitudes Ā = [1 + i, 1 + i, 1 + i] and frequencies ω̄ = [ 4

N , 7
N , 10

N ]. The initial frequency
values were chosen relatively far away from the optimal values at ω̄ = [ 3

N , 8
N , 12

N ]. How-
ever these initial values are chosen so that that the frequency responses of the initial
frequency and the optimal frequency still overlap. Figure 7.2 shows the evolution of the
frequency values for each iteration. In a first experiment, the exact amplitudes were
assumed to be known. This resulted in a very fast convergence for all partials which
was obtained in about 4 or 5 iterations. For the second experiment where also the am-
plitudes are estimated in each iteration, convergence is considerably slower, resulting
in minimum 30 iterations. It must be noted however that in practical cases the initial
frequency values is much nearer to the optimal values requiring less iterations.
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Fig. 7.2: Convergence for frequency optimization. Left: Local quadratic approxima-
tions, Right: Model linearization
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Note that for this experiment, no significant difference is observed between both
frequency optimization methods.

7.6 Harmonic Signal Model

In previous derivation, no prior relationship between the frequencies was imposed. On
the other hand, when the sound sources are known to be pitched, a model containing a
harmonic series can be used which is written as

x̃n = wn
1

2

K−1
∑

k=0

Qk−1
∑

q=1

(

Ak,q exp(2πiqωk
n− n0

N
) + A∗

k,q exp(−2πiqωk
n− n0

N
)

)

+rn (7.16)

In this case, the model consists of K sources each modelled by Qk harmonic components.
By contrast to the previous method, only the fundamental frequencies are optimized.

7.6.1 Gradient for Harmonic Model

By following a very similar derivation as for Eq. (7.8) the gradient of the error function
of the harmonic model yields

∂χ(ω̄; Ā)

∂ωl
=

2

N

Ql−1
∑

q=1

mmax
∑

m=mmin

ℜ
(

RmqA∗
l,qW

′(m− qωl)
)

(7.17)

7.6.2 Hessian for Harmonic Model

Analogue to Eq. (7.8) and Eq. (7.9) the Hessian for the harmonic model results in two
terms. The first term results in

−δlp
2

N

Ql−1
∑

q=1

mmax
∑

m=mmin

ℜ
(

Rmq2A∗
p,qW

′′(m− qωp)
)

(7.18)

which again produces only non zero values at the diagonal of the Hessian matrix.
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For the second term one obtains
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(7.19)

The cross product of all terms in the sum can be optimized by taking into account
the bandlimited property of Y ′′(m), implying that only components which have close
frequencies must be evaluated. For instance for a given value q, and a given frequency
response bandwidth β, only the r values must be considered for which rωl falls in the
main lobe. Since

0 ≤ qωp ≤<
N

2

0 ≤ rωl ≤<
N

2

the input values of Y ′′ are bounded by

−N

2
≤ qωp − rωl ≤<

N

2
0 ≤ qωp + rωl ≤< N

since the main lobe of Y (qωp − rωl) ranges from −N
M β to N

M β. This implies that for
Y (qωp − rωl) only the r values must be considered for which

−Nβ/M ≤ qωp − rωl ≤ Nβ/M

⇒ qωp −Nβ/M

ωl
≤ r ≤ qωp + Nβ/M

ωl
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For Y (qωp + rωl) the main lobe is divided over the left and right side of the spectrum
due to spectral replication yielding the intervals [0, N

M β] and [N − N
M β,N ]. The two

intervals for Y (qωp + rωl) yield

0 ≤ qωp + rωl ≤ Nβ/M

⇒ −qωp

ωl
≤ r ≤ Nβ/M − qωp

ωl

and

N −Nβ/M ≤ qωp + rωl ≤ N

⇒ N(1− β/M)− qωp

ωl
≤ r ≤ N − qωp

ωl

This results finally in

Qp−1
∑

q=1

[rmax,1
∑

r=1

qrℜ(Ap,qAl,rY
′′(qωp + rωl)

+

rmax,2
∑

r=rmin,2

qrℜ(Ap,qAl,rY
′′(qωp + rωl)

−
rmax,3
∑

r=rmin,3

qrℜ(Ap,qA
∗
l,rY

′′(qωp − rωl)





with

rmax,1 = ⌊Nβ/M − qωp

ωl
⌋

rmin,2 = ⌈N(1 − β/M) − qωp

ωl
⌉

rmax,2 = ⌊N − qωp

ωl
⌋

rmin,3 = ⌈qωp −Nβ/M

ωl
⌉

rmax,3 = ⌊qωp + Nβ/M

ωl
⌋

As a result the double sum can be computed in linear time. For the harmonic model,
the hessian is not band diagonal but evidently, fewer frequencies are required.

The computation of the gradient and Hessian for the harmonic model is depicted in
figure 7.3 and 7.4
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7.7 The complete method

In figure 7.7, the complete analysis / synthesis method is depicted. This method can be
applied for a harmonic or non-harmonic signal model.

First, the initial frequencies are computed. In the case of the harmonic model, a
(multi)pitch estimator is used which determines an initial set of pitches from which a
series of frequencies is computed for each source. For the non-harmonic model, peak
picking can be used on the spectrum of the signal.

The preprocessing routine sorts the frequencies, removes frequencies that are too
close to one another and determines how many diagonal bands D must be considered
for the amplitude computation. Then, the amplitudes are computed. This is realized
by computing the band diagonal elements of matrix B and storing them in a shifted

form
←−
B . The matrix C is computed next and by solving the band limited system, the

amplitudes are obtained.
The IFFT syntesizer computes the spectrum X̃m from the amplitudes Ā and frequen-

cies ω̄. The difference with the original spectrum Xm results in the residual spectrum
Rm which is used for the frequency optimization in the next step.

In the case of the non-harmonic model, the Hessian matrix H is band limited and is

stored in a shifted form
←−
H. A second result of this property is that its inverse can be

computed in linear time. The hessian and gradient are used to optimize the frequency
values (Figure 7.1).

In the harmonic case, the fundamental frequencies of the different sources is opti-
mized. Here, the Hessian is not band diagonal but it is very small since typically just a
few sources are considered (Figure 7.3 and 7.4).

The iterative loop is continued until a stopping criterium is met. The results of
the analysis are; the synthesized signal x̄n, the noise residual rn, the amplitudes Ā and
frequencies ω̄. Note that the amplitudes are complex and therefore contain the phases.

7.8 Results

Results are presented for the complete analysis/synthesis method for a single monophonic
sound source. The window length was adapted to the pitch and was chosen chosen
to be three fundamental periods. Results are presented for a recording of a trumpet
playing slurred notes. This sound signal is shown in Fig. 7.6 and is particularly difficult
because of the many transients. However, the obtained resynthesis is free of artifacts
and undistinguishable from the original signal by our listening experience. Figure 7.7
shows the estimated amplitudes and frequencies over time. Finally, Figure 7.8 shows the
detail of a transient and its resynthesis. In addition, a lower pitched version is presented
of which the fundamental period is enlarged. One can observe clearly how the lower
pitched sound follows the amplitude envelope of the original sound.
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7.9 Conclusions and Future Work

The results of last two chapters provide a complete analysis/synthesis system which is
able to handle overlapping frequency responses by computing all amplitudes simultane-
ously using a least squares method. Although the principles on which these methods are
based are commonly known, they are not frequently applied because of the large com-
putational effort they require. Our contribution consists of optimizing the amplitude
estimation which had originally a third power complexity, to O(N log(N)). Also for the
two known frequency optimization methods this computational gain was realized.

The frequency optimization techniques that were discussed previously are based im-
plicitly on the assumption that the amplitudes are independent of the frequencies mean-
ing that

∂A(ω̄)

∂ωk
= 0 (7.20)

for each k. One remarkable observation when looking at Figure 7.2 however, is that
the frequency optimization is very fast in case the correct amplitudes are known. This
suggests that the slow convergence is due to this incorrect assumption.

In order to illustrate the frequency dependence of the amplitudes, a simple experi-
ment was conducted. A spectrum was computed consisting of three sinusoidal compo-
nents with amplitudes Ā = [111] and frequencies ω̄ = [ 4

N
7
N

10
N ]. The frequency depen-

dence was tested by taking different values for ω2 ranging from 4.5
N to 9.5

N and computing
the amplitudes with these modified values. The results are depicted in Figure. 7.9, from
which a strong dependence can be concluded. Note that the amplitudes all obtain their
desired values when ω2 reaches its true value being 7

N .
A future challenge consists of including the frequency dependence of the amplitudes

in the gradient and Hessian.
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Conclusions

In the first part of the thesis, methods are developed which determine in an automatic
manner the control parameters for a physical model of a trumpet.

• Chapter 1: Non Parametric Control Parameter Estimation

A non parametric control parameter estimation method is developed which is based
on K-nearest neighbors classification. This approach does not use any prior infor-
mation on the relationship between the control parameters and the signal features
and is based entirely on a deta set. First, a large set of sounds is synthesized.
For this set of sounds, perceptually relevant features are computed which are con-
catenated with their corresponding control parameters and stored in a data set.
In order to simulate a given recording, the same features are computed. Then,
the nearest neighbor of this feature vector is computed from the data set, and the
corresponding control parameters are returned. These parameters are finally used
to synthesize a sound signal that simulates the original signal.

This approach is implemented and tested for a physical model of trumpet developed
by the Analysis/Synthesis team of IRCAM. The results show that the method is
successful for sounds that are well represented by the data set. However, the
method has very weak generalization properties which means that the method has
difficulties simulating other sounds than the ones that are in the data set. The
main reason for this problem is that the feature space has a larger dimensionality
than the control parameter space. This makes the feature space very sparse. In
addition, the following problems that were encountered.

– The physical constraints are not respected.

– The distance criterium does not have a physical meaning and contains a user
specified parameter.

– The feature extraction fails during transients. In this case, the control pa-
rameters are extrapolated from their context.
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• Chapter 2: Fast K-Nearest Neighbors Computation

The size of the data set can prohibit the practical use of the nearest neighbor
classifier. Therefore, branch and bound search algorithms were developed of which
the time complexity is sublinear in function of the number of feature vectors.

In a pre-processing step, the data is decomposed hierarchically which can be repre-
sented by a tree. Each node of the tree represents a subset of the data. The search
algorithm itself is a depth first tree traversal algorithm which avoids nodes which
cannot contain nearest neighbors. The rule which determines whether a node can
be eliminated is called the elimination rule and is based on a lower bound distance
between a vector and a node.

In this work, a statistical model of the total computation cost is proposed from
which two efficiency criteria can be derived. The first criterium states that each
child node should contain the same number of feature vectors while the second cri-
terium expresses that the number of vectors that lie close to the hyperplane should
be minimized. It is shown that this is the case when the separating hyperplane is
orthogonal to the maximal variance.

Another aspect that influences the efficiency of the search algorithm is the traversal
order. A local optimization of the traversal order is realized by pushing the child
that most likely contains the nearest neighbors last so that it is evaluated first.
When the traversal order is optimized globally, the node is selected which has the
smallest lower bound distance.

The decomposition level is a user defined parameter that has a strong influence on
the efficiency. A method is proposed which determines the optimal decomposition
using the statistical cost model.

By combining the decomposition methods, elimination ruled and traversal orders,
ten different search algorithms are obtained. These algorithms are compared for
artificial data sets containing gaussian distributed vectors after determining the
optimal decomposition level. For a low number of dimensions, the differences
between the number of traversed nodes is quite small and the evaluation cost of
a single node is the predominant factor. For a high number of dimensions, the
efficiency of the elimination rule was more important than the node evaluation
cost. The globally optimized traversal order introduced too much overhead and
failed to realize a lower computation cost.

One can conclude that the elimination rules become less effective when the num-
ber of dimensions increases. Fortunately, real high dimensional data sets are often
highly dependent which makes that they can be represented in a lower dimen-
sional vector space. The strength of our decomposition method is that it adapts
itself automatically to the distribution of the vectors and takes into account local
correlations of the data. Interestingly, lower computation costs were obtained for
correlated and clustered data.
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• Chapter 3: Physical Model of a Trumpet and its Constraints

Although the initial objective was to develop a method which uses as few prior
knowledge as possible, the non parametric estimation technique returned control
parameter values that did not respect the physical constraints of a real instrument.
When a sound with vibrato was simulated, a varying tube length was returned.
This problem can only be tackled by designing data sets that take into account
these constraints. When a player controls a trumpet he can only obtain seven
different tube lengths by pressing the valves. Therefore, a data set must be designed
which only uses these fixed tube lengths.

By studying the physical model and its implementation, it is shown that the rela-
tionship between the tube length and lip frequency is particularly important. By
increasing the lip frequency and keeping the tube length constant, strong reso-
nances were obtained for multiples of the resonance frequency of the tube. Such
a strong resonance is called a ”mode”, and by exciting the different modes of the
tube, different notes are obtained.

Some very simple and approximative relationships are derived between the tube
length and lip frequency which results in the optimal resonance. From this result
it was possible to determine a set of tube lengths with respect to a given tuning
frequency. These tube lengths were then used for the synthesis of the data set.

• Chapter 4: Discrete Cepstrum Coefficients as Perceptual Features

Since a trumpet sound is quasi-periodic, it can be described appropriately by its
fundamental frequency and the relative amplitude of all partials. Many methods
are available to model the envelope of a short time spectrum such as linear predic-
tion coefficients, the cepstrum and the discrete cepstrum. For a harmonic signal,
where the spectrum consists of regularly spaced peaks, the discrete cepstrum is the
most appropriate method. In order to compute the discrete cepstrum coefficients,
the spectrum is first modelled by a set of sinusoids for which the amplitudes and
frequencies are computed. The discrete cepstrum is then computed by fitting a
harmonic cosine series to the amplitude values. In addition, the perceived fre-
quency scale of a human listener is taken into account by expressing the envelope
on the Mel scale.

However, when these coefficients are plot over consecutive time frames, one ob-
serves that they are very noisy even when the perceived sound is very stable. The
reasons for this instability are twofold. A first reason is that overfitting occurs.
Since the envelope values are only defined at the frequencies of the sinusoids, one
cannot predict its behavior between two spectral peaks. This can result in en-
velopes which are very accurate at the peaks but oscillate very wildly in between.
This problem is even more pronounced when the spectral peaks are transformed
to the Mel sale since this results in very large gaps in the low frequency band.
Known methods such as cloud smoothing and regularization all rely on user spec-
ified parameters. It is shown to be quite easy to obtain a smooth envelope on the
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linear scale by adapting the order. This led to the idea to compute the Mel scale
coefficients from the linear scale coefficients directly which was name posterior
warping.

A second reason is that in the high frequency band many of the spectral peaks
have a small amplitude and therefore a very low signal to noise ratio. Although the
perceptual relevance of this low amplitude partials is very small, their noise-like
behavior is amplified enormously by the log function. The effect of these partials
is reduced by applying a simple threshold.

• Chapter 5: A Conditional Estimation Technique for Determining the
Control Parameters

The results obtained in the two previous chapters are now taken into account to
develop a new non parametric estimation technique for the control parameters.
This means that the physical constraints are taken into account and that the
features have been stabilized.

The distance criterium that was used in the previous method contains a parameter
λ which allows to control the relative importance of the spectral and tonal similar-
ity. In the new method, the two similarity criteria were kept separately. Evidently,
it is not guaranteed that a minimum can be found for both criteria.

Therefore, one criterium is given a higher priority resulting in a method which was
tentatively named conditional estimation. The method realizes the optimization
with respect to two parameters P1 and P2, and takes into account two criteria
D1(P1, P2) and D2(P1, P2). For each value P1, the value P2 is determined for
which the similarity criterium D2 is optimized. This is expressed by f yielding
P2 = f(P1). By substituting P2 in the argument of D1 by this function, one obtains
D1(P1, f(P1)). The function D1 is now one-dimensional and is the optimized for
P1. This optimal value is then used to compute the second parameter using P2 =
f(P1). The name conditional optimization was chosen because the function f
yields the optimal value P2 under the condition the other parameter has a given
value P1.

The method was applied successfully on the control parameter estimation problem.
It was shown to be very robust, and yields a unique solution for each parameter.

The estimation of the control parameters could not be performed at the transients
since the feature extraction which is based on sinusoidal modelling fails. The main reason
is that the analysis window is quite large which makes it not suitable to analyze fast
variations in frequency and amplitude. Therefore, the second part of this dissertation
studies methods which allow to use very small analysis windows.

• Chapter 6: Amplitude Estimation, from O(K2N) to O(N log(N))

When modelling a short time signal of length N by a sum of K sinusoids, a least
squares method is commonly used to compute the amplitudes for a given set of
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frequencies. When the frequency responses of the individual sinusoidal components
do not overlap, the amplitude can be computed for each sinusoid iteratively which
requires an O(N log(N)) time complexity. However, when small windows are used,
all frequency responses overlap which implies that all amplitudes must be computed
simultaneously. It is known that this requires a complexity O(K2N).

Our contribution consists of reducing this time complexity to O(N log(N)). This
is realized by explicitly including an analysis window with a bandlimited frequency
response to the least squares derivation. Therefrom, it is shown that the set of equa-
tions which is solved to compute the amplitudes is band diagonal. This results in
linear time complexity. However, the estimation is realized on the spectrum which
is computed by a fast fourier transform requiring an O(N log(N)) complexity.

• Chapter 7: Frequency Optimization, from O(K2N) to O(N log(N))

In the case that frequency responses are not overlapping, the frequency can be
estimated by determining the value at the maximum of each peak. For small
analysis windows however, the individual peaks cannot be distinguished which
implies that an iterative optimization method must be used.

Any of the conventional optimization techniques can be applied for the optimiza-
tion of the frequencies. In this work, Newton’s method is considered and a model
linearization method. Again, the computational complexity can prohibit its practi-
cal use. For both methods, we show that by applying the same methodology as for
the amplitude estimation, the computational complexity can again be reduced to
O(N log(N)). No significant difference was observed for the speed of convergence
of both methods.
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Nederlandse Samenvatting

Dit proefschrift behandelt de automatische schatting van controleparameters voor muzi-
kale synthesealgoritmes ter simulatie van een gegeven signaal. In het domein van de
muzieksynthese worden twee paradigmas onderscheiden namelijk; signaalmodellerings-
synthese die gebaseerd is op een wiskundig model en synthese door fysische modellering
die gebaseerd is op de simulatie van de akoestische en mechanische eigenschappen van
een muziekinstrument.

Singaalmodelleringssynthese beschrijft een geluidssignaal in termen van een wiskundig
model waarvoor de parameters kunnen berekend worden door de fout tussen een gegeven
signaal en het model te minimaliseren. Een frequent gebruikte methode is sinusöıdale
modellering waarbij het signaal wordt beschreven als een som van sinusöıdes met tijds-
variërende amplitudes en frequencties. Het residu wordt dikwijls gemodelleerd door
gefilterde witte ruis. Vele technieken zijn reeds bekend die toelaten om deze parameters
op een accurate manier te bepalen waardoor een synthese van zeer hoge kwaliteit wordt
bekomen.

Voor fysische modellen, is de schatting van de controleparameters veel moeilijker om-
dat deze parameters niet op een triviale manier gerelateerd zijn met het voortgebrachte
signaal. De meeste muziekinstrumenten gedragen zich op een niet-lineaire manier. Dit
is bijvoorbeeld het geval wanneer de lippen van een trompetspeler tegen elkaar botsen,
bij het aanstrijken van een vioolsnaar en bij het openen en sluiten van de stembanden.
Daarenboven doet zich ook vaak een terugkoppelling voor zoals bij de weerkaatsing van
een drukgolf aan het einde van een buis, of een transversale golf die wordt gereflecteerd
aan het einde van een snaar. Dit werk, heeft als doel om zo weinig mogelijk voorafgaande
informatie over het fysisch model te gebruiken zodat het mogelijk is de schattingsmeth-
odes toe te passen op andere modellen dan het model dat in dit proefschrijft wordt
bestudeerd. De voorgestelde methodes zijn afkomstig uit het patroonherkenningsdomein
en zijn zuiver gebaseerd op een data set die invoer- en uitvoerwaarden bevat.
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In het eerste deel van de thesis, wordt de schatting van controleparameters behandeld
voor een fysisch model van een trompet.

• Hoofdstuk 1: Niet-Parametrische Schatting van Controleparameteres

Een niet-parametrische schattingsmethode wordt voorgesteld die gebaseerd is op
classificatie door K-dichtste naburen (K-nearest neighbors). Deze aanpak gebruikt
geen voorkennis over de relatie tussen de controleparameters en signaalkenmerken
en is volledig gebaseerd op de data set. Eerst wordt een grote set geluiden gesyn-
thetiseerd. Uit deze geluiden worden relevante signaalkenmerken berekend die
vervolgens geconcateneerd worden met de overeenkomstige controleparameters en
uiteindelijk worden opgeslagen in de data set. Om een gegeven opname te simuleren
worden ook uit dit signaal deze kenmerken berekend. Vervolgens wordt de dichtst
bijzijnde nabuur van de data set bepaald en worden de overeenkomstige controlepa-
rameters als resultaat teruggegeven. Deze parameters worden uiteindelijk gebruikt
om een geluidssignaal te synthetiseren dat het oorspronkelijk signaal simuleert.

Deze benadering werd gëımplementeerd en getest voor een fysisch model van een
trompet ontwikkeld in de Analyses/Synthese groep van het IRCAM. De resul-
taten tonen aan dat de methode succesvol geluiden simuleert die adequaat gerep-
resenteerd worden in de data set. De methode heeft echter zeer zwakke general-
isatieëigenschappen wat betekent dat ze niet behoorlijk werkt voor andere geluiden
dan degene die in de data set aanwezig zijn. De hoofdreden voor dit probleem is
dat het aantal dimensies van de kenmerkruimte groter is dan de ruimte van de
controleparameters. Dit maakt de kenmerkruimte zeer ijl. Daarenboven werden
volgende problemen waargenomen.

– De fysische beperkingen worden niet gerespecteerd.

– De afstandsmaat heeft geen fysische betekenis en omvat een parameter die
door de gebruiker moet worden ingesteld.

– De kermerkextractie faalt tijdens transiënten. In dit geval worden de con-
troleparameters afgeleid uit de context.

• Hoofdstuk 2: Snelle Berekening van de K-Dichtste Naburen

De grootte van de data set kan het praktisch gebruik van dichtste naburen clas-
sificatie aanzienlijk bemoeilijken. Daarom werden ”verdeel-en-begrens” zoekalgo-
ritmes (branch and bound search algorithms) ontwikkeld waarvoor de tijdscom-
plexiteit sublineair is in functie van het aantal kenmerkvectoren.

Vooraf wordt de data hiërarchisch gestuctureerd wat kan worden voorgesteld door
een boom. Elke node van deze boom stelt een subset van de data voor. Het
zoekalgoritme zelf doorloopt de boom in een ”diepte eerst” volgorde waarbij nodes
die geen dichtste naburen bevatten worden vermeden. De regel die bepaalt of een
node effectief naburen bevat wordt de eliminatieregel genoemd en is gebaseerd op
een benedengrens van de afstand tussen een vector en een node.
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In dit werk, wordt een statistisch model van de totale berekeningskost voorgesteld
waaruit twee efficiëntiecriteria kunnen worden afgeleid. Het eerste criterium stelt
dat elke subnode een gelijk aantal vectoren moet bevatten terwijl het tweede cri-
terium uitdrukt dat het aantal vectoren die dicht bij het hypervlak liggen moet
worden geminimaliseerd. Er wordt aangetoond dat dit het geval is wanneer de
data wordt opgesplitst volgens het hypervlak dat orthogonaal is met de maximale
variantie van de dataset.

Een ander aspect dat de efficiëntie bëınvloedt is de doorloopvolgorde. Een lokaal
geoptimaliseerde doorloop wordt gerealiseerd door de node met de kleinste onder-
grens laatst op de stack te zetten zodat deze eerst wordt behandeld. De door-
loopvolgorde kan ook globaal geoptimaliseerd worden door uit de hele stack de
node te selecteren met de kleinste benedengrens.

Het decompositieniveau is een parameter die door de gebruiker wordt ingesteld en
eveneens een grote invloed heeft op de rekentijd. Er wordt een methode voorgesteld
die toelaat om de optimale decompositie te bepalen door gebruik te maken van het
statistische model van de rekentijd.

Door de decompositiemethodes, eliminatieregels en doorloopvolgordes te combineren
werden tien verschillende zoekalgoritmes bekomen. Deze zoekalgoritmes werden
vergeleken voor artificiële data sets die gaussisch verdeelde vectoren bevatten na-
dat het optimale decompositieniveau werd bepaald. Voor een laagdimensionale
kenmerkruimte is het verschil in aantal doorlopen nodes voor de verschillende
eliminatieregels vrij klein, waardoor de doorloopkost van een node de belangri-
jkste factor is. Voor een hoogdimnesionale kenmerkruimte echter. is de efficiëntie
van de eliminatieregel belangrijker dan de evaluatiekost. De globale optimalisatie
van de doorloopvolgorde introduceert te veel overhead en slaagt er niet in een
lagere rekentijd te bekomen.

Men kan concluderen dat de eliminatieregels minder efficiënt worden wanneer het
aantal dimensies toeneemt. Bij echte data sets echter, zijn de verschillende ken-
merken vaak sterk gerelateerd wat maakt dat ze kunnen worden voorgesteld in een
ruimte met minder dimensies. De kracht van onze methode is dat ze zich automa-
tisch aanpast aan de distributie van de vectoren en lokale correlaties in de data in
acht neemt. Interessant om op te merken is dat voor gecorreleerde en geclusterde
data lagere rekentijden werden bekomen.

• Hoofdstuk 3: Fysisch Model van een Trompet en haar Fysische Beperkin-
gen

Hoewel het oorspronkelijke doel erin bestond om een methode te ontwikkelen die zo
weining mogelijk voorkennis vergt, werd er waargenomen dat de niet parametrisch
schattingsmethode controleparameters opleverde die de fysische beperking van
het instrument niet respecteerden. Wanneer een opname met vibrato werd ges-
imuleerd, resulteerde dit namelijk in een variatie van de buislengte. Dit probleem
kan alleen worden verholpen door bij het ontwerp van de data set deze beperkingen
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in acht te nemen. Een trompetspeler kan slechts zeven verschillende buislengtes
bekomen door het indrukken van de ventiles. Daarom moet een data set gebruikt
worden die eveneens werd bekomen door deze vaste buislengtes.

Door het fysisch model en zijn implementatie te bestuderen wordt er aangetoond
dat het verband tussen de buislengte en lip frequenctie van zeer groot belang is.
Door de buislengte constant te houden en de lipfrequenctie continu te verhogen
werden werden sterke resonanties waargenomen bij veelvouden van de resonantie
frequenctie van de buis. Zulk een sterke resonantie wordt een ”mode” genoemd en
door de verschillende modes te exciteren worden de verschillende noten bekomen.

Enkele zeer eenvoudige en benaderende relaties tussen de buislengte en lipfrequen-
tie werden afgeleid waarvoor de optimale resonantie werd bekomen. Met dit re-
sultaat was het mogelijk om een set van buislengtes te bepalen voor een gegeven
stemmingsfrequentie. Deze buislengtes werden vervolgens gebruikt voor het ont-
werp van de dat set.

• Hoofdstuk 4: Discrete Cepstrum Coefficienten als Perceptuele Ken-
merken

Daar een trompetgeluid quasi periodisch is, kan het beschreven worden door een
harmonische reeks van sinusöıdes. De relatieve amplitude van deze sinusöıdes
en de grondfrequenctie zijn daarom geschikte kenmerken om deze signalen te
karakteriseren. Verschillende methodes zijn bekend om de spectrale enveloppe
(functie die energieverdeling over het spectrum beschrijft) te modelleren. Zo kan
deze enveloppe functie gekarakteriseerd worden door middel van lineaire predictie
coëfficiënten, cepstrum coëfficiënten en het discreet cepstrum. Het is bekend dat
voor een harmonisch spectrum waar de pieken zich op regelmatige afstanden in het
spectrum bevinden, het discreet cepstrum de meest geschikte manier is. Na een
analyse die de frequenties en amplitudes van de sinusöıdale componenten berekent
uit het spectrum, worden de discrete cepstrum coefficienten berekend door een ha-
monische cosinus reeks te fitten aan de amplitudes. Bovendien wordt de enveloppe
op de Mel frequentie schaal uitgedrukt die de toonhoogteschaal voorstelt zoals ze
door het menselijk oor wordt waargenomen.

Wanneer echter, de discrete cepstrum coëfficiënent werden gevisualiseerd over ver-
schillende tijdsframes, kon men waarnemen dat deze zeer veel ruis bevatten hoewel
het originele signal als zeer stabiel wordt waargenomen. De reden hiervoor is
tweeledig. Ten eerste kan er zich overfitting voordoen. Sinds de enveloppe functie
alleen is gedefinieerd voor de waargenomen frequenties is het gedrag van de functie
tussen deze frequenties niet gedefiniëerd. Dit kan resulteren in enveloppes die zeer
exact zijn op de waargenomen frequenties, maar sterk oscilleren ertussen. Dit is
meer uitgesproken op de Mel schaal daar dit resulteert in grote intervallen in de
lage frequentieband. Gekende methodes zoal cloud smoothing en regularisatie zijn
allen afhankelijk van manueel ingestelde parameters. Er werd aangetoond dat op
de lineaire schaal het vrij eenvoudig is om overfitting te vermijden door de orde van
het discreet cepstrum aan te passen. Dit leidde tot het idee om de coefficiënten op
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de Mel schaal rechtstreeks te berekenen uit de coëfficienten op de lineaire schaal.
Deze methode werd posterior warping genoemd.

Een tweerde reden is dat in de hoge frequentieband de amplitudes zeer klein zijn en
bijgevolg een zeer kleine signaal tot ruis verhouding hebben. Hoewel de perceptuele
relevantie van deze amplitudes te verwaarlozen is wordt hun random gedrag enorm
uitvergroot door de log functie. Het effect hiervan werd gereduceerd met behulp
van een eenvoudige drempelwaarde.

• Hoofdstuk 5: Een Voorwaardelijke Parameterschattingstechniek ter Bepal-
ing van de Controleparameters

De resultaten die werden bekomen in de vorige twee hoofdstukken worden nu in
acht genomen om een nieuwe niet-parametrische schattingsmethode voor de con-
troleparameters te ontwikkelen. Dit betekent dat de fysische beperkingen worden
gerespecteerd en dat het discreet cepstrum werd gestabiliseerd.

De afstandsmaat die gebruikt werd in de vorige hoofstukken omvat een parameter λ
die toelaat om het relatief belang van het spectraal en tonaal verschil te controleren.
In de nieuwe methode worden deze criteria apart geoptimaliseerd. Uiteraard is het
niet gegarandeerd dat voor beide criteria een minimum kan worden gevonden.

Daarom wordt het ene criterium met een hogere prioriteit behandeld dan het an-
dere. De methode realiseert de optimalisatie met betrekking tot twee parameters
P1 en P2 en neemt de criteria D1(P1, P2) en D2(P1, P2) in acht. Voor elke waarde
P1, wordt de waarde P2 geoptimaliseerd met betrekking tot criterium D2. Dit
wordt uitgedrukt door een functie f wat resulteert in P2 = f(P1). Door P2 te
substitueren in het argument van D1 bekomt men D1(P1, f(P1)). De functie is nu
1-dimensionaal en wordt vervolgens geoptimaliseerd in functie van P1. De naam
conditionele optimalisatie werd gekozen omdat de functie f de optimale waarde P2

teruggeeft voor een welbepaalde waarde P1.

Deze methode werd succesvol toegepast op het schattingsprobleem van de con-
troleparameters van het fysisch model. Er werd aangetoond dat ze zeer robust is
en een unieke waarde teruggeeft voor elke parameter.

De schatting vam de controleparameters kon niet worden uitgevoerd tijdens transiënten
omdat in dat geval de kenmerkexctractie faalt. De hoofdreden hiervoor is dat het anal-
ysevenster vrij groot is wat ze niet geschikt maakt om snelle variaties in frequentie en
amplitude te analyseren. Daarom worden in het tweede deel van de thesis methodes
bestudeerd die toelaten om zeer kleine analysevensters te gebruiken.

• Hoofdstuk 6: Amplitude Schatting, van O(K2N) naar O(N log(N))

Wanneer een signaal bestaande uit N samples wordt gemodelleerd door K sinu-
soides wordt vaak een kleinste kwadraten methode gebruikt om de amplitudes te
berekenen. Wanneer de frequentieresponses van de individuele sinusoidale com-
ponenten niet overlappen kan de amplitude van elke sinusoide iteratief worden
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bepaald wat een complexiteit O(N log(N)) vergt. Hoewel, wanneer kleine anal-
ysevensters worden gebruikt worden alle amplitudes simultaan berekend. In dit
geval vergt de berekening een complexiteit O(K2N).

Onze bijdrage bestaat erin om deze tijdscomplexiteit terug te dringen naarO(N log(N)).
Dit wordt gerealiseerd door expliciet een analysevenster met een bandgelimiteerde
frequentierespons in rekening te brengen bij de afleiding van de kleinste kwadraten.
Daaruit kan worden afgeleid dat het stelsel vergelijkingen dat gebruikt wordt om
de amplitudes te berekenen banddiagonaal is kan worden opgelost in O(K). Men
moet echter wel de fourier transformatie in rekening brengen die een complexiteit
O(N log(N)) vergt.

• Hoofdstuk 7: Frequentie Optimalisatie, van O(K2N) naar O(N log(N))

In het geval dat de frequentieresponses niet overlappen kan de frequentie geschat
worden door de waarde aan het maximum van de piek te bepalen. Voor kleine
analysevensters echter, kunnen de pieken niet apart worden onderscheiden wat
impliceert dat een iteratieve optimalisatie moet worden toegepast.

Elk van de conventionele optimalizatietechnieken kan worden toegepast voor de
bepaling van de frequenties. In dit werk, wordt de Newton methode bestudeerd en
een linearisatiemethode van het model. Opnieuw kan de berekeningcomplexiteit
gereduceerd worden naar O(N log(N)) door dezelfde methodologie toe passen als
voor de amplitudeberekening. Wat betreft de convergentiesnelheid werd er geen
significant verschil waargenomen tussen beide optimalisatiemethodes.
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[55] Maŕıa Luisa Micó, José Oncina, and Enrique Vidal. A new version of the nearest-
neighbour approximation and elimination search alorithm (AESA) with linear pre-
processing time and memory requirements. Pattern Recognition Letters, 15:9–18,
January 1994.

[56] Tom M. Mitchel. Machine Learning. McGraw-Hill International Editions, 1997.

[57] Sirko Molau, Michael Pitz, Ralf Schlüter, and Hermann Ney. Computing Mel-
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[84] Patrice Tisseran. Portage du modèle physique de trompette sous jMAX. Technical
report, IRCAM, 1999.

[85] Tero Tolonen. Methods for separation of harmonic sound sources using sinusoidal
modeling. 106th Audio Engineering Society Convention (AES) convention, Mu-
nich, Germany, september 1999.

[86] Tero Tolonen. A computationally efficient multiplitch analysis model. IEEE trans-
actions on speech and audio processing, 8(6):708–716, november 2000.

[87] Tero Tolonen. Oject-based sound source modeling for musical signals. 109 th Audio
Engineering Society Convention (AES), september 2000.



168 Bibliography

[88] Caroline Traube. Estimating the plucked point on guitar string. Conference on
Digital Audio Effects (DAFX-00), December 2000.

[89] Caroline Traube and Philippe Depalle. Extraction of the excitation point location
on a string using wighted least-square estimation of comb filter delay. Conference
on Digital Audio Effects (DAFX-03), December 2003.

[90] Christophe Vergez. Trompette et trompettiste: un système dynamique non linéaire
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