
 1

A System for Computer Music Generation by

Learning and Improvisation in a Particular Style

S. Dubnov1, G. Assayag3, G. Bejerano2, O. Lartillot3,

1Ben Gurion University, Israel
2School of Computer Science, Hebrew University, Jerusalem, Israel

3Ircam (Institut de Recherche et Coordination Acoustique/Musique), Paris, France

email: dubnov@bgumail.bgu.ac.il, jill@cs.huji.ac.il, lartillo@ircam.fr, assayag@ircam.fr,

 Abstract

The paper deals with question of music modeling and generation, capturing the idiomatic style of a composer

or a genre, in an attempt to provide the computer with “creative”, human-like capabilities. The system described

in the paper performs analyses of musical sequences and computes a model according to which new

interpretations / improvisations close to the original's style can be generated. Important aspects of the musical

structure are captured, including rhythm, melodic contour, and polyphonic relationships. Two statistical learning

methods are implemented and their performance is compared in the paper: The first method is based on

“Universal Prediction”, a method derived from Information Theory and previously shown to be useful for

statistical modeling in the musical domain. The second method is an application to music of Prediction Suffix

Trees (PST), a learning technique initially developed for statistical modeling of complex sequences with

applications in Linguistics and Computational Biology. Both methods provide a stochastic representation of

musical style and are able to capture musical structures of variable lengths, from short ornamentations to complete

musical phrases. Operations such as improvisation or computer aided composition can be realized using the

system.

1. Introduction

The ability to construct a musical theory from examples is a great challenge, both intellectually, and as a practical

means for a range of new and exciting applications. Machine learning is the process of deriving a model, such as a

set of (stochastic) rules, from data samples. These models can be used for analysis and prediction, and, to a certain

extent, they can generate acceptable original works that imitate the style of the masters, recreating certain aspects

of the musical experience that were present in the original data set.

 2

The process of composition is a highly structured mental process. Although it is very complex and hard to

formalize, it is clearly far from being a random process. The task of this research is to try and capture some of the

regularity apparent in the composition process by applying information theoretic tools to this problem.

Style Modeling

By Style Modeling, we imply building a computational representation of the musical surface that captures

important stylistic features hidden in the way patterns of rhythm, melody, harmony and polyphonic relationships

are interleaved and recombined in a redundant fashion. Such a model makes it possible to generate new instances

of musical sequences that respect this explicit style (Assayag & al. 1999a). We adopt an analysis by synthesis

approach, where the relatedness of the synthetic to the original may be evaluated to validate the analysis. We use

unsupervised methods, requiring no human-intensive pre-processing, such as tagging or parsing. This facilitates

the automatic learning process that may run directly on very large quantities of untagged musical data, abundantly

available nowadays. Interesting applications include style characterization tools for the musicologist (Dubnov &

al. 1998), generation of stylistic meta-data for intelligent retrieval in musical databases, convincing music

generation for web and game applications, machine improvisation with human performers, and computer assisted

composition.

One of the main purposes of learning in general is to create the capability to sensibly generalize. Composers, for

example, are interested in finding out the creative possibilities of certain musical material, without necessarily

"explaining" it. Statistical analysis of a corpus reveals some of the possible re-combinations that comply with

certain constraints or redundancies typical of a particular style.

Mind-reading Machines

In the early 50's at Bell Labs David Hagelbarger built a simple 8 state machine, whose purpose was to play the

"penny matching" game. This simple machine tried to match the future choices of a human player over a long

sequence of random "head" or "tail" calls. Mind reading was done by looking at similar patterns in the opponent's

past sequence that would help predict the next guess. The achieved rate of success was greater that 50% since

human choices were not completely random and thus analysing patterns of previous choices could help foretell

the future.

Inspired by Hagelbarger's success, Claude Shannon built a different machine with improved performance. An

account of Shannon's philosophy on mind-reading machines can be found in (Shannon 1953).

It is important to note that had the model of the data sequence been known ahead of time, optimal prediction

could have been achieved. The difficulty that needs to be tackled with almost all real-life situations is that the

probability model for the data is unknown.

Music Generation and Style Replication

 3

A generative theory of music can be constructed by explicitly coding music rules in some logic or formal

grammar (Cope 1987, Ebicoglu 1986, Lidov & Gambura 1973). This approach is sometimes called an “expert

system” or “knowledge engineering approach”. A contrasting approach is the statistical learning or empirical

induction approach. Several researchers have used probabilistic methods, notably Markov models, to model music

(Pinkerton 1956, Brooks Jr. & al. 1993, Conklin & Witten 1995). Experiment by Brooks Jr. & al. (1993) showed

that at very low orders (e.g., bigram), Markov model generated strings that do not recognizably resemble strings

in the corpus, while at very high orders, strings from the corpus are simply replicated.

An interesting “compromise” between the two approaches is found in more recent works of Cope (1991). Cope

uses a grammatical generation system combined with what he calls “signatures”, melodic micro- gestures

common to individual composers. By identifying and reusing such signatures, Cope was able to reproduce the

style of past composers in reportedly impressive ways.

Predictive Theories in Music

Following the work of Meyer (1961) it is commonly admitted that musical perception is guided by expectations

based on the recent past context. In music applications the model is unknown. Considering the amount of relevant

past samples is difficult since the length of the musical context is highly variable, ranging from short figurations

to longer motifs. Taking a large fixed context makes the parameters difficult to estimate, growing exponentially in

the computational cost and data requirements. In order to cope with this problem one must design a predictor that

can deal with arbitrary observation sequences and is competitive to a rather large class of predictors, such as

variable length Markov Predictors. In this paper we use two approaches: We learn a universal predictor, and

contrast its performance with that of the best model estimated from a restricted class of Markovian predictors.

2. Dictionary-based prediction

In our work we first present an exhaustive dictionary-based prediction method, which parses an existing musical

text into a lexicon of phrases/patterns, called motifs, and provides an inference method for choosing the next

musical object following a current past context. The parsing scheme must satisfy two conflicting constraints. On

the one hand, one wants to maximally increase the dictionary to achieve better prediction, but on the other hand,

enough evidence must be gathered before introducing a new phrase, so that a reliable estimate of the conditional

probability is obtained. The secret of dictionary-based prediction (and compression) methods is that they cleverly

sample the data so that most of the information is reliably represented by few selected phrases. In contrast, fixed

order Markov models build potentially large probability tables for the next symbol at every possible context entry.

The selective dictionary-based prediction method builds more complex variable memory Markov models to avoid

this pitfall. Although at first it may seem that the two methods operate in a different manner, they both stem from

similar statistical insights.

 4

3. Exhaustive dictionary-based prediction

As we have explained above, we use dictionary-based methods to assess the probability of the next sample given

its context. We turn to describe the first parsing and generation algorithm.

3.1. Incremental Parsing

We consider an incremental parsing (IP) algorithm that was originally suggested by Lempel and Ziv (1978) in the

context of lossless compression. IP builds a dictionary of distinct motifs by one continuous left to right traversal

of a sequence, sequentially adding to a dictionary every new phrase that differs by a single last character from the

longest match that already exists in the dictionary. For instance, given a text {ababaa…}, IP parses it into

{a,b,ab,aa,…} where motifs (dictionary entries) are separated by commas. The dictionary may be efficiently

represented as a tree and the search and parse steps are equivalent to a process of growing that tree (see example

below).

Probability Assignment

Assigning conditional probability)|(ˆ
11

n

n

LZ
xxp + to a symbol

1+nx given n
x
1

 as context is done according to the

code lengths of the Lempel Ziv compression scheme. Let c(n) be the number of motifs in the parsing of an input

n-sequence (or the number of nodes in the tree representation). Then, log(c(n)) bits are needed to describe each

prefix (a motif without its last character), and 1 bit to describe the last character (in case of a binary alphabet). For

example, the code for the above sequence is (00,a),(00,b),(01,b),(01,a) where the first entry of each pair gives the

index of the prefix and the second entry gives the next character. Ziv and Lempel have shown that the average

code length c(n)log(c(n))/n converges to the entropy of the sequence with increasing n. This proves that this

coding is asymptotically optimal. Since for optimal coding the code length is 1/probability, and since all code

lengths are equal, we may say that, at least in the long run, all IP motifs have equal probability.

In tree representation, every node is associated with a string, being the characters on the arc leading from the root

to that node. Each time that the parse reaches the node, it means that the node's string has occurred at the start of a

phrase boundary. When this occurs, a child node is grown which corresponds to the appearance of a new phrase

that is as continuation of the parent string, i.e. the offspring nodes are labeled by strings whose prefix is the label

of the parent node.

Taking equal weights for all nodes in the tree representation)|(ˆ
11

n

n

LZ
xxp + will be deduced as a ratio between

the cardinalities of the subtrees (number of subnodes) following the node n
x
1

. As the number of subnodes is also

the node's share of the probability space (because one codeword is allocated to each node), we see that the amount

of code space allocated to a node is thus proportional to the number of times it occurred.

 5

Thus, for a node labeled by string c, the conditional probabilities of the descendents are taken as the relative

portion of counts of characters },{),(baxxN
c

! appearing in all descendants (children nodes) of the current

node c, setting
)()(

)(
)(

bNaN

xN
xP

cc

c

c

+
= .

3.2 Example

Here is how IP is used to generate a sequence based on analysis of the very simple sequence “abracadabra”. The

generation process is incremental: The first letter is a continuation of the empty context “”. The next letters are

each a continuation of the longest context that is a suffix of what has been already generated. In our simple

example, if the process first generates an a (with probability 4/7), then the next letter is a continuation associated

with the context “a” (uniform over b, c and d) etc. For example:

P(generate "abrac") = P(a|"")P(b|a)P(r|ab)P(a|abr)P(c|abra) = 4/7 · 1/3 · 2/7 · 1 · 1/3.

The corresponding analysis tree and probability assignments are:

4. Selective dictionary-based prediction

Despite the fact that an IP predictor may asymptotically outperforms a Markov predictor of a finite order

(Feder et al, 1992), the music sequences we are modeling in practice are of a finite length. Moreover, there is no

motivation to parse the reference set on the fly, as IP does. Allowing one to use the whole sequence for estimation

of the statistics may help improve the performance for realistically long sequences.

4.1 Prediction Suffix Trees

The Prediction Suffix Tree (PST) algorithm, named after the data structure used to represent the learned

statistical model, was developed by Ron & al. (1996). A PST represents a dictionary of distinct motifs, much like

the one generated by the IP algorithm. However, in contrast to the lossless coding scheme underlying the parsing

there, the PST algorithm builds a restricted dictionary of only those motifs that both appear a significant number

context : “”
continuations : a (4/7), b (1/7), r (2/7).

context : “a”
continuations : b (1/3), c (1/3), d (1/3).

context : “r”
 continuation : a (1/1).

root

a r

d b

b

c a

 6

of times throughout the complete source sequence, and are meaningful for predicting the immediate future. The

framework underlying the approach is that of efficient lossy compression.

Selective Parsing

We describe an empirically motivated variant of the PST algorithm (Bejerano & Yona (2001)). It uses a

breadth first search (BFS) for all motifs that comply simultaneously with the three requirements that follow and

collects only these into our restricted dictionary:

� The motif is no longer than some maximal length L.

� Its empirical probability within the given data set exceeds a threshold Pmin.

� The conditional probability it induces over the next symbol differs by a multiplicative factor of at least r

from that of the shorter contexts it subsumes, for at least one such next symbol (see below).

Probability Assignment

We define the empirical probability of a motif as the number of occurrences it has in our text divided by the

number of times it could have appeared in it. For example the empirical probability of the motif "aa" within the

sequence "aabaaab" is 3/6=0.5.

A conditional probability to observe a symbol after a given context is defined as the number of times this symbol

comes immediately after that context, divided by the total occurrences of the context in our text. Thus, the

conditional probability of seeing "b" after "aa" in the sequence "aabaaab" is 2/3.

And since the conditional probability of seeing "b" after "a" is 2/5, then the multiplicative difference between the

conditional probability to observe "b" after "aa" and that after "a" is (2/3)/(2/5) = 5/3.

In the PST formulation the counts are incorporated in a slightly different manner. Using the notation of the

previous section we set gxPgxP cc +!"=)()||1()(ˆ , where || ! is the size of the alphabet and g is the

smoothing factor, ||/10 !<< g . Fractional probabilities are collected from all possible next symbol extensions

in proportion to their actual counts, and then redistributed equally between all to achieve a minimal conditional

probability for any continuation 0)(ˆ >! gxPc .

4.2 Example

Here is the PST analysis of “abracadabra”, with L = 2, Pmin = 0.15, r = 2, and g = 0. With each node we

associate the list of probabilities that the continuation may be, respectively, a, b, c, d or r:

 7

Note, for example, that potential node "ba" failed the Pmin criterion, while potential node "bra" passed that but

failed both the L and r criteria.

Generation proceeds much like in the IP resulting tree. However now, for example

P(generate "abrac") = P(a|"")P(b|a)P(r|ab)P(a|abr)P(c|abra) = 5/11 · 1/2 · 1· 1 · 1.

5. Music Representation

So far we have loosely used the term sequence do denote an ordered list of objects or symbols. In order to

capture a significant amount of musical substance we shall, in a pre-analytic phase, cut the musical data (generally

in Midi format) into slices, whose beginnings and ends are determined by the appearance of new events and

termination of past ones. Every slice has a duration information, and contains a series of channels, each of which

contains pitch and velocity information and possibly other musical parameters (these slices will be referred to as

objects or symbols, and the set of possible symbols as the alphabet).

On the left side of the figure, for example, is the piano roll representation of the beginning of Bach’s prelude in

C, where lower case letters represent the third octave, and upper case letters the fourth one. The right side of the

figure shows how this sequence is sliced into symbols. The bold letters represent beginnings of notes.

time

pitch E
C

G
e

c

G
C

E
c c

e
c
e
G

c
e
C

c
e
E

c
e
G

c
e
C

c
e
E

“” (root)
(5/11,2/11,1/11,1/11,2/11)

“a”
(0,1/2,1/4,1/4,0)

“r”
 (1,0,0,0,0)

“b”
 (0,0,0,0,1)

“ra”
 (0,0,1,0,0)

 8

5.1 Enhancement Filters

Having defined the basic quantization method of symbols and the learning scheme, one may turn to music

generation. However in light of some theoretical insights, as well as some preliminary tests, several improvements

have been made to our system. These improvements consist of pre-analytic simplification, generative constraints,

loop escape, and analysis-synthesis parameter reconstruction.

Pre-analytic Simplification. Real musical sequences - for example Midi files of a piece interpreted by a musician

- feature fluctuations of note onsets, durations and velocities, inducing a complexity which fools the analysis: the

alphabet size tends to grow in an intractable way, leading to unexpected failures, and poor generalization power.

We have thus developed a toolkit containing five simplification filters:

� The arpeggio filter vertically aligns notes which are attacked nearly at the same time

� The legato filter removes overlap between successive notes

� The staccato filter ignores silence between successive notes

� The release filter vertically aligns note releases,

� And the duration filter statistically quantizes the durations in order to reduce the duration alphabet.

These features can be tweaked by the user, using thresholds (e.g. a threshold of 50ms separates a struck chord

on the piano from an intended arpeggiated chord). Using the simplification toolkit, Midi files containing real

performances can be treated. This particular kind of live musical data, full of idiosyncrasy, is of great value as a

model for synthetic improvisation.

Generative Constraints. It is possible to specify constraints during the generation phase. At each cycle, if the

constraint is not respected by the new symbol, the generation is canceled and a new symbol is tried. If no symbol

is satisfying, the algorithm backtracks to the previous cycle, and more if necessary. For example, it is possible to

specify a continuity constraint that imposes a minimal context size anytime during the generation phase, so as to

avoid musical discontinuity in case of an empty context.

Loop Escape. If no prediction smoothing is applied, the generation phase may easily enter into an infinite

loop. We introduce the concept of a context-generated subtree, which consists of the exhaustive set of all the

 9

possible contexts that may be met after the present one. Practically, we just need the size of this subtree, which is

computed only once before the generation phase. Its computation consists of marking, directly in the original tree,

of all the possible future contexts and a counting of these marks. When the size of the context-generated subtree is

below a user-specified threshold N, an N-order-loop is detected. The loop phenomenon is principally due to the

fact that the generation phase searches for the maximal context, which is unique and proposes few alternative

continuation symbols. In the case of a loop, we loosen this constraint and examine not only the maximal context,

but also shorter ones, which escape the loop in most cases.

Analysis-Synthesis Parameter Reconstruction. In our formulation, a symbol is a Cartesian product of several

musical parameters. In order to increase abstraction power in the analysis, we allow the system to discard some

parameters - for example, the velocity. The retained parameters are called analysis information. However, in the

generation phase, the discarded information cannot be retrieved. For example, if we choose to discard note

durations and dynamics, we end up obtaining isorythmic and dynamically flat musical sequences that sound like

the work of a musical box. Our solution is to store in the model the excluded information, called synthetic

information. During the generation phase, synthetic information, such as expressivity, may be reconstructed.

This solution has significant advantages. First, generated music regains much of the diversity, spirit and human

appearance in the original piece. Moreover, since it is possible to restrict the analytic information and therefore

find more redundancy in the original sequence, the generation phase becomes less constrained. At each generation

cycle, every context features many more possible continuations than before.

5.2 Music Composition System Overview

The software was implemented as a user library in an Open Source visual programming language developed at

Ircam, called OpenMusic (Assayag & al 1999b). Each step of the algorithm - pre-analysis, learning, generation,

and post-generation, is a function, which, in the musical representation software, is represented by a box featuring

inlets and outlets. The user may tune up all parameters or add additional operations and constraints by applying

additional tools that are available in the OpenMusic system through visual programming.

The process of learning-generation is the following: Once a multi-voice Midi file is transformed into a linear text

based on the cross alphabet, it is presented to the learning algorithm. This algorithm produces a prediction tree

(also called a motif dictionary). The resulting tree is then randomly traversed by the generation procedure to build

variants of the original music.

 10

 11

6. Musical Experiments and Discussion

Extensive musical experiments have been carried in order to test our system and compare the two generative

algorithms. Midi files were gathered from several sources, including polyphonic instrumental and piano music,

with styles ranging from early renaissance and baroque music to hard-bop jazz.

In cases where the Midi file was derived from a live recording, the combination of the simplification toolbox

and the learning-generation gives excellent results. The simplification is also important in cases where the overall

complexity leads to a huge alphabet.

Style Interpolation: An interesting feature of our learning method is style interpolation. When a set of different

musical pieces is analyzed simultaneously into a common motifs dictionary (such as by learning a concatenation

of two different pieces), the generation will "interpolate" over a space spanned by the separate models. Whenever

a common pattern of any length is found to exist between the separate dictionaries during training, the generation

phase may create smooth transitions from one style to another by choosing at random a continuation path that

belongs to the other model.

Testing over a set of 2-voices Bach Inventions, the results become "infinite" streams containing interesting

subsequences, showing original and convincing counterpoint and harmonic patterns, consistent with Bach’s style.

IP vs. PST: It is interesting to observe that the two methods, although statistically related, produce at times

significantly different musical results. Generally, our impression is that IP tends to capture correctly musically

meaningful motifs of the piece, with a tendency to copy complete blocks from an original and “mimic” the

original by funny juxtapositions of these blocks, ridiculing the concepts of rhythm, meter and form. The PST on

the other hand shows more “inventiveness” by introducing transitions in the middle of a bar or a phrase, thus

creating more interesting transitions and not just juxtapositions. The tradeoff is that the PST might cause “false

notes” to appear more often.

Below we present a short comparison of IP vs. PST properties that might shed some light on the relationship

between statistical and musical criteria:

IP PST

* Guiding principle: loss-less coding. * Lossy compression.

* Everything is parsed: this “completeness” assures

that all observed rare transitions are included.

* Selective, partial parsing: rare events and events

that do not improve prediction are ruled out.

* On-line estimation (instantaneous coding). * Batch analysis ('file' compression).

* Conditional empirical probability estimation is * Robust conditional empirical probability

 12

poor for short inputs since the IP parsing is very

sensitive to even a single symbol change.

estimation for the significant events.

Available results: The programs that were used to conduct the musical experiments are available as part of

OpenMusic, a Lisp-based visual language for music composition (Assayag & al. 1999b). In an accompanying

web site we show convincing examples, including a set of piano improvisations in the style of Chick Corea,

another one in the style of Chopin Etudes, polyphonic Bach counterpoint, 19th century symphonic music, and

modern jazz style improvisations derived from a training set fed by several performers asked to play for the

learning system. These results are available at http://www.ircam.fr/equipes/repmus/RMPapers/.

The described system has already served as a tool for computer assisted composition. An original piece by Jean-

Remy Guedon, named miniX, has been created recently at Ircam with the assistance of Frederic Voisin, in

collaboration with the French "Orchestre National de Jazz". In this 20-minute piece, about half of the solo parts

were IP Generated and transcribed on the score to be used in concert.

7. Conclusion and New Directions

In our work, learning is indeed unsupervised since we do not feed our system with any musical knowledge.

Rather it analyzes music with constrained algorithms and does not proceed to any inductive inference. Another

approach would be to try and induce automatically some conclusions about the presence of musical structures or

music schemata, with the help of minimal cognitive mechanisms.

Additionally, we have encountered the question of what determines rareness in music and how one can

distinguish between statistically meaningless events vs. musically significant musical material that usually

appears near the dramatic climax of the piece. It seems that a different meaning should be assigned to rare events

that appear next to the most significant events. Moreover, these rare events should result from some type of a

musical operation, such as inversion1, harmonic2 or counterpoint3 change of a significant event. In order to

properly deal with this problem we would need to address the schemata estimation issue mentioned above. In our

current approach, the use of “smoothing” might eliminate such events from the learned model.

Finally, one may try instead of modeling sequence
n
xxx ,...,,

21
 based on its own redundancies, to try and

model it based on the redundancies of a second, correlated sequence (e.g., a second voice)
n
yyy ,...,,

21
 (through

1 J.S.Bach, Fugure in C minor, Book I: Near the end of the piece occurs a sudden inversion of a motive that appeared over 20
times in its original form throughout the piece.
2 L.V.Beethoven, Moonlight Sonata, part I: Contains a strong repetitive harmonic sequence. Near climax a change in
harmony occurs that creates a “dissonance” to the melody that remained the same.
3 J.S.Bach, Fugue in D sharp minor, Book I: Throughout the piece the separate themes appear in a free counterpoint. In the
middle of the piece there is an occurrence of all themes in exact concurrence.

 13

the process of transduction). Then, the generation of an X-type sequence could be constrained by an incoming Y-

type sequence. This could lead to a synchronous improvisation scheme, where the computer plays alongside with

the human performer, keeping an overall polyphonic consistency.

Acknowledgements

We would like to thank the musicologist Dalia Cohen for introducing us to the term “queen of the night” and providing the

corresponding musical examples. G.B. is supported by a grant from the Ministry of Science, Israel.

References

 14

Apostolico, A. and G. Bejerano. (2000). "Optimal amnesic probabilistic automata, or, how to learn and classify

proteins in linear time and space." Journal of Computational Biology 7:381-393.

Assayag, G., S. Dubnov and O. Delerue. (1999a). “Guessing the Composer's Mind : Applying Universal

Prediction to Musical Style.” Proceedings of the International Computer Music Conference. International

Computer Music Association, pp. 496-499.

Assayag, G., C. Rueda, M. Laurson, C. Agon and O. Delerue. (1999b). “ Computer Assisted Composition at

Ircam : PatchWork & OpenMusic.”, Computer Music Journal, 23:3.

Bejerano, G. and G. Yona. (2001). “Variations on probabilistic suffix trees: statistical modeling and prediction of

protein families.” Bioinformatics 17:23-43.

Brooks Jr., F., Hopkins Jr., A., Neumann, P., and Wright, W. (1993). An experiment in musical composition, In

Schwanauer and Levitt, editors, Machine Models of Music, pages 23– 40. MIT Press.

Conklin, D. and Witten, I. (1995). Multiple viewpoint systems for music prediction, Interface, 24, 51– 73.

Cope, D. (1987) An expert system from computer-assisted composition, in Computer Music Jouranl, 11(4): pp.

30-46.

Cope, D. (1991). Computers and musical style, Oxford University Press.

Dubnov, S., G. Assayag and R. El-Yaniv. (1998). “Universal Classification Applied to Musical Sequences.”

Proceedings of the International Computer Music Conference. International Computer Music Association, pp.

332-340.

Dubnov S., D. Cohen and N. Wagner, (1995), Uncertainty in Distinguishing between Structure and

Ornamentation in Music, Proceedings of the International Fuzzy Systems Association Conference, Brazil.

Dubnov, S. and F. Pachet (1998) Technical Report, SONY CSL-Paris, later appeared in F. Pachet. "Surprising

Harmonies", International Journal of Computing Anticipatory Systems, (1999).

Ebicoglu, K. (1986), An Expert System for Harmonization of Chorals in the style of J.S.Bach, PhD Dissertation,

Department of Computer Science, SUNY at Buffalo.

M.Feder, N.Merhav and M.Gutman, “Universal Prediction of individual sequences”, IEEE transactions on

Information Theory, vol. 38, pp. 1258-1270, 1992.

Lidov,D. and Gambura, J. (1973), A melody writing algorithm using a formal language model, in Computer

Studies in Humanities, 4(3-4), pp. 134-148.

Meyer, L. (1961). Emotion and Meaning in Music. University of Chicago Press, Chicago.

Pinkerton, R. (1956). Information theory and melody. Scientific American, (194), 76– 86.

Ron, D., Y. Singer and N. Tishby. (1996). “The power of amnesia: Learning probabilistic automata with variable

memory length.” Machine Learning 25(2-3):117-149.

 15

Shannon, C., “A mind reading machine”, Bell Laboratories memorandum, (Reprinted in the Collected Papers of

Claude Elwood Shannon, IEEE Press, pp. 688-689).

Ziv J, Lempel A, "Compression of individual sequences via variable rate coding", IEEE Trans. Inf. Theory, 24:5,

pp.530-536, 1978.

