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Abstract

The subject of this internship was to add a static-analysis module to the score-following
system Antescofo. The aim of this static-analysis module is to forecast the temporal behavior
of the system during live performances, providing a substantial help to both composers and
interprets. We follow an approach similar to the Inverse Method implemented by Etienne
André in the tool IMITATOR. This method permits to infer constraints on the timing bounds
(parametric delays) in timed automata guarantying the same execution trace as for given
reference values for the delays. In our case, the parameters should represent the tempo of
the musician, and the constraints should restrict the tempo variations, indicating the degree
of freedom in interpretation guarantying the expected realtime behavior of the system. For
musicality reasons, we found a way to relax the notion of same execution trace to some
alternatives.

Le sujet de ce stage était d’ajouter un module d’analyse statique au système de suivi de
partitions Antescofo. Le but de ce module d’analyse statique est de prévoir le comportement
temporel du système durant les performances (concerts), offrant ainsi une aide substantielle aux
compositeurs ainsi qu’aux interprètes. Nous utilisons une approche analogue à celle développée
par Etienne André dans l’outil IMITATOR. Cette méthode (Inverse Method) permet l’inférence
de contraintes sur les bornes des gardes et des invariants d’un automate temporisé paramétré
garantissant un même comportement que pour une instantiation donnée des paramètres. Dans
notre cas, les paramètres représentent les délais de jeu du musicien, et les contraintes ont pour but
de restreindre les variations de tempo, indiquant le degré de liberté autorisé dans l’interprétation
du musicien pour lequel le comportement du système en temps réel reste satisfaisant. La notion
de comportement acceptable doit être définie par rapport à des exigences de musicalité.
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Chapter 1

Introduction

Embedded systems are expected to be powerful, performant, and reliable, as they tend to
have an important impact of our lives. It means that they have to satisfy many quantitative
constraints, in particular timing constraints (response time, propagation delays...). Moreover,
they generally interact with the physical environment in which they operate (such system are
called reactive systems); this interaction has to be regulated by constraints as well.

As part of the effort that has been made for the development of reliable embedded sys-
tems, several verification approaches have been developed in the past years for checking that
embedded systems behave as expected. One can cite for instance the model-checking defined
in the late 1970’s, which permits to verify qualitative properties of a system by an exhaustive
exploration of its reachable states. This technique has been applied successfully on many
industrial cases.

In general-purpose software, the time it takes to perform a task is an issue of perfor-
mance, not correctness (it is not incorrect to take longer to perform a task such as sorting
a list of integers). For time critical software however, in particular open systems interacting
with a user or an environment, the problem is quite different, as the time it takes to perform a
task may be critical to the correct functioning of the system. Consider for instance the case of
systems embedded in public transportation appliances (Siemens Metro Automation): in many
situations, events must be triggered by the system at the right time, not too late but also not too
early. In the early nineties, a great step has been done towards the development of verification
techniques for time critical software, with the development of timed automata by Rajeev
Alur and David Dill [14] [15]. The framework of timed automata extends classical finite-state
automata with real-time constraints. The availability of transitions in the resulting timed
automata depends on time, so that the structure of the automaton evolves during the execution.
This provides an important and useful gain in expressiveness, while preserving decidability
of several model-checking-related problems. These timed automata can be composed into
networks of automata, which proves very useful for the modeling of complex systems.

In timed automata, the real-time constraints refer to fixed bounds delays (expressed in
seconds). The behavior of the model is generally very sensitive to the values of these bounds,
and in some cases it is rather difficult to find their correct values. For instance in the case of
circuit verification, some bounds cannot be fixed precisely, like the stabilization time of some
components. An alternative approach is to reason parametrically, by considering some bounds
are unknown constants (parameters) [16] and try to synthesize a constraint on these parameters
[19], in order to ensure a correct behavior. This is the idea behind parametric timed automata
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[15].

Interactive Music Systems [18] permit the use of computers as musical tools, in live in-
teraction with real musician. They are therefore significant examples of time critical systems,
with a strong interaction with an environment. Timing constraints is a general problem in
music performance.

In a music score, the duration of each note destined to be played by the musician is ex-
actly specified. Despite this, it is well known that two human interpretations of the same
music score can differ significantly, particularly regarding temporal aspects. In some cases,
for instance when a rubato tempo is adequate, the musician is even encouraged to get off the
beaten track and frankly vary from the durations specified on the score. However, despite the
temporal variability, several musicians playing together usually manage to make the music
sound "as expected", using various synchronization strategies, most of which instinctive. In
the case of mixed instrumental/electronic music [1], where a computer has to play together
with musicians in realtime, the synchronization strategies have to be formally specified. In that
case, the system can be considered like a reactive system interacting with an unpredictable
environment (the musician).

This internship took place within the team in charge of the score-following system An-
tescofo [2] [3]. The main function of Antescofo is to synchronize the automatic accompaniment
and the musician during mixed instrumental/electronic music concerts. It is capable of following
the performance of the musician in realtime within a given score, of decoding the current tempo
of the musician, and of synchronizing this human performance with the computer realized
elements specified on the score. The music scores currently used in Antescofo consist essentially
in the specification of sequences of musical events destined to be played by the musician and
detected by the system, and of electronic actions to be launched by the computer in response.
The language used for writing Antescofo scores [4] offers various synchronization strategies
between events and actions and various error handling strategies. These specifications can be
seen as a special kind of timed automata where the delays between an event and an action or
between two successive actions are expressed relatively to the recognized tempo, which changes
at each element detected.

Antescofo intends to expand the paradigm of synchronization and score following and
tends towards a tool for writing time and interaction in computer music, for both com-
position and performance. This mission raises many issues, among which the specification
of a language for writing mixed-music scores adapted to the rapidly evolving needs of com-
posers [4], and the management of the expression of delays and durations in different time scales.

The aim of this internship was to create a tool for analysing and forecasting the tem-
poral behavior of written mixed-music scores before a musical performance, in order to
assist interprets in the preparation of concerts, and composers in the specification of the
interactions between the musician’s part and the automatic accompaniment. Our method
was to model a score with a parametric timed automata network, where the parameters
are the delays of the musician for each note of the score, and infer a constraint on the para-
metric bounds of this network guarantying an acceptable behavior of the system during concerts.

In this report, we first present the system Antescofo (Chapter 2), and more precisely the
language used in Antescofo for writing mixed-music scores. The synchronization strategies
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aimed at dealing with the different time scales of music interpretation will be exposed, along
with the error-catching strategies. Then, (Chapter 3) we introduce the subject and the aim
of the internship, and the method we used to reach our goals. We then (Chapter 4) give a
few definitions on the theory of parametric timed automata developped in [7], and present
the modeling of a mixed-music score into a network of parametric timed automata. We then
expose the method of parameter synthesis chosen for our problem [7] and its adequacy to
our case compared to other methods [12]. In the following chapter (Chapter 5) we expose
our implementation of the static analysis module. We then describe a theoretical result and
an algorithm aimed at improving the module by allowing the musician more interpretation
freedom; we also introduce the implementation of a lighter version of this result. Finally,
(Chapter 6) we expose a way of providing help in a Computer Assisted Composition context,
when the composer is still at the earlier stage of creating the score.
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Chapter 2

A score-following system called
Antescofo

2.1 Presentation of Antescofo

As mentioned in the introduction, Antescofo detects the tempo of the musician and the cur-
rent position on the score during live performances and adapts the automatic accompaniment
accordingly. More precisely, Antescofo allows for automatic recognition of music score position
and tempo from a realtime audio stream coming from performer(s), making it possible to syn-
chronize an instrumental performance with computer realized elements in real time. The name
Antescofo designates the actual synchronization software as well as the synchronous language
meant for writing the input scores. This language allows flexible writing of time and interaction
in computer music.

2.1.1 General structure of Antescofo

Antescofo is structured in two main parts: a recognition module aimed at aligning the audio
stream with the score and calculating the current tempo [6], and a coordination module that
reacts to the output of the recognition module and launches the electronic accompaniment.

Figure 2.1: General structure of Antescofo
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2.2 Quantification of time

2.2.1 Two different time scales

One of the challenges of a score-following software is the coexistence of two disctinct time scales
that need to be coordinated:

• Physical time scale
The physical time scale, also called absolute time scale, is the classic time scale which is
mesured in seconds.

• Relative time scale
The relative time scale varies in real-time with the tempo of the musician. The time unit
used to quantify time in the relative scale is the tempo pulse.

Delays expressed in physical time and delays expressed in relative time may coexist in the same
score. However, in the models presented in this document, we consider only delays expressed
in relative time. Indeed, as described in section 4.2, we model each score with a network of
parametric timed automata with clocks flowing in relative time. We expose in this report
a solution for the case when the guards and invariants of this modeling network are linear
constraints. As delays in physical time would translate into non-linear constraints, we didn’t
take them into account.

The validity of a definition of tempo is measured experimentally by its adequacy with
the instinctive human perception of tempo. The definition used by Antescofo is thus very
sophisticated and complex, in order to fit as closely as possible the reality of music perception
by a human ear. The estimation is far from trivial. Indeed, the impact on the current tempo
value of an acceleration of the musician is progressive: the Antescofo expression of the tempo
pulse at a given location of the score depends from the entire history since the beginning of the
piece.

2.2.2 Antescofo tempo evaluation

During a performance, the musician is not likely to stick precisely to the initial tempo. Thus,
the delays of the musician’s events must be considered as parameters that will be instantiated
by the musician during the performance.

Figure 2.2: Parametric delays of events

The recognition module actualizes the current tempo value at each note played by the mu-
sician. Let’s use the following notations:

• (ei)0≤i≤n: the sequence of notes to be played by the human musician.
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• ∀i ∈ [|0, n|], Ti: tempo value evaluated by the recognition module just after ei is played.

• θ: Conversion function from durations expressed in physical time scale to durations ex-
pressed in relative time scale. θ is piecewise, and θ’ is discontinuous at the dates of attack
of each ei.

• θ i’: Slope of the affine portion of θ between ei and ei+1. As mentioned above, the tempo
evaluation uses the whole history of the piece since the first note is played. Thus: θi’
= f(δ0, ..., δi−1).

We call ideal performance the performance during which the delays written on the score are
exactly respected, meaning that the musician doesn’t accelerate or decelerate at all. In that
case, there is a linear conversion function between physical and relative durations.

In the following graph, the ideal performance is presented in green, and the actual hu-
man performance in black. Here the musician accelerates between e1 and e2, and decelerates a
bit between e2 and e3.

Figure 2.3: Tempo computation

2.3 Antescofo, a domain specific language

As mentioned above, the name Antescofo also designates the language used for writing the scores
given in input to the software [5].

2.3.1 A hierarchical structure

The language Antescofo distinguishes the two following types of objects.

• The events:
The notes that are destined to be played by the human musician.

• The actions:
The atomic items that are part of the automatic accompaniment. The accompaniment
actions take the form of messages sent to external real-time audio processing system such
as MAX/MSP or Pure Data, for sound processing, sound spatialization, control of lightings
and visuals and more... The exact nature of these messages is not relevant in the context of
our study, and it is sufficient for our modeling purpose to represent the actions by abstract
symbols from a finite alphabet.

Each event, action and group is specified together with a delay.
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The structure of the language is strongly hierarchical: each action is nested in a group;
each group is either nested in a higher group, or attached to one of the events to be played by
the musician. Thus in all the document, when we mention the actions nested in a group, some
of them can also be groups themselves.

The detection of the triggering event by the recognition module will trigger the launch-
ing of the group.

The grammar of the langage is specified by the following:

score := ε | event score | (d action) score
event := (e c)
group := group l synchro error (d action)+
action := a | group
synchro := loose | tight
error := local | global

The empty sequence is denoted by ε.
An event e denotes an instrumental event and c his duration.
An action a denotes an atomic action. Group structures allow the combination of actions.
A delay d ∈ Q+ before an action denotes a tempo relative delay. It is the duration to wait
before executing the action.
Each compound action (group) has also a label l.

The attributes synchro and error specify respectively a synchronization strategy and an
error handling strategy, as explained in 2.4.

In the following image, the numerical values are the delays of apparition of the corresponding
automatic action or group. The code next to the image is the Antescofo implementation of this
example.

Figure 2.4: Example of Antescofo score
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2.3.2 Evolutions and needs of the language

The language has to keep up with the needs and requests of the composers, and is thus in
constant evolution. The short to middle term evolutions are a complexification of the structure
of automatic actions and of the hierarchical organization, the introduction of conditional and
iterative structures, and the diversification of timing and error-catching strategies.

It will get harder and harder to forecast the behavior of the software before the concert.
Thus, a static analysis module becomes necessary.

2.4 Several synchronization and error-catching strategies

2.4.1 Two synchronization strategies

Each group has to be assigned one of the two synchronization strategies: tight and loose.

• loose group
The group is launched when its triggering event is detected. The relative delays of the
actions are calculated with the estimated tempo of the instrumentist.

• tight group
When the group is launched, the system calculates to which event each action nested in
the group is associated. These actions will be launched only once the corresponding event
is detected.

Intuitively, the tight strategy is meant for the cases when the automatic accompaniment has to
rythmically adjust very carefully to the musical line played by the musician. The loose strategy
allows more flexibility between the line of the musician and the automatic accompaniment.
For instance, if the accompaniment is a harmonic base for the melody played by the musician,
then it should be tight. If the automatic group imitates the sound of a passing motorcycle (we
remind the reader that the software is targeted at contemporary music), then it should be loose.

A tight group can be rewritten in a succession of loose groups. Indeed, a tight group is
equivalent to several loose groups, each attached to the event occurring immediately before
the actions of the loose group. Each loose group contains the actions supposed to be launched
between two consecutive events. This rewriting-process is illustrated by the following figure:

Figure 2.5: Re-writing of a tight group in a succession of loose groups

A tight group nested in a loose group makes no real musical sense. Thus the following rule
has been added: tight groups nested in loose groups are turned into loose groups.
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2.4.2 Two error-catching strategies

In case of non-detection of one of the events that was supposed to be played by the musician,
the automatic groups that were attached to that event, or enclosed in a group attached to
that event, are treated differently depending on their error-catching strategy. The two possible
error-catching strategies are the following:

• local strategy
If the triggering event is not detected, then the automatic group is not launched.

• global strategy
If the triggering event is not detected, then the automatic group is launched nonetheless,
with a launching delay set to zero.

Intuitively, the local strategy is meant for the cases when the function of the automatic
accompaniment is to support the musical line played by the musician, for instance in case of
an harmonic accompaniment of the melody. If the accompaniment consists in actions which
importance is crucial for the good progress of the piece, for instance in case of a soundscape
gradually settling, the global strategy is more adapted.

The groups directly attached to an event played by the musician are called top-level
groups. Consider a non-top-level global group nested in a local group.

Figure 2.6: Global group nested in a local group

Intuitively, for the composer of the score, the global group is nested in a local group, so it
shouldn’t be launched if the triggering event e1 is not detected. Thus the following rule has been
added: global groups included in local groups are turned into local groups.

2.4.3 The four possible behaviors

Synchronization and error-catching strategies can be arbitrarily combined. Four behaviors
emerge from these combinations.
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• Loose-Local
If the triggering event e1 of the group is not detected then no action of the group is
launched.

• Loose-Global
If the triggering event e1 of the group is not detected then then the group is launched with
zero delay as soon as the next event e2 is detected. Within the group, the delays of actions
are maintained.

In both loose cases, if there is an error, the whole loose group is affected: either it is translated
on the following event or it is simply ignored. At least only an error on the triggering event can
affect the behavior of the group.

• Tight-Local:
If an event associated to the group e1 is not detected, then the actions triggered by this
event are ignored; the actions of the group are launched as planned initially if their position
is after the next detected event e2.

• Tight-Global
If an event associated to the group e1 is not detected, then the actions triggered by this
event are launched with a zero delay after the next event e2 is detected. The actions
located after the next event e2 are launched normally.

Unlike the loose strategy, in case of an error from the instrumentist, only the part of the tight
group triggered by the missing event will be affected.
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Chapter 3

Aim of the internship and method of
resolution

3.1 General objective of the internship

3.1.1 An example of problematic situation

Reminder: We call ideal performance the performance during which the delays written on the
score are exactly respected, meaning that the musician doesn’t accelerate or decelerate at all.
The order of events, actions and groups in the ideal performance is called ideal trace. We
call execution trace the order of events, actions and groups for a given execution of the piece
(possibly with accelerations and decelerations).

Some interpretations of the musician can lead to an execution trace different from the
ideal trace, as in the following example:

Figure 3.1: An example of problematic execution trace

These situations can be very problematic. For instance, in the image above, if the action a22
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consists in turning off the lights and the action a12 in turning them back on again, if the order
"a22 before a12" is not respected, then the lights will be turned off permanently for all the rest
of the concert. Hence the necessity of preventing these "bad behaviors" from happening.

3.1.2 Aim of the internship

The aim of this internship is to give the composer and the interpret quantitative indications on
the robustness of the composition to the tempo variations of the interpret during the concert.
More concretely, the goal is to create a module that takes in input a mixed-music score and
returns a constraint on the delays of the musician’s events ensuring a correct behavior of the
system.

3.1.3 Presentation of the static analysis module

As mentioned above, the function of the static analysis module is to take in input a mixed-music
score and return a constraint on the delays of the musician’s events ensuring a correct behavior
of the system. It is thus necessary to first define "a correct behavior" for a given mixed-music
score. It might be a bit too restrictive to consider the ideal trace as the only correct behavior
of the system. A better solution is to let the composer define, for each score, a set Lacceptable

of acceptable execution traces, possibly but not necessarily a singleton containing only the ideal
trace, and give this set as an additional input to the module.

Figure 3.2: Static analysis module

3.1.4 Workflow

Given a mixed-music score and a set Lacceptable of acceptable traces, we want to exhibit a
constraint K on the parametric delays δi of the player, such that if K is validated by a valuation
π of the parameters, then the sequence of events and actions induced by π will be included in
Lacceptable . The generation of this constraint can be broken down to the following steps:

1. Transcription of the Antescofo score into a network of parametric timed automata which
parameters are the delays δi of the musician’s events.

2. Generate a linear constraint on the parameters.

3. Treatment of the constraint to give a proper restitution to the composer or interpret.
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In other words, we first need to convert a score written in Antescofo language into a network of
PTA. Then, we generate the desired constraint. This constraint has to undergo some transfor-
mations so it can be given to the user in a more readily understandable way.

Figure 3.3: Workflow

We will focus on the two steps of the generation of the constraint: conversion of the
Antescofo score into a network of parametric timed automata, and generation of a linear
constraint on the parametric delays of the musician’s events. The network of parametric timed
automata will be given as an input to a constraint generator.

In order to generate a linear constraint on the δi, we need to decide which constraint
generation method we want to use. We will thus in the following section 3.2 expose our choice
for a constraint generation method.

3.2 Inference of linear constraints on the parametric delays

Given a network of parametric timed automata and a behavioral requirement on this network,
we need to generate a constraint on the parameters ensuring that the behavioral requirement is
fulfilled.

One method has to be chosen among the existing approaches of parameters synthesis.
These existing approaches are divided into two main groups: bad-state oriented methods and
good-state oriented methods.
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3.2.1 Bad-state and good-state oriented methods

In bad-states oriented methods [13], a set of bad states is defined and a constraint is calculated
by successive refinement in order to avoid the bad states. Roughly, if it appears that the system
can reach a bad state even when respecting the constraint, then the constraint is strengthened
in order to exclude that counter-example. When the procedure is over, the constraint assures
that all the bad states are excluded.

This principle is close to the CEGAR method, developped in [12], another method that
has been often employed within bad state parameter synthesis. CEGAR stands for Counter
Example Guided Abstraction Refinement. The principle is the following: for efficiency reasons
of the verification procedure, the studied model is over-approximated (the over-approximation
contains more accessible states than the exact model). If there is a false positive, meaning a bad
state acessible in the over-approximation but not in the exact model, then the approximation
is refined to exclude this counter-example.

The good-state oriented approach has been suggested by Laurent Fribourg and Al to
converge faster and more often (as the problem of parameters synthesis is undecidable in
general) when the set of acceptable traces is small. This method seems more adapted to our
problem: in many cases, the set of acceptable traces will be reduced, or almost reduced to
the ideal trace. It is thus more intuitive in our case to ask the composer to define the good
behaviors instead of the bad ones. The selected tool for our purpose is called Imitator.

3.2.2 Chosen good-state oriented method: IMITATOR

IMITATOR is a software developped by Etienne André, Romain Soulat and Laurent Fribourg
at the LSV (Laboratoire de Spécification et Vérification) laboratory. IMITATOR stands for
Inverse Method for Inferring Time AbstracT behaviOR.

Figure 3.4: Imitator

Given a parametric timed automaton A and a valuation π0 of its parameters, IMITATOR
returns a linear constraint on A’s parameters such as for every valuation π of A’s parameters,
the timed automata A[π] and A[π0] accept the same language.
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Example

Consider the example of the figure 2.4, and suppose we want to limit the acceptable traces to
the ideal trace induced by the score. We call respectively δ0, δ1 and δ2 the parametric delays
before e1, e2 and e3 (see figure 2.2). Given that e1, e2 and e3 are quarter notes, the ideal
valuation of the parameters is δideal0 = 1, δideal1 = 2 and δideal2 = 3. Note that the starting time
t0 of the piece is arbitrary; we chose it here such that δideal0 = 1, but it could have been elsewise.

The input given to IMITATOR for this example is the network of parametric timed au-
tomata N (δ0, δ1, δ2) obtained after converting the score (see section 4.2 for the details of this
conversion), and the ideal valuation of N ’s parameters π0 = {δideal0 = 1, δideal1 = 2, δideal2 = 3}.

The output generated by the software is the following constraint:

K = δ0 + 0.7 ≤ δ1 ∧ δ1 ≤ δ0 + 1.2 ∧ δ1 + 0.5 ≤ δ2

If the interpret respects the constraint K during the concert, meaning that the valuation
π induced by his or her interpretation validates K, then the order of the events and groups
will be exactly the one induced by the score: e1, a11, a21, e2, a22, a12 (...). Therefore, if π
validates K, then the problematic situation presented in the figure 3.1 cannot happen.

3.2.3 Specificities in our case

The algorithm is not deterministic.

For a given score S and a given ideal valuation π0 of parameters, the constraint returned by the
algorithm Inverse Method depends on the path chosen during the execution. For the same input,
all the output constraints potentially returned by IMITATOR nevertheless define the same set
of acceptable traces. For example, for the score of the figure 2.4, the algorithm could return
either the constraint K = δ0 + 0.7 < δ1 ∧ δ1 < δ0 + 1.2 ∧ δ1 + 0.5 < δ2 or the more stringent
constraint K = δ0 + 0.7 < δ1 ∧ δ1 < δ0 + 1.2 ∧ δ0 + 1.2 < δ2. Both of these constraints assure
that the only accepted trace is the ideal one.

Large number of clocks, states and parameters.

In our model (see section 4.2), the input network given to IMITATOR has a great number of
automata, parameters and clocks. Indeed:

• For each group and each event of the score, a new automaton and a new clock are created,
in order to define the launching dates of the groups and actions directly linked to that
group or event.

• For each event, a new parameter is created.

The scores can contain hundreds of events and thousands of actions or groups. Of course,
it is usually possible to subdivide a score into smaller parts in accordance with its musical
structure, but the number of automata, clocks and parameters is still much higher than the
usual applications of IMITATOR.

Nevertheless, the fixed form of the input is a very simple one: the automata given in in-
put to IMITATOR have a finished size, have no loops and the acceptable behaviors are limited
to a single trace. These characteristics ensure that the execution time is not too long, and that
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the algorithm terminates, which is not true in the general case when the input automaton has
not a finished size.

Note that even when the composer wants to allow several execution traces, the PTA
network input given to IMITATOR has for acceptable behaviors a single trace. Indeed, our
method to allow several execution traces is to modify the model of conversion of the score into a
PTA network - see last paragraph of section 5.2. IMITATOR generates a constraint K ensuring
that this modified input has for only acceptable trace the ideal trace; the network is modeled
so that K also ensures that the initial score has for acceptable traces the traces chosen by the
composer.

The time is quantified by clocks that flow in relative time.

We have described in section 2.2 the two time scales, physical and relative. Usually, the clocks
of the automata networks given in input to IMITATOR flow in physical time. In our case, with
clocks flowing in physical time, the automata networks modeling the scores would have non-
linear constraints for guards and invariants, which would considerably complexify the problem.
We thus decided to make all clocks flow in relative time. As all clocks flow at the same rate, the
algorithm Inverse Method is valid.
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Chapter 4

Model

4.1 Definitions

Most of these definitions can be found in [7] and [17].

4.1.1 Constraints on the clocks and parameters

Let us consider a fixed set of clock variables X = {x1, ..., xH}. A clock variable is a variable
with values in R+. All clocks evolve linearly at the same rate. A clock valuation is a function
ω : X → R+, assigning a value in R+ to each clock variable.

∀d ∈ R+, we use the notation X + d for the set {x1 + d, ..., xH + d}.

Let’s consider a fixed set of parameters P = {p1, ..., pM}. A parameter valuation π is a
function π : P → R+, assigning a value in R+ to each parameter.

A linear inequality of the parameters P (resp. on the clock variables X and the parame-
ters P ) is an inequality e ≺ e′, where ≺∈ {<,≤}, and e, e’ are two linear terms of the form∑

i αipi + d, (resp.
∑

i αipi +
∑

j βjxj + d), where 1 ≤ i ≤M, 1 ≤ j ≤ H and αi, βj , d ∈ N.

A constraint on the parameters P (resp. constraint on the clock variables X and the
parameters P ) is a conjunction of inequalities on P (resp. on X and P ).

Given a parameter valuation π and a constraint C, C[π] is the constraint obtained by
replacing each parameter p in C with π(p). Given a clock valuation ω, C[π][ω] is the expression
obtained by replacing each clock x in C[π] with ω(x). A clock valuation ω satisfies a constraint
C[π] if C[π][ω] evaluates to true. A parameter valuation π satisfies a constraint K if the
expression obtained by replacing each parameter p in K with π(p) evaluates to true.

Given a constraint C on the clocks and the parameters, the expression (∃X : C) denotes the
constraint on the parameters obtained from C after elimination of the clocks.

4.1.2 Parametric Timed Automata (PTA)

Parametric Timed Automaton

Given a set of clocks X and a set of parameters P , a parametric timed automaton A is a 7-tuple
of the form A = (

∑
, Q, I, A,K, Inv, T ), such as:
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•
∑

is a finite set of actions

• Q is a finite set of locations

• I ⊂ Q is the set of initial locations

• A ⊂ Q is the set of accepting locations

• K is a constraint on the parameters P

• Inv is the invariant, assigning to every q ∈ Q a constraint Iq on the clocks and the
parameters

• T is the set of transitions of the automaton. A transition is a step relation consisting of
elements of the form (q, g, a, ρ, q′), also denoted by q g,a,ρ−−−→ q′, where (q, q′) ∈ Q, a ∈

∑
,

ρ ⊂ X is a set of clocks to be reset by the step, and g (the step guard) is a constraint on
the clocks and the parameters.

A Timed Automaton (TA) is a particular case of parametric timed automaton, in which
K = True and the set of parameters P is empty.

Consider a PTA A = (
∑
, Q, I, A,K, Inv, T ).

The notation A(K) just emphasizes that only the constraint K will change in A.

For every parameter valuation π = (π1, ..., πM ), A[π] denotes the PTA A(K) with
K =

∧M
i=1 pi = πi. Thus A[π] is the PTA obtained by substituting all occurrences of a

parameter pi by the constant πi in invariants and guards. We say that pi is instantiated with
πi. Note that as all parameters are instantiated, A[π] is a timed automaton.

In the rest of the report, the automata we will introduce have a set of initial locations
reduced to a singleton {q0}.

(Symbolic) state and step

A symbolic state s of A(K) is a couple (q, C) where q is a location, and C a constraint on the
clocks and parameters.

The initial state of A(K) is a state s0 of the form (q0, C0), where C0 = K∧Iq0∧
∧H−1
i=1 xi = xi+1.

The constraint
∧H−1
i=1 xi = xi+1 assures that all clocks evolve from the same initial value.

We use the notation C(X) to indicate that X is the set of clocks occuring in C. We
use X ′ = ρ(X), where X ′ is a renaming of X, to denote the conjunction of equalities x′i = 0 for
all xi ∈ ρ, and x′i = xi otherwise. Given a state s = (q, C), a step of the automaton from s is
defined below:

• (q, C)
a−→ (q′, C ′) if (q, g, a, ρ, q′) ∈ T and C’ is a constraint on the clocks and the parameters

defined by: C ′(X ′) = (∃X : (C(X) ∧ g(X) ∧ (X ′ = ρ(X)) ∧ Iq′(X ′)))

• (q, C)
d−→ (q′, C ′) where d is a new parameter with values in R+, C ′ is thus defined by:

C ′(X ′) = (∃X : (C(X) ∧ (X ′ = X + d) ∧ Iq(X ′)))
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• (q, C)
a⇒ (q′, C ′) if ∃C ′′ such that (q, C)

a−→ (q′, C ′′) and (q′, C ′′)
d−→ (q′, C ′). It can be

shown that C ′ can be put under the form of a constraint on the clocks and the parameters
([1]).

∀ Q ⊂ Q(A(K)),∀i ∈ N∗ : PostiA(K)(Q) is the set of states reachable from Q in exactly i steps.
We use the notation PostA(K)(Q) = Post1A(K)(Q).

We note S(A(K)) the set of steps between the states of the automata A(K):
S(A(K)) = {(q, C)

a⇒ (q′, C ′) | (q, q′) ∈ Q(A(K))2}

∀ Q ⊂ Q(A(K)), we also use the notation :
SQ(A(K)) = {((q, C)

a⇒ (q′, C ′)) | q ∈ Q and ((q, C)
a⇒ (q′, C ′)) ∈ S(A(K))}

Symbolic run of a parametric timed automata

A symbolic run of A(K) of length m is a finite alternating sequence of symbolic states and
actions of the form: s0

a0⇒ s1
a1⇒ ...

am−1⇒ sm such that ∀i ∈ [|0,m− 1|], ai ∈
∑

and si
ai⇒ si+1 is

a symbolic step of A(K) and sm = (qm, Cm) is such that qm is an accepting state of A(K).

(ai)i∈[|0,m−1|] is then called a trace of A(K).

The language L(A) accepted by a parametric timed automata A is the set of traces of
A.

Given a set L of words composed with letters of
∑

(A), L is A-acceptable if all words
in L are traces of A(K).

Network of parametric timed automata (NPTA)

A network of parametric timed automata is a finite set of parametric timed automata
(Ai){1≤i≤n}, with disjoint sets of parameters, locations and clocks.

Product of automata

Consider a network of n parametric timed automata (Ai){1≤i≤n}.

A =
∏

{1≤i≤n}
Ai is defined by the following characteristics:

• Clocks and parameters: X =
⊎
{1≤i≤n}Xi and P =

⊎
{1≤i≤n} Pi

• Alphabet:
∑

(A) =
⋃

{1≤i≤n}

∑
(Ai)

• Locations: Q(A) =
∏

{1≤i≤n}
Q(Ai)

• Initial states: I(A) =
∏

{1≤i≤n}
I(Ai)

• Accepting states: A(A) =
∏

{1≤i≤n}
A(Ai)
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• Constraint: K(A) =
∧

{1≤i≤n}
K(Ai)

• Invariant: ∀ q = (
∏

{1≤i≤n}
qi) ∈ Q(A) : Iq =

∧
{1≤i≤n}

Iqi

• Transitions: T (A) = { (q1, ..., qn)
g,a,ρ−−−→ (q′1, ..., q

′
n) such as:

– ∀i ∈ [|1, n|], if a ∈
∑

(Ai) then ∃(gi, ρi) such as qi
gi, a, ρi−−−−−→ q′i ∈ T (Ai)

– ∀i ∈ [|1, n|], if a 6∈
∑

(Ai) then qi = q′i

– ∃i ∈ [|1, n|], a ∈
∑

(Ai)
– g =

∧
{i| a∈

∑
(Ai)}(gi)

– ρ =
⋃
{i| a∈

∑
(Ai)}(ρi) }

4.2 Transcription of the Antescofo score into a network of PTA

In this section, we present the modeling process of a score into an automata network intended
to be given as an input to IMITATOR.

4.2.1 The model

Each group and each event of the score is modeled by an elementary TA. The model also
includes a parametric timed automaton to model the launching of the musician’s events with
delays depending on the performance.

Pre-treatment

Prior to being modeled by a network of PTA, the score is submitted to a small pre-treatment:

• As we explained in the section 2.4, the initial synchronization strategy of a given group
can be changed depending on its hierarchical situation: for instance, tight groups included
in loose groups are turned into loose groups.

• Flattening of tight groups: tight groups are directly linked to the event immediately pre-
ceding them in the ideal order.

We don’t enter into the details of this pre-treatment partly aimed at reducing the size of the
network.

Modeling of each event and group of the score

Let’s consider an event or a group of the score. We call this event or group b0. We call:

• Ab0 the automata that models b0.

• L = (bi0)0≤i≤n the list of groups and actions immediately nested in b0 and D = (di)0≤i≤n
their respective launching delays from the moment b0 is detected.

• D′ the list (d′i)0≤i≤n, with d
′
0 = d0 and d′i = di − di−1 for i > 0

• xb0 the single clock of the automaton Ab0
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We suppose that the lists L and D are ordered chronogically.

Ab0 is defined by:

•
∑

= {Done b0}
⋃
∪0≤i≤n{Done Bi

0}

• Q = {Wait b0}
⋃
∪0≤i≤n{Wait bi0}

⋃
{End b0}

• I = {Wait b0}

• A = {End b0}

• Inv: For i ∈ [|0, n|], Inv(Wait bi0) = xb0 ≤ d′i

• T = {(Wait b0)
Done b0, {xb0=0}
−−−−−−−−−−−→ (Wait b00)}⋃

∪0≤i≤n−1{(Wait bi0)
xb0=d

′
i, Done bi0, {xb0=0}

−−−−−−−−−−−−−−−−→ (Wait bi+1
0 )}

⋃
{(Wait bn0 )

xb0=d
′
n, Done bn0 , {xb0=0}

−−−−−−−−−−−−−−−−−→ (End b0)}

Modeling of the musician’s performance

Let’s call L = (ei0)0≤i≤n the list of the musician’s events, and D = (δi)0≤i≤n the list of their
respective launching delays from the beginning of the piece, that will be instantiated by the
musician. The ideal valuation of these delays is the one induced by the score like explained
above. We suppose that the lists L and D are ordered is the sense of increasing ideal delays.

We call y the single clock of the automata Alauncher modeling the musician’s performance.
Alauncher is defined by:

•
∑

= ∪0≤i≤n{Done ei}

• Q = ∪0≤i≤n{Wait ei}
⋃
{Final state}

• I = {Wait e0}

• A = {Final state}

• Inv : For i ∈ [|0, n|], Inv(Wait ei) = y ≤ δi

• T = ∪0≤i≤n−1{(Wait ei)
Y=δi, Done ei−−−−−−−−−→ (Wait ei+1)}⋃

{(Wait en)
y=δn, Done en, {y=0}−−−−−−−−−−−−−−→ (Final state)}
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4.2.2 Example

The score given as an example in the figure 2.4 will be modeled by the network shown in figure
4.1. In that figure, the first elementary automaton is the events launcher, followed by the three
automata that model the three events, and by the three automata that model the three groups
of the score. Clocks flow in relative time (tempo pulse unit). For clocks flowing in absolute
time, the generated constraints are non-linear.

Figure 4.1: Automata network

The obtained network is printed in HyTech language (see [10] and [11]). This printout can
be given as is to IMITATOR, that will compute the network’s cartesian product and generate
on the fly the desired constraint.
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Chapter 5

Implementation and results

5.1 Case of a unique acceptable trace

We consider in this section that the only acceptable trace is the ideal one induced by the score,
meaning that the composer doesn’t want to allow any inversion in the order of events and actions.

The aim is to obtain a constraint K on the musician’s parameters such as, if K is veri-
fied, then the only possible execution trace is the ideal trace induced by the score.

5.1.1 Method

As in the previous chapters, ∀i ∈ [|0, n|], we call δi the parametric date of launching of the
event ei, depending on the interpretation of the musician, and by δideali the ideal date induced
by the score. Here are the inputs given to IMITATOR’s Inverse Method in order to obtain the
constraint K allowing only the ideal trace:

• The parametric timed automata network N (δ0, ..., δn) generated from the score as ex-
plained in section 4.2.

• The valuation π0 = (δideal0 , ..., δidealn ) of N ’s parameters. π0 = (δideal0 , ..., δidealn ) is such
that the automaton called A[π0], obtained by computing the synchronized product of the
network’s automata, accepts only the ideal trace induced from the score.

The output returned by the algorithm will be a linear constraintK on the parameters (δ0, ..., δn)
such that:

• π0 satisfies K

• For each valuation π = (δinst0 , ..., δinstn ) of parameters satisfying K: the automaton A[π]
accepts only the ideal trace induced from the score.

5.1.2 General Workflow

I needed to code a parser that would create an IMITATOR input out of every Antescofo score.
The team had already implemented a code that parsed every Antescofo score into an Abstract
Syntax Tree (AST). An AST is a tree representation of the abstract syntactic structure of a
source code written in a programming language. Each node of the tree denotes a construct
occurring in the source code. A good solution was thus to structure the conversion in three
steps:
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• Use the existing code to convert the score into an AST

• Read through the AST and create the automata network modeling of the score

• Print this automata network in the form of an IMITATOR input.

Figure 5.1: General workflow

5.1.3 Functioning of the IMITATOR input generator

The IMITATOR input generator (see workflow image in previous paragraph) reads through the
AST and creates the automata network N (δ0, ..., δn). Then, it prints a text file containing the
Hytech version of this network. The language used is C++.

Creation of the automata network

The IMITATOR input generator goes through the AST and creates each automata of the
network N (δ0, ..., δn). We used a visitor design pattern to read through the AST; we thus
wrote a visit function for each type of visited node: events, groups, actions, etc. With the visitor
pattern, the visit of two nodes of the AST representing the same type of object (for instance two
groups) will trigger the execution of the same function, no matter their hierarchical situation
(directly linked to an event or nested in another group), their synchronization strategy (tight or
loose), and their error-catching strategy (local or global). That function will thus have to check
in which hierarchical case the currently visited node is, and what are its synchronization and
error-catching strategies. As we explained in the paragraph 2.4.3, the initial synchronization
strategy of a given group can be changed depending on its hierarchical situation: for instance,
tight groups included in loose groups are turned into loose groups. This also has to be taken
into account by the function of visit.

The synchronization strategy has to be taken into account by the code because the gen-
eration of the network requires a pre-treatment including the flattening of tight groups (see
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figure 2.5). The error-catching strategy is also taken into account in prevision of the adaptation
of the code to the more general case of several acceptable traces, including those in which some
events of the musician are not detected.

The necessity of taking into account all the possible cases has made the code quite com-
plicated and heavy. We thus won’t give here the full detail of that code.

Generation of IMITATOR’s input file in Hytech language

We need to print in Hytech language the network that has been generated when reading through
the AST. As exposed above, this network is constituted of one automaton for each group and
event of the score, and of one Event-Launcher automaton.

IMITATOR’s input consists in:

• The Hytech versions of each automaton of the network printed one after the other in the
same text file.

• Another file containing the ideal values of each parameter.

The following example shows the Hytech version of a simple automaton.

Figure 5.2: Automaton

Figure 5.3: Print-out in Hytech language
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5.1.4 IMITATOR’s algorithm

To compute the constraint K, IMITATOR runs the algorithm Inverse Method.

The procedure consists in generating runs starting from the initial state (q0, C0), and re-
moving states that are not accessible in the automaton A[π0] (called π0-incompatible states) by
appropriately refining the current constraint K0 on the parameters (see [7]).

Input:
A : PTA
π0: Reference valuation of P .

Output:
K: Constraint on parameters.

Variables:
i: Current iteration
S: Current set of reachable states
K: Current constraint on the parameters

i := 0; K := True; S = {s0}

DO

DO UNTIL S is π0-compatible

Select a π0-incompatible state (q, C) ∈ S
Select a π0-incompatible inequality J in (∃X : C) such as π0 doesn’t
validate J
K := K ∧ ¬J
S := ∪ij=0Post

j
A[K]({s0})

OD
IF PostA[K](S) = ∅ THEN RETURN K := ∩(q,C)∈S(∃X : C))
i := i+ 1;
S := S ∪ PostA[K];

OD
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5.1.5 Example

We give here an example to illustrate the workflow exposed in figure 5.1. Let us consider the
following score:

Figure 5.4: Input score

This score is given in input to the AST Converter and to the Imitator Input Generator. The
output will be the PTA network modeling the score and the ideal valuation of parameters. From
the network, we give in the following figures only the event-launcher automaton (figure 5.5) and
the automaton modeling the event e3 (figure 5.6).

Figure 5.5: Event-launcher automaton
Figure 5.6: Automaton modeling of the
event e3
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Figure 5.7: Ideal valuation

These two text files (the HyTech version of the PTA network and the best valuation) are
given in input to IMITATOR. The output generated is a constraint on parameters and the ideal
trace in the form of a graph.

Figure 5.8: Imitator’s output

5.2 Case of multiple acceptable traces

5.2.1 Broadening the concept of Acceptable Trace

As Antescofo is meant to be used with a human player, allowing only the ideal execution induced
by the trace might be too restrictive. Indeed, if the restriction to the ideal trace presupposes
that the musician barely interprets the score and very carefully sticks to the initial tempo, then
the software fails its main mission. In order to release this restriction, we need to find a way of
generating a constraint authorizing multiple traces, and not only the ideal one.

5.2.2 A regular language as an input

A regular language L is a language accepted by a finite automata.

The theoretical aim would be to allow the composer to give as a set of acceptable traces
just any regular language. Indeed, the composer would then be able to allow all the execution
traces he/she finds acceptable, and not only the ideal one. Bearing that objective in mind, we
will establish the following result:

Theorem 5.2.2.1. Consider a PTA A with a single initial location q0, and a regular language
L. We assume moreover that L is closed by prefix and that all the words of L start with the same
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letter. Then, there is a constraint K on the parameters of A such as: for every valuation π of
A’s parameters, if π validates K, then the language accepted by A[π] is included in L.

The condition all the words in L start with the same letter is adapted to our problem, given
that all the possible execution traces for a given Antescofo score start with the score’s first
musician’s event.

5.2.3 Some notations

Consider a Parametric Timed Automaton A and a regular language L.

∀ m ∈ L :

• The length of the word m is noted l(m).

• ∀i ∈ [|1, l(m)|], the ith letter of m is denoted by m(i).

We consider another type of automata product called ×̃, with the same definition as the one
introduced in section 4.1 except for the transitions. Transitions for ×̃:

Consider A = ×̃ni=1Ai.

T(A)={ (q1, ..., qn)
g,l,ρ−−→ (q′1, ..., q

′
n) such that:

• ∀i ∈ [|1, n|], l ∈
∑

(Ai) and ∃(gi, ρi) such as qi
gi, l, ρi−−−−−→ q′i ∈ T (Ai)

• g =
∧
{i| l∈

∑
(Ai)}(gi)

• ρ =
⋃
{i| l∈

∑
(Ai)}(ρi) }

5.2.4 Proof of the result

Consider a finite state automaton AL such L(AL) = L, considered as a special kind of PTA
with an empty set of clocks. As all the words in L start with the same letter, it is possible
to chose AL so that I(AL) is reduced to a singleton {q0L}. The language accepted by A0 is
L(A0) = L(A) ∩ L(AL) = L(A) ∩ L

Considering a step ((q, qL), C)
a⇒ ((q′, q′L), C ′) ∈ S(A0(K)), according to the definition

of the product ×̃, there is one and only one step (q,D)
a⇒ (q′, D′) ∈ S(A(K)).

As AL has an empty set of clocks, and according to the definition we gave of a step
(section 4.1), if C = D, we also have the equality C ′ = D′.

Thus, as the initial states ((q0, q
0
L), C) and (q0, C) share the same constraint

C = K ∧ Iq0 ∧
∧H−1
i=1 xi = xi+1 where the xi are the clocks of the automata A, we can

conclude that for each step ((q, qL), C)
a⇒ ((q′, q′L), C ′) ∈ S(A0(K)), the corresponding step

(q,D)
a⇒ (q′, D′) ∈ S(A(K)) is such that C = D and C ′ = D′.

Thus, the following notation makes sense: We note S̃(A0(K)) the following set:
S̃(A0(K)) = {(q, C)

a⇒ (q′, C ′) | (q, C)
a⇒ (q′, C ′) ∈ S(A(K)) and

∃(qL, q′L) ∈ Q(AL)2 such as : (((q, qL), C)
a⇒ ((q′, q′L), C ′) ∈ S(A0(K))}
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We would like to find a constraint K on A’s parameters such as K validates the follow-
ing condition called C:

For every valuation π of A’s parameters, if π satisfies K, then: L(A[π]) ⊂ L(A0[π])

In the following algorithm, inspired by Inverse Method presented in 5.1, we generate
runs starting from the initial state, and we remove the states that are not part of a run
which trace is a word included in L(A0[π]), by appropriately refining the constraint on the
parameters. The generation procedure is then restarted until a new bad state is produced, and
so on, iteratively until no bad state is generated. The constraint K assures, at the end of the
algorithm, that all the runs of A(K) are included in L(A0(K)).

i := 0; K := True; S = ∅; Q = {q0}

DO UNTIL SQ(A(K)) ⊂ S̃(A0(K))

Select a state (q′, C ′) ∈ Post(Q) such that: ∃a, (q, C)
a⇒ (q′, C ′) 6∈ S̃(A0(K))

Select an inequality J of (∃X : C ′)
K := K ∧ ¬J
S := ∪ij=0Post

j
A(K)({q0})

Q := {q | ∃C : (q, C) ∈ S}

OD

IF PostA(K)(Q) = ∅, THEN RETURN K
FI

i := i+ 1
S := S ∪ PostA(K)(Q)
Q := {q | ∃C : (q, C) ∈ S}

For all valuation π validating K and ∀n ∈ N*, we define the following proposition called
Hπ(n):

• ∀m ∈ L(A[π]) such as l(m) ≤ n,

• ∀(qi, Ci)0≤i≤l(m) list of states of A[π] such that (q0, C0) is the initial state of A[π], and:

∀i ∈ [|0, l(m)− 1|], (qi, Ci)
m(i+1)⇒ (qi+1, Ci+1) ∈ S(A[π]),

Then we have:
∀i ∈ [|0, l(m)− 1|], (qi, Ci)

m(i+1)⇒ (qi+1, Ci+1) ∈ S̃(A0[π]).

Consider a valuation π validating K. In order to show that the constraint K returned
by the algorithm above validates the condition C, we prove by recurrence the proposition Hπ(n)
for all n ∈ N*.

• n = 1

Hπ(1) translates into: ∀(q, C) ∈ Post({q0}), ∀m ∈ L(A[π]) such as l(m)=1:

33



S{q0}(A[π]) ⊂ S̃{q0}(A0[π])

Hπ(1) is a direct consequence of the algorithm.

• Consider n ∈ N*. Let us assume Hπ(n) is true.

Consider :

– m ∈ L(A(π)): l(m) ≤ n+ 1

– (qi, Ci)0≤i≤l(m) list of states of A[π] such that (q0, C0) is the initial state of A[π], and

∀i ∈ [|0, l(m)− 1|], (qi, Ci)
m(i+1)⇒ (qi+1, Ci+1) ∈ S(A[π])

Consider the prefix m′ of m containing l(m)− 1 letters. Then, by Hπ(n), we have:

∀i ∈ [|0, l(m′)− 1|], (qi, Ci)
m′(i+1)⇒ (qi+1, Ci+1) ∈ S̃(A0[π])

The only thing left to prove is: ((ql(m)−1, Cl(m)−1)
m(l(m))⇒ (ql(m), Cl(m))) ∈ S̃(A0[π]),

which is a direct consequence of the algorithm.

Thus, for all π satisfying K, the language accepted by A[π] is included in L.

5.2.5 Implementation in a specific case

The algorithm described above presents a general solution to extend the notion of acceptable
trace. However, it can diverge very fast and is too naïve and general to be put into practice
within our scope. In this subsection, we offer an intermediary solution between a single ideal
trace and an arbitrary regular language L. This solution is a good answer to our problem, and
has for advantage that it can be experimented with IMITATOR.

The aim is to allow the composer to select a small zone of the ideal trace which order
doesn’t matter that much. The set Lacceptable is then the set of traces obtained from the ideal
trace by changing the order of the actions, groups, and events in the selected zone.

In the following score, the ideal trace is (e1, e2, a2, a1, a3, e3, e4). If the user selects
the zone indicated in red on the image, then the constraint generated by the module will allow
all the possible permutations between e2, a2, a1 and a3.

Figure 5.9: Selection of a zone
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We made the hypothesis that the events played by the musician are all detected, and in
the right order. Thus we restricted the possible choices of zone for the user to the zones
containing at most one event (but with an unlimited number of actions and groups). Indeed:
if the zone selected by the composer contains two events e1 and e2, then the set of acceptable
traces will contain traces with e1 before e2 and traces with e2 before e1, which would mean
that an inversion in the order of events is possible and acceptable, and contradicts our hypothesis.

The method we chose was to adapt the form of the PTA network given in input to IMI-
TATOR, so that the constraint generated by IMITATOR allows all the possible permutations
of trace in the selected zone. We are not exposing the full details of this adaptation, but the
main idea is to simply remove the actions and groups that are inside the zone in the generated
PTA network, and directly add boundary constraints of the zone to the initial constraint on
parameters that can be optionally given as an input to IMITATOR.

For instance, in the previous example, instead of giving in input to IMITATOR the PTA
network corresponding to the score, we give to IMITATOR the PTA network corresponding to
the score in which the actions and groups inside the zone have been removed:

Figure 5.10: Modification of the model

In addition to that, we give to IMITATOR an initial constraintKini expressing the "boundary
constraints" of the zone: here, Kini = δe2 +∆a3 < δe3∧δe1 +∆a1 < δe3 , where δi is the parametric
delay of the event ei since the beginning of the piece, and ∆ai is the delay of the action ai since
its triggering event is launched.
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Chapter 6

Computer Assisted Composition

The static analysis module presented in Chapter 5 can be used to give information to the
musician before the performance, for instance an indication on the allowed accelerations and
decelerations at each location of the score. Another way of using the module is to provide
help to the composer during the composition process. The composer can be given the same
indication as the musician: the allowed accelerations and decelerations at each location of the
score; this information would allow him to see, after writing a score, which areas of the score
are the most difficult to play for the musician in terms of sticking to the ideal trace, and if the
score allows enough space for interpretation. This use of the module takes place after the score
composing process.

Another possibility would be to play a role during the score composing process, in order
to assist the composer in finding the most appropriate values for some delays in its score, i.e.
the values that allow the most freedom of interpretation for the musician.

6.1 A commonly used composition workflow

Each composer usually has his own composition process, his own method, for writing a mixed-
music score. According to the accounts of the RIM (Réalisateurs en Informatique Musicale),
very often, the composition process consists in first writing the line of events intended for
the musician, and fix their delays, before writing the automatic accompaniment. Afterwards
is the automatic accompaniment created, first with parametric delays; at that stage of the
composition process, the composer has settled on a desired ideal trace for the piece, but has not
instantiated the actions’ and groups’ delays accordingly yet. Then, the third step consists in
the valuation of the automatic actions’ and groups’ delays so that the ideal trace is in the de-
sired order. This third step is not easy for the composer; we offer here a solution to automatize it.

Please note that this composition process is not exclusive; we have heard from the RIMs
at IRCAM however that it is the most frequently used process. The RIMs (Réalisateurs en
Informatique Musicale) are technical experts in charge of helping the composers with the use of
IRCAM technologies in a creative context and are thus quite aware of the composition workflow
of each composer they assist.

In all this chapter, for a given score S containing the events (ej)0≤j≤n and the actions
(ai)0≤i≤m, we note tidealej the ideal delay of the event ej since the beginning of the piece, tej its
parametric delay to be instantiated during a performance, and ∆ai the delay of the action ai
since the launching of its triggering event. We also introduce, for each action ai, the quantity
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δai = tidealeai
+ ∆ai , where eai is the triggering event of ai.

The following example illustrates the three stages of the composition process:

• First step: Write the line of the human musician with numeric delays.

Figure 6.1: First step of the composition process

• Second step: Write the automatic accompaniment with parametric delays and decide the
ideal order of automatic actions and groups. Note that this ideal order can be expressed
in the form of a constraint on actions’, groups’ and events’ delays.

NOTA BENE: In the following image, the delays of actions since the beginning of
the score are noted δai . δai = teai + ∆ai , where eai is the triggering event of ai. At the
step two of the composition process, the delays of events are instantiated, so teai = tidealeai

.
The parametric part of δai at that stage is thus ∆ai .

Figure 6.2: Second step of the composition process

• Third step: Instantiate the delays of automatic actions and groups.

Usually, several valuations respecting the ideal trace settled during the second step
are possible. The beginning of the piece is called t0 and can be located arbitrarily anytime
before the first event of the piece. We suppose here and in all this section that t0 coincides
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with the launching of the first event e1. Here, one possibility is:

δg11 = 0; δg2 = 0.2; δa11 = 0.5; δa21 = 0.7; δg12 = 1.0; δa22 = 1.2; δa12 = 1.5

Our purpose is to automate the third step. Consider a music score S at the second step of the
composition process exposed above: the delays of the events are fixed numerical values, and
the delays of the groups/actions are parametric. We want to create an algorithm that takes in
input the score S and the constraint Kideal on delays expressing the desired ideal trace, and
gives in output a valuation of the actions’ parameters respecting this constraint.

For instance, in the example above, the composer would give as an input the result of
the step 2, meaning:

• The parametric score written in Antescofo language, at the second step of the composition
process - with numerical events’ delays and parametric actions’ and groups’ delays

• A constraint on the actions’ and groups’ (parametric) delays and on the events’ (numerical)
delays that reflects the desired order for automatic actions, here:
Kideal = δg11 ≤ δg2 ≤ δa11 ≤ δa21 ≤ te2 = 1.0 ≤ δg12 ≤ δa22 ≤ δa12 ≤ te3 = 2.0

The algorithm would return a valuation of the parametric delays of actions and groups (here
the quantities noted δ) that respects Kideal . This process is illustrated in the following picture:

Figure 6.3: Automation of the third step
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6.2 Define the optimal valuation in terms of robustness of the
score

For a given score at the step 2 of the composition process, and a constraint Kideal specifying
the ideal order of actions, groups, and events within that score, it is relatively easy to return
one valuation of the parametric actions’ and groups’ delays satisfying the constraint Kideal . A
more interesting idea would be to return the valuation that maximizes the robustness of the
score to the tempo variations of the interpret.

Let us first define how we mesure the robustness of the score for a given valuation of
actions’ parameters.

6.2.1 Preliminary remark

Given the commonly used composition process described above, we have changed, for this
chapter, our idea of an input score. Indeed, in the previous chapters of this report, we have
supposed that the composer didn’t know which ideal trace he wants: we supposed he only
knew which numerical instantiations he wants for actions’, groups’ and events’ delays to have
in the ideal case. The static analysis module takes in input this entirely specificated score
(corresponding to π0 in the previous chapters), and computes the algorithm Inverse Method
that infers the ideal trace from this ideal instantiation.

In the light of the composition process exposed above, we made the new assumption
that the composer actually knows already at the second stage what ideal trace he wants. In
this context, the static analysis module presented above is not necessary anymore, because the
constraint it would generate has a generic form, explicited in the following paragraph.

We call K the constraint expressing the necessity of having the execution trace equal to
the ideal trace. K is in the generic form of an ordering of the delays of actions, groups and
events counted from the beginning of the score. With the notations defined in section 6.1,
these delays can be expressed by the quantities teai + ∆ai (for actions) and tej (for events). By
"ordering", we mean that the form of the constraint will be:

v1 < v2 < ... < vN

with ∀k ∈ [|1, N |], vk ∈ {teai + ∆ai}0≤i≤m
⋃
{tej}0≤j≤n, meaning that each vk is equal to

the delay of an action or an event calculated since the beginning of the piece. Let’s consider
two events or actions b and b’ consecutive in the ideal trace. Then ∃k ∈ [|1, N − 1|] such that
vk and vk+1 are respectively the delays of b and b’. vk < vk+1 is then the expression of the
necessity of having b before b’.

Please note that in this chapter, K denotes the constraint described above with only
parametric delays, for actions and groups as well as for events. The constraint that would
have been generated by Inverse Method would be the one obtained by substituting in K each
action’s and group’s parametric delay ∆ai by its numerical value in the score, and thus having
the events’ delays for only parameters.

6.2.2 Robustness definition

Consider a score S containing n events (ej)j∈[|0,n|], at the step 2 of the composition process,
meaning that events’ delays are numerical whereas actions’ and groups’ delays are parametric.
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For each event ej , we call tidealej the numerical delay of ej since the beginning of the score. We
call Kideal the constraint on the actions’ and groups’ parametric delays specifying the ideal
order of actions, groups, and events during a performance. Kideal is the constraint obtained by
substituting the teai by t

ideal
eai

in the constraint K presented in the previous subsection.

Let us consider a possible valuation π of the actions’ and groups’ parametric delays in
S, such that π verifies Kideal . We note S[π] the score obtained by substituting each action’s
and group’s delay by their value in π. S[π] is totally specified, meaning that the composition
process has been terminated: all actions’, groups’ and events’ delays are instantiated and have
fixed numerical values.

The score is then ready to be interpreted by a human musician during a live perfor-
mance. As we have seen in the first chapters of this report, the human musician is not likely
to respect exactly the numerical values of the delays tidealej specified in the score. Hence the
necessity of getting a constraint on tempo variations that makes sure the execution trace will
be the ideal one. This constraint, called K[π], is the one obtained by substituting, in the
constraint K presented in the previous subsection, each action’s delay ∆ai by its numerical
value given by π. K[π] is thus a constraint on events parameters tej .

Here is how we define the robustness of the score S[π].

We first define the robustness at the level of one event ej of the score. Let’s call K[π]j
the constraint obtained by substituting in the constraint K[π] the parametric delays of all the
other events with their ideal numerical value:

∀k 6= j, tek := tidealek

The only parameter occurring in K[π]j is thus tej . We note inf [π]j and sup[π]j the
lower and upper bounds of the parameter tej in the constraint K[π]j . The robustness of the
event ej is defined by the numerical quantity:

robustness(S, π, ej) = min(|tidealej − inf [π]j |, |tidealej − sup[π]j |).

The robustness of the score S is defined by the quantity:

robustness(S, π) = minj∈[|0,n|](robustnessS[π](ej)).

Intuitively, the smaller the robustness is, the closer to the score the musician must play.

Our aim is to find an algorithm that would provide, at the step 2 of the composition
process, a valuation π0 of actions’ and groups’ parameters that maximizes the robustness of the
score, meaning such that: robustness(S, π0) = maxπ(robustness(S, π). We call optimal such a
valuation.

In order to find a good valuation for a given score, a very expensive possibility would be
to generate many random valuations of the actions’ and groups’ parameters, and evaluate the
robustness of each of them. The selected solution would be the most robust one among those
tried. This procedure is nevertheless quite expensive, given that it requires the generation of
many valuations of actions’ and groups’ parameters, and doesn’t guarantee that the selected
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solution is really the best one.

It is thus worthy to investigate and see if there is a generic algorithm to find a valua-
tion of actions’ and groups’ delays that universally maximizes the robustness of the score.

6.3 Build the optimal valuation

Consider a performance containing n events (ej)j∈[|0,n|].

∀ j in [|0, n|], we call (aij)0≤i≤Nj the actions that are supposed to be launched between
ej and ej+1 in the ideal trace. The constraint K defined above will thus have the following
expression, with only parametric delays:

K =
∧
j∈[|0,n−1|] tej < δa0j

< δa1j
< ... < δ

a
Nj
j

< tej+1 .

Please note that with the notations introduced in this chapter, the constraint K can
also be written:

K =
∧
j∈[|0,n−1|] tej < te

a0
j

+ ∆a0j
< te

a1
j

+ ∆a1j
< ... < te

a
Nj
j

+ ∆
a
Nj
j

< tej+1

In this section, for more lisibility, for each action aij located between ej and ej+1 in the
ideal trace, we will note eij instead of eaij the triggering event of the action aij . Thus K can be
re-written:

K =
∧
j∈[|0,n−1|] tej < te0j

+ ∆a0j
< te1j

+ ∆a1j
< ... < t

e
Nj
j

+ ∆
a
Nj
j

< tej+1

The ideal order expressed by the constraint K is illustrated in the following image:

Figure 6.4: Ideal order

The aim of this section is to evaluate for which valuation π of the actions’ parameters
(∆aij

)j∈[|0,n|], i∈[|0,Nj |] the constraint K[π] ensures the maximal robustness to the score.

6.3.1 Notations summary

∀i ∈ [|0, Nj |], we use the following notations:

• eij is the triggering event of the action aij

• The parametric delay of each event e since the beginning of the piece is noted te.

• The ideal delay of each event e since the beginning of the piece is noted tideale .

• ∆aij
is the expression δaij − t

ideal
eij

.

• θaij is the expression δaij − t
ideal
ej .
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• αeij = teij
− tideal

eij

• wj = tidealej+1
− tidealej

For a given valuation π of actions’ and groups’ parametric delays, we note ∆aij
[π] the value

given to ∆aij
by π.

Figure 6.5: Notations

6.3.2 Expression of robustness for a given valuation

In this subsection, we re-write Kideal using other variables more appropriate for the estimation
of the robustness.

We consider that the score is at the step 2 of the composition process. Let’s fix a valu-
ation π of the actions’ parametric delays that verifies K.

Let’s fix one event ej , 0 ≤ j ≤ n− 1 and one action aij , i ≥ 1.

We have seen above that the order of launching specified by the ideal trace, ai−1j before
aij , will translate into the constraint tei−1

j
+ ∆ai−1

j
[π] ≤ teij + ∆aij

[π].

Case of consecutive actions triggered by the same event

If ei−1j = eij , meaning that the two consecutive actions ai−1j and aij are triggered by the same
event, then the order of launching specified by the ideal trace, ai−1j before aij , will be respected
in all the possible interpretations of the musician, as long as ∆ai−1

j
[π] ≤ ∆aij

[π]. Indeed, in
that case the constraint tei−1

j
+ ∆ai−1

j
[π] ≤ teij + ∆aij

[π] is equivalent to ∆ai−1
j

[π] ≤ ∆aij
[π]. The

events’ parametric delays are absent from this constraint. (NB: we know that this constraint
evaluates to True because we chose a valuation π validating the constraint K.)
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Thus the expression of K[π] is the conjunction of atomic constraints in one of the fol-
lowing forms, with j ∈ [|0, n|] and i ∈ [|0, Nj |]:

• teij + ∆aij
[π] < tei+1

j
+ ∆ai+1

j
[π], with eij 6= ei+1

j (Form 1)

• tej < te0j
+ ∆a0j

[π], with e0j 6= ej (Form 2)

• t
e
Nj
j

+ ∆
a
Nj
j

[π] < tej+1 (Form 3)

• tej < tej+1 if there are no actions supposed to be launched between ej and ej+1. (Form 4)

Expression of atomic constraints

In this paragraph, we express the 3 first atomic constraints listed above with the parameters
θaij

[π] and θai+1
j

[π], and αeij and αei+1
j

.

• Form 1: teij + ∆aij
[π] < tei+1

j
+ ∆ai+1

j
[π], with eij 6= ei+1

j

We have ∆aij
[π] = tideal

ei+1
j

− tideal
eij

+ ∆ai+1
j

[π] − (θai+1
j

[π] − θaij
[π]) (see the following

image).

Thus teij ≤ tei+1
j

+ ∆ai+1
j

[π]−∆aij
[π]

⇔ teij
≤ tei+1

j
+ ∆ai+1

j
[π]− tideal

ei+1
j

+ tideal
eij
−∆ai+1

j
[π] + θai+1

j
[π]− θaij [π]

⇔ αeij
− αei+1

j
≤ θai+1

j
[π]− θaij [π]

Thus the atomic constraint teij
+ ∆aij

[π] ≤ tei+1
j

+ ∆ai+1
j

[π] can be expressed by:
αeij
− αei+1

j
≤ θai+1

j
[π]− θaij [π]

Figure 6.6: Express the Form 1 of atomic constraints

• Form 2: tej < te0j
+ ∆a0j

[π], with e0j 6= ej

By a similar calculation, this constraint can be expressed by : αej − αe0j ≤ θa0j

43



• Form 3: t
e
Nj
j

+ ∆
a
Nj
j

[π] < tej+1

By a similar calculation, this constraint can be expressed by : α
e
Nj
j

≤ wj − θ
a
Nj
j

6.3.3 Robustness of the score S[π]

We have shown that the expression of K[π] is the conjunction of atomic constraints, each in one
of the following forms, with j ∈ [|0, n|] and i ∈ [|0, Nj |]:

• αeij − αei+1
j
≤ θai+1

j
[π]− θaij [π], with eij 6= ei+1

j

• αej − αe0j ≤ θa0j , with e
0
j 6= ej

• α
e
Nj
j

≤ wj − θ
a
Nj
j

• tej < tej+1 if there are no actions supposed to be launched between ej and ej+1.

We consider an event ek of the score. We consider the constraint K[π]k obtained by substitut-
ing in K[π] all the delays of the other events of the score by their ideal value: ∀j 6= k, tej := tidealej

Then: ∀j 6= k, αej = 0

The constraint K[π]k is thus the conjunction of atomic constraints, each in one of the
following forms:

• αek ≤ θai+1
j

[π]− θaij [π], with eij 6= ei+1
j and eij = ek

• αek ≤ θaij [π]− θai+1
j

[π], with eij 6= ei+1
j and ei+1

j = ek

• αek ≥ −θa0j [π], with e0j 6= ej and e0j = ek

• αek ≤ θa0j [π], with e0j 6= ej and ej = ek

• αek ≤ wj − θaNjj
[π] with eNjj = ek

• tek−1
< tek+1

if there are no actions supposed to be launched between ek and ek+1

• tek < tek+1
if there are no actions supposed to be launched between ek and ek+1.

From these expressions, we can deduce that the quantity to maximize in order to get the best
robustness for S[π] is:

minj∈[|0,n|], i∈[|0,Nj |]{ θa0j , mini∈[|0,Nj−1|](|θai+1
j

[π]− θaij [π]|), wj − θ
a
Nj
j

[π] }.

6.3.4 The optimal valuation

According to the preceding paragraphs, in order to find the best valuation in terms of robustness
of the score, the quantity to maximize is the minimum of the distances between two consecutive
actions triggered by different events.

We call ε the smallest positive duration that can be affected to a delay in an Antescofo
score.
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We consider j ∈ [|0, n− 1|].

We note Nε the number of couples of consecutive actions triggered by the same event,
and Nclusters the number of groups of consecutive actions all triggered by the same event. These
numbers can be obtained by the following computation:

Nε = 0, Nclusters = 0, i=1
If a0j is triggered by ej , then Nε = Nε + 1
Else, Nclusters = Nclusters + 1
While i < Nj :

If ai−1j and aij are triggered by the same event, then Nε = Nε + 1
Else, Nclusters = Nclusters + 1
i = i+1

The best valuation is the one verifying, for every two consecutive actions aij and ai+1
j :

• If aij and ai+1
j are triggered by the same event, then θai+1

j
− θaij = ε.

• If aij and ai+1
j are not triggered by the same event, then θai+1

j
− θaij =

wj−Nε×ε
Nj+1−Nclusters

In the following example:

• Nj = 5

• a0j , a1j and a2j are triggered by the same event e0j different from ej

• a3j and a4j are triggered by the same event e3j different from e0j

• a5j is triggered by an event different from e3j

Thus, Nclusters = 3 and Nε = 5. The distance between two consecutive action triggered by
different events is:

D =
wj−Nε×ε

Nj+1−Nclusters
=

wj−5ε
3 .

The following picture illustrates the best valuation of action’s delays.

Figure 6.7: Example of best valuation of action’s delays
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Chapter 7

Conclusion

The initial objective of this internship was to find a way of helping the composer and the inter-
pret forecast the temporal behavior of a mixed-music score during a concert. My contribution
was to implement a module that generates a constraint on the parametric delays of the events
destined to be played by the musician assuring that the temporal behavior of the system during
the concert is acceptable. I also offered a solution of Computer Assisted Composition aimed at
helping the composer create the most robust score to the tempo variations of the interpret.

However, before adding the static analysis module to Antescofo, the possibility of physi-
cal delays on the score has yet to be included in the model. Indeed, we restricted ourselves in
this internship to the case in which all the actions’, groups’ and events’ delays are expressed on
the score in relative time. This is the generic case of classical scores, where the duration of notes
is expressed in number of tempo pulses. However, the domain specific language Antescofo allows
the coexistence in the same score of delays expressed in physical time and delays expressed in
relative time.
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