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1 Explaining living matter by under standing development

1.1 The animal-machine

In 1739, Jacques de Vaucanson (1709-1782) presented aatetebutomaton to
the French Academy of Sciences. It was called@amard Digerateur (Digesting
Duck, Fig. 1), a masterpiece of anatomical simulation, withre than four hundred
moving parts reproducing the main vital functions (redjorga digestion, locomo-
tion): the animal flapped its wings, ate grain and defecdtealdrain being digested
by dissolution, according to the inventor).

In making these “mobile anatomies”, Jacques de Vaucanssmlweost certainly
influenced by the biomechanistic philosophy of Bédescartes (1596-1650), who
reduced the organs of the human body to parts in a machingtassby God”. In-
deed, Descartes believed that one can understand life byaramg it to a machine:
that one can explain the main bodily functions — digestionphotion, respiration,
but also memory and imagination — as if they were producechtaugomaton, like
a clock designed to show the time simply by the layout of it®&th and counter-
weights. But when RenDescartes tried to convince Queen Christina of Sweden
that animals were just another form of machine, she is sdidve replied:

Can machines reproduce?

Three centuries were to pass before her question receiveshamer. A hundred
years later, the automata of Vaucanson were imitating the pteysiological func-
tions, but they still could not reproduce, and it was onlyhwtite publication of
an article by John Von Neumann in 1951he General and Logical Theory of Au-
tomatg that it was finally possible to believe that a machine cofifielcgvely build
a copy of itself [34].

To meet Queen Christina’s objection, it is necessary to dgfirecisely what
we mean by “machine” and what we mean by “reproduction”. Fam Weumann,
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Fig. 1 Vaucanson’s duck. Voltaire described Vaucanson in these livékile rival of the old
Prometheus’ fame, Vaucanson brings to man celestial flame.\Baldiopy nature’s self aspires,
And bodies animates with heavenly fires”

who had a very functionalist approach to this question, raeids can ultimately
be reduced to a computer programme, and reproduction temsiduplicating this
programme. This does not mean using a command in the congpoperating sys-
tem to copy a file containing a programme, but ensuring thefuhctioning of the
programme produces a complete and functional descripfitregrogramme itself.
Fig. 2 shows an example of such a programme written in theranogning language
C. its execution produces a file containing the exact copysbitn code. This is
called aself-replicatingcode.

#i ncl ude<st di 0. h>

mai n() {char*c="\\\"#i ncl ude<st di 0. h>%n=i n() {char *c=% %% %
102s%n%; printf(c+2,c[102],c[1],*c,*c,c,*c,c[1]);exit(0); }
\n"; printf(c+2,c[102],c[1],*c,*c,c,*c,c[1]);exit(0);}

Fig. 2 A self-replicating code. This programme is made up of two linesaafe in the program-
ming languageC. The second line of the programme (starting withi n) has been arbitrarily
typeset over three lines to make it more legible

Von Neumann’s purpose was clearly to show that living preesscan be re-
duced to mechanical processes, described by operationsathde performed au-
tonomously, without the help of an “invisible mahout”: to achine, in other words.
And for Von Neumann, like Queen Christina, reproduction dedelopment are a
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specific characteristic of living things. But for Von Neummaihis characteristic is
just a particular property possessed by certain machir@sa muality that tran-

scends physical processes, giving special status to béallognes. The existence of
a machine, an automaton, capable of reproduction, is theref key factor in the

age-old debate opposing the relative status of biology &ydips.

This debate has not been easy to settle, reproduction bamgfdhe most fun-
damental processes in the life of organisms and appearingstst any physical
explanation. Intuition suggests that if, as a result of itsctioning, a machiné
can produce a machiri® thenA must contain, in one form or another, a complete
description not only oB but also of the specific mechanisms instructing it how to
use that description to actually produce (constr8ctJhis description must be in-
ternal toA, otherwise we would be dealing with a mechanism of copyitigerethan
reproduction. We should therefore be able to define a cartaasure of complexity
and show thaA is necessarily more complex th&But in this case, our intuition
leads us astray.

1.2 From self-reproduction to development

Modern biologists may ask themselves the same questioie gghtlosophers and
queens of past centuries, but today they seek to undergianddchanisms of re-
production by elucidating therocesse$eading from the germ cell to the complete
organism: the aim is to understand, step by stepctirestruction of an organism
over the course of time¢hrough the multitude of local interactions of its constit
elements. In a wordjevelopment

The elements that Von Neumann brought to the debate are betaat: they are
based on the description of a cellular automaton which dres, over the course
of time, the configuration of a spatial subdomain in a neiginimg region. A cellular
automaton can be described bpradefinechetwork of sites, called cells, each cell
possessing one of a finite set of states. The state of eacis egltlated according
to a predefined rule of evolution, which takes into accouatdfate of the cell and
the state of its neighbours at tirhéo calculate the state of the cell at time 1. The
functioning of the automaton corresponds to the updatirthestate of its cells at
discrete time intervals (see Fig. 3).

We are a long way from the molecular mechanisms to which nmobliedogists
wish to reduce biological phenomena. The existence of asplicating automaton
suggests that there is no problem of principle in the ex¢ster such a machine, but
it tells us nothing about the “how” of biological processBgvertheless, the con-
cepts of programme, code, automaton, memory and informataoe invaded biol-
ogy and assumed an explanatory value, especially in deveofal biology [20]:
biologists need models and metaphors to understand (iteptesent, analyse and
interpret) the huge mass of experimental data they haveatetl. For example, the
concept ofgenetic codelays a similar role in the living cell as the rule governing
the evolution of states does in the Von Neumann automaton.
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Fig. 3 A cellular automaton is a network of cells, each joined to itgynleours by links. Here

the network is a rectangular grid. Each cell possesses a stageditieer 0 or 1). The rule of

evolution used here is: the state of a cell is the modulo-2 additiche states of the neighbouring
cells. An example of the evolution of one cell is shown top ridite three networks below show
three successive stages in the evolution of the automaton. Téésrapplied simultaneously to
all the cells. Von Neumann’s self-replicating automaton is a rhotiéhis type, where the rules

of evolution lead to the reproduction of the initial configtion of a given region in an adjacent
region

1.3 Development as a dynamical system

The concept oflynamical systerallows to formalise the idea of process of devel-
opment. A dynamical system (DS) is characterised by obsensthat evolve over
time. These observations are thaiablesof the system, and they are linked by cer-
tain relations. These variables account for relevant ptaseof the system (whether
they be biological, physical, chemical, sociological, tey). At a given moment
in time, they have a certain value, and the set of these valuestitutes thestate of
the systemThe set of all the possible states of a system constitigessate space
(or configuration space). For example, a falling stone isskesy characterised by
the variablepositionandvelocityof the stone. These two variables are not indepen-
dent: if we consider the position of the stone as a functiotino¢, then its velocity

is the derivative of that function.

The succession of system states over time is caltegjectory. A DS is a formal
way of specifying how the system moves from one point in th&igaration space
(one state) to another point (the next state). This can be dwactly, by a function
(the function of evolution of the system), or indirectly, §iying constraints (equa-
tions) on the possible future state (which is not necegsarilque, if the system
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is not deterministic). A variety of mathematical formalsigorrespond to this very
general concept of dynamical system. For example, thehlasacan take contin-
uous or discrete values. Likewise, the progression of tiarelge continuous or in
discrete steps. Examples of formalisms correspondingésetitases are listed in
Table 1.

In simple cases, the trajectory of a dynamical system caxjpessed explicitly
by an analytic function of timé. In the case of the falling stone, for example, the
differential equationsxydt = v and d//dt = g can be explicitly integrated to give
the distance travelled by the stone as a function of tinegt?/2.

In more complex cases, an analytic equation giving thedtajg does not exist,
and computer simulation is then a favoured approach fogstgdhe trajectories of
the system. In addition, instead of focusing on one pasdicingjectory, we can look
at qualitative properties satisfied by all the possiblestgries, for example: “if we
wait long enough, the system ends up in a well-defined statehinh it then re-
mains” or “if the trajectory passes through these statesillinever return”. When
there is no faster means of predicting properties than bgrebgy or simulating
them, we qualify them asmergent propertiefNote that DS with very simple spec-
ifications can produce very complex trajectories (we samedi speak othaotic
behaviou); moreover, calculating the trajectory of the system caexgensive in
terms of computer time and require a vast amount of memory.

The structure of states

Another important characteristic by means of which dynafrégstems can be clas-
sified is the structure of states. In the example of the falitone, the structure of a
state is simple: it is a pair of vectors (velocity, position)

Very often, the structure of a state reflects the spatialrasgéion of the system.
Let us take the example of the diffusion of heat in a volumes distribution of the
temperature has a structure, related to the spatial o@msof the volume. We can
therefore define a scalar field assigning a temperature togzint. The evolution
of this field follows a law of diffusion specified by a parti@mivative equation. This
links the temperature at tinte- dt of a pointp to the values of the temperature field
at p and in its neighbourhood at tinte

Table 1 Three examples of formalism used to specify a dynamical system dcgdadthe con-
tinuous or discrete nature of the variables and of time. ker&inctions correspond to sequences
Xni1 = f™1(xg) = f(xy) for a given functionf on R. Many other formalisms have also been
studied

C: continuous

D discrete
Time C D D
State C C D

H differential equation| iterated functions| finite automaton
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Very often, subsystems only interact if they are connectephgsically close:
we call this the property dbcality (there is no action at a distance). The structure
of a state then reflects this division into subsystems, aaduhction of evolution
respects the property of locality. For the evolution of temgbure in a volume, each
state assigns a temperature to each point in the voMnaad the state space is
therefore the set of functions dfin R. The heat diffusion equation governing the
evolution of the system indicates that the temperature ofiat inVV depends solely
on the temperature of the neighbouring points.

Development as trajectory of a dynamical system

Above, we stated that the conceptgsgnetic codéhas much in common with the
rules specifying the evolution of cell state in Von Neumanitoanata. This is the
concept underlying the “all-genetic” paradigm, accordingvhich the complete
evolution of the organism is coded in its genetic materiat] avery characteristic
is uniquely determined by the genes. This viewpoint has lsedstantially chal-
lenged [2], in favour of a more flexible approach, recongilihe genetic and epi-
genetic viewpoints on development. Living systems may badyical, but they are
also open systems, interacting with their environment.diyment should there-
fore be regarded as a co-construction, depending on ini@nacboth within the
system and outside it (with the environment). Genetic nitdoes not constitute
a complete and sufficient description of any given organigithough it is indis-
pensable. Cell machinery, for example, also plays a cemtiglas has been demon-
strated experimentally by the technique of cloning in whachucleus (i.e. the ge-
netic material of a cell) is introduced into a germ cell.

However, the processes of morphogenesis involving the meméand reorgan-
isation of matter are also characterised by a second pyopleet state space and its
topology can also evolve over time.

Let us illustrate this idea by comparing it to the two exarsplescribed above.
In the case of the falling stone, the velocity and the pasitbthe stone change at
each moment but the system is always adequately describag@aiy of vectors. In
this case, we say that the dynamical system hegtalale structureThe same is true
for the evolution of the temperature in the volumgV is fixed in advance and each
state is always an element\éf— R. In these two examples, the state space can be
described adequately at the beginning of time, before thalation; it corresponds
to the space of the measurements of the system. The valuess theasurements
changes over time, but the data of the state space and it®gypare not variables
of the system and cannot evolve over the course of time.

Quite the opposite holds true for the processes of develnprb®logical pro-
cesses form highly structured and hierarchically orgahthgamical systems, the
spatial structure of which varies over time and must be ¢afed in conjunction
with the state of the system. We call this type of s%/stedylaamical system with
dynamical structurewhich we shall abbreviate {®S)“.
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The fact that the very structure of a biological system isatyital has been high-
lighted by several authors; we can cite, in different doreaihe concept ofiyper-
cycleintroduced by Eigen and Schuster in the study of autocataigtworks [13],
the theory ofautopoietic systenfermulated by Maturana and Varela [43};stems
of variable structuredeveloped in control theory by ltkis [30], or the concept of
biological organisationintroduced by Fontana and Buss to formalise and study
the emergence of self-maintaining functional structurea et of chemical reac-
tions [18]. The objective of all of these works has been tsgrand formalise the
idea of change in the structure of a system, change that @edwith the evolution
of the state of the system.

(DS)2 are widespread in models of plant growth and more genenalbljevel-
opmental biology, in multiscale cell models, mechanismgrotein transport and
compartmentalisation, etc. But they are also relevanthierolomains, such as the
modelling of mobile networks, Internet and the Web, the tgyment of cities,
traffic jams, self-assembly processes, autocatalyticorsin chemistry, semantic
networks in learning, social behaviour, etc.

An example

To illustrate the concept c(fDS)Z, let us take the example of the development of
an embryo. The initial state of the embryo is described bysthtesy € .7 of the
germ cell (however complicated that description might Béfer the first division,
we have to describe the state with 2 cells, that is to say a tees € . x .77

But when the numben of embryo cells becomes large enough, the state of the
system can no longer be adequately described by an elemexif.of his set only
describes the state of each cell; it does not contain théaspdbrmation necessary
to describe the network of cells (their positioning in redatto each other). And yet
this network is of prime importance, because it conditidresdiffusion of signals
(chemical, mechanical or electrical) between cells andefoee, in the end, their
functioning. With each movement, division or death of a,dblé topology of this
network changes. For example, durig@strulation cells initially far apart become
neighbours, enabling them to interact and changing thestirde (cell differentia-
tion).

1.4 What formalism for dynamical systems with dynamical
structure?

Dynamical systems with dynamical structure are difficulstiody because they are
difficult to formalise. Let us return to the example of the eyato illustrate this.
We have indicated that the position of each cell changes taver, making it
difficult, for example, to specify the processes of diffush®tween cells. One solu-
tion that comes immediately to mind is therefore to comptle¢estate of a cell with
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information about its position, and to consid&r= .7 x R3 as a building block
allowing to construct the set:

T =TUT%U...UT"U...
=TUIxT*.

It is certainly possible to characterise an embryo as a poitis phase space,
but that does not get us very faZ* has very little intrinsic structure and does
not provide much information about the possible trajee®f the systems. For
example, the function of evolution will be very difficult teefine and there is little
chance that it will be continuous.

The problem of locality

The function of evolution will be difficult to define becaugeesifying the position
of each cell in terms of its coordinat®s presupposes the definition of a global ref-
erence point. During the evolution of the embryo, the groefth cell pushes away
the neighbouring cells, which in turn push away their nealir, until the position
of every cell has been changed. Between two successive,sta¢herefore have to
express the change in the position of each cell lgyobal transformatiorof coor-
dinates. Because it must express globally the changes npessition, and because
these changes are due to multiple concurrent local tramsftions, the expression
of this transformation can be arbitrarily complex.

The origin of this problem lies in thextrinsic and globaéxpression of the form
of the syster and one solution is therefore to specify intrinsically thusition of
each cell, for example by including the distance from itgghbburs in the state
se . of each cell. In this case, the specification of changes ipdséion of a cell
is local, but as the neighbourhood of each cell changes, &vagain faced with the
problem of a state space that changes over time.

The problem of continuity
Let us return to the example of the falling stone. The pasitiad the velocity of

the stone vary continuously. The state of the system therefaries continuously
over time and the trajectory of the system isantinuous functiorof time in the

1 To simplify, we only take into account the position of each aelR?, but we should also specify
its form, which conditions its neighbourhood and its exclengith other cells (for example the
surface exchange area between two neighbouring cells, whiddittons intermembrane flow).

2 |n the approach described, the specification of the positiohetells uses a global reference
point independent of the growing embryo. This referencetpmmresponds to the identification of
points in the space surrounding the form, and not to a processsictto the growing form: the
laws governing the movement, division and death of cells woeldhle same if the embryo was
developing within a toric volume (but the result could be d#fet because the neighbourhoods of
the cells would be different).
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state space. This continuity allows to reason in terms ofiitefsimal evolutions of
the system and to write a differential equation charadteyithe trajectory. In more
complicated cases, we obtain a partial derivative equétitien the state has a spa-
tial structure) or a set of such equations when severalrdiftanodes of functioning
have to be taken into account (a finite and usually small numbe

In the case of embryo development, this is no longer possléong as there is
no movemert, division or death of cells, the stagd®elongs to a certaity" and this
evolution is continuous (assuming that the electric padésitchemical concentra-
tions, mechanical constraints, etc. evolve continuously} the essential morpho-
genetic events (for example a cell division that changestite from7" to .7"1)
are by nature discontinuctis

Towards other solutions

The modelling and simulation of the evolution of @S)? are therefore particularly
arduous: it is difficult to define the structure and the dyrenaif the system at the
same time, because one is dependent on the other. The exgingrieabove high-
lights the inadequacy of global and continuous formalisms Want to express an
evolution as a succession of discrete morphogenetic egentssponding to qual-
itative discontinuities and changes). However, it is gidksible to describe these
systems, with the laws of evolution often being informallysdribed as a set of
local transformations acting on an ordered set of discrete estiti

Faced with these difficulties, several researchers havgested usingewrite
systemso formalise this type of description.

2 Rewrite systems

2.1 Introduction

Rewrite systems (RS) are among the formalisms that compuientists have ap-
propriated and developed, especially for modelling chargéhe state of a process.
A rewrite system is a mechanism allowing to define the repiese of one part of
an object by another. The objects concerned are ustegsthat can be repre-
sented by a tree, of which the inner nodes are operationshenteaf nodes are
constants (see Fig. 4). An RS is defined by a set of rules, anle &ra pair denoted
o — B. Arule a — [ indicates how a sub-terimm can be replaced by a terfh

3 Cell movement is sufficient to change the topology and thergfarénteraction between cells.

4 In the example we have been using, morphogenetic events araiismus because the mod-
elling is done at cell level. We could have modelled the cotre¢ion of different molecules at
each point in space, which might have avoided this problem sdfadfitinuity (the movement of
each molecule being priori continuous). But this raises another problem: how do these nence
trations represent the biological entities that interest elés,dissues, organs, etc.?
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An example

Let us take the arithmetical expressions and the ralex6- x. Intuitively, this rule
specifies that any expression that can take the form “0 addsdnhething denoted
by X" can be rewritten more simply as “the thing denotedhyT hus, the expression
e=1+ (0+ 3) can be rewritten a8 = 1+ 3 by applying the above rule to the sub-
term (0+ 3) of e. We also writee — € to indicate thate can be rewritten ag
through one sole application of the rule.

The sequence — e; — ... — &, — € is called aderivationof e. We say thae
is anormal formif there is nog’ such thae — €.

P VAN /N /N
0/ \1 0/ \0 0 : * Y Y *

0O+x->x X+Yy->y+x
(0+1) + (0 + 0)

AN N

Fig. 4 Representation of the terg®+ 1) + (0+ 0) and application of the two rules-9x — x
andx+y — y+ x. At each reduction, the strategy here is to apply one rule iat@& The subtree
filtered by the left side of the rule to be applied is circled bgashed line. The applications are
non-deterministic, in the sense that we could have chosen othécatpns at each step. For the
first reduction, for example, we could have applied the same rule 8- x to the left subtree of
the root rather than the right subtree. We could also have ctiossply the rulex+y — y+xto
any of the three inner nodes (3 possibilities). The final termaiokd is the constant 1, and this is
anormal formfor the two rules

RS and decision procedure in an equational theory

The original motivation behind RS was to provide a decisioocpdure in equa-
tional theories. In these theories, the aim is to prove aatmally the equality of
two complex terms solely by using predefined elementary légsa The idea is

to orientate the equations (for example, to orient the éyu@h-x = x into a rule
0+x — Xx) and to use the rules obtained to derive the normal ferof a terme.
The normal form¥ is equivalent tee (since each substitution transforms a subterm
into an equivalent term) and can be interpreted as a singtlific of e. Two terms

e, ande, are then equivalent in the theory if they reduce to the samealdform
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e. For examplee; defined by O+ (1+ 3) is equivalent tae, defined by 1+ (0+ 3),
because; ande, reduce to the same normal foenl -+ 3.

For this decision procedure always to succeed, there missteeormal form for
each expression (propertywérmalisatior) and each expression must have one sole
normal form (property otonfluencg These two properties are not quite sufficient
for the decision procedure to calculate automatically; athestep we must also
choose a derivation, i.e. choose which subterm will be tésvriand by which rule:
this is thestrategyof rule application.

The theory of RS [9, 10] is mainly used in algebra and logid,iboan be ap-
plied in almost every branch of computing (from Petri netkgoto symbolic cal-
culus, from the theory of demonstration to lambda calcul@s)e key result is that
RS, considered as processes of calculationTareg-complet€¢any computational
process, i.e. described by a Turing machine, can be foreshby an RS). The use
of rules to transform a term is such a fundamental operatiah geveral generic
environments have been developed to define and apply RSafseag others, the
websites of the projects ELAN [16] and MAUDE [33]). The todiffer in the terms
they take into account, thee patterns allowed on the left-hand side of a rule for se-
lecting subterms, and the strategies of application thabeadefined.

2.2 Rewrite systems and the simulation of dynamical systems

The above presentation suggests that a aule: B specifies a ternf8 equivalent

to (and simpler than) the term. But we can interpret this rule as the result of a
calculation (the expressighis the result of calculating the expressiohor as the
evolution of a subsystem changing from statto state. RS can therefore be used
to model and simulate DS:

e a state is represented by a term and the state of a subsysteprésented by a
subterm;

e the evolution function is encoded by the rules of the RS irfétllewing manner:
the left side of the rule corresponds to a subsystem in whiekllementmteract,
and the right side of the rule corresponds to the result of thieraction.

Thus, the derivation of a termcorresponds to a possible trajectory of a DS start-
ing from the initial states. A rewrite rule then corresponds to the specification of
the evolution of a subsystem. A normal form corresponds txedfpoint in the
trajectory (the system is in equilibrium and no evolution take place).

An example
For the development of the embryo, a ralei — ¢’ can be interpreted as a cell in

the statec which, on receiving a signa) evolves to the stat€; a rulec — ¢’ @ ¢”
represents a cell division; a rute— 0 (c gives nothing) represents apoptosis; etc.
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[17, 23]. The idea is that the evolution of a biosystem is B@etby rewrite rules
of which the left side selects an entity in the system and tessaiges sent to it, and
the right side describes the new state of the entity. Theabdper which appears in
the rule denotes the composition of local entities in a glekstem (in our example,
the aggregation of cells in an embryo). The capacity to mareboth the changes
of state and the appearance and disappearance of cells Withsame formalism
makes RS good candidates for the modellingd®)?.

2.2.1 Dealing with time

One important factor in the modelling 0(8)2 is the treatment of time. The model
of time favoured in RS is clearly an event-driven, atomic diggrete model: time
passes when an evolution occurs somewhere in the systeapplieation of a rule
corresponds to an event and specifies an atomic and instangehn the state of
the system. The concept of duration is not taken into accltitough it could
be, within this formalism, by considering the first and lagtms). The choice of a
strategy of application provides a certain degree of cébwotrer the model of time:
for example, a maximal parallel application of rules to dmfrom one global state
to another corresponds to synchronous dynamics, whilegpkcation of one sole
rule corresponds to asynchronous dynamics.

2.2.2 Dealing with space

A rule of the formc®i — ¢’ presupposes that a signiaproduced by a certain
cell will reach its targett somewhere else in the system. The operationsed
to amalgamate the states of the subsystems and the mess$agesaztion into
the state of a complete system must therefore express thial gfgpendencies and
functional organisation of the system studied.

The concept of rewriting has mainly been developed andetifdr the rewriting
of terms. These represent a severe restriction on RS, ketaeis use requires the
encoding of the highly organised structure(ﬁ)‘S)2 in tree form. The possibility
of defining rules of evolution depends on this encoding. Widsk demands a great
deal of creativity and intuition. It is difficult to repreddn a satisfactory manner the
organisation of a biological system into molecules, coripants, cells, tissues, or-
gans and individuals, and this has motivated an extensithreafoncept of rewriting
to structures more sophisticated than terms (for examptecam define a concept
of rewriting on a graph, see also [21, 22]).

Nevertheless, even when they are limited to trees, RS afearkable examples
of modelling of(DS)Z, particularly in the biological domain. By playing on the
properties of the operators, it is possible to model sevgpals of organisation. In
the following sections, we shall give examples where:

e the operatiomb is associative and commutative, which allows to model afiche
ical soup”;
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e several operations can be considered simultaneously, @aasto introduce the
idea of compartmentalisation;

e the operationd is simply associative, which allows to represent sequeanés
tree structures.

3 Multiset rewriting and chemical modelling

The state of a chemical solution can be representediwyltiset a set in which one

element can appear several times, as in a chemical solutierevgeveral molecules
of the same species are present at the same time. A multiséedarmalised by a

formal sum in which the operatap is associativeandcommutativeFor example:

(a®b)®(cob)

represents a multiset (e.g. a chemical solution) contgittie elements (e.g. the
molecules), b andc, where two copies db appear. Since the operationis asso-
ciative, we can discard the brackets, and the property ohuatativity allows us to
reorganise the elements in this sum as we like:

(adb)® (cdob) = avbdcodb =adbdbdc=caboapb= ...

A multiset therefore corresponds to a tree in which asseiiatllows us to “flat-
ten” the branches, and commutativity allows us to permutdeahves.

In a chemical solution, Brownian motion agitates the mdesuand after a suf-
ficiently long time each molecule will have had the opportyito meet and interact
with any other molecule in the solution. Once we have repiteskthe state of a
chemical solution as a multiset, it is therefore easy to fdate the chemical re-
actions as rewriting rules on multisets. The associataitg commutativity of the
operator® play the role of Brownian motion and allow to “group togethebitrar-
ily the elements of the multiset corresponding to a left siflehe rule before that
rule is applied. For example, the three rules:

ri: ada—adadhb r: abb—adbab r3: bob—bobopa

represent second-order catalytic reactions betweenaygpel typeb molecules (a
collision between two molecules catalyses the formatioa tfird molecule, with-
out consuming the first two). Thus, if a reactignoccurs in state® cdacd b, the
result will be the stata® cd a® bd b where an extrd has been produced. Note
that it is not necessary for the tveomolecules to be side by side, because we can
always rearrange the term to make it so.

Several chemical reactions can happen at the same itinparallel. This cor-
responds to the simultaneous application of several raedifterent molecules.
The strategy of applying as many rules as possible at a girendtep is called a
maximal parallelapplication. Such a strategy is hon-deterministic: on thtiset
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ad® ad b we can applyr; or rp, but not both at the same time, due to a lack of re-
sources. In this case, one of the rules is chosen at randosduttion step is then
repeated to simulate the evolution of the state of the cheraution. Several ap-
proaches are possible, in terms of adjusting the strategyl@fpplication, to take
into account the kinetics of chemical reactions [5, 24].

Note that in this approach, each molecule is explicitly espnted and each inter-
action is explicitly treated: this is known agent-based simulatiofThis approach
can be compared to more classic approaches which représectncentration of
each chemical species rather than each molecule. Obvjaushis particular case,
the agent-based approach is more costly in computing tidexamory, but it al-
lows to simulate finely the complex phenomena, such as fltiohsaand correla-
tions, that are beyond the reach of global approaches.

This abstract formalisation of chemical reactions coutt# a domain of re-
search calleartificial chemistry[11, 12], tackling problems ranging from the auto-
matic generation of combustion reactions [6] to the studynethanisms of self-
organisation in the evolution of self-catalytic networks].

3.1 Some examples of application

A simple example of population growth

To illustrate multiset rewriting and its application to nedéhg, we shall look at
an example of a biological nature: the multiplication of acefiular organism in a
test-tube. We assume that a cell exists in two fortnandb: A represents a mature
cell ready to divide ant a young cell that will evolve to fornA. Each cell division
of A produces one cell of typ& and one cell of typd. These evolutions can be
formalised by the two rules:

r: A— Adb
o b— A

If the initial state of our test-tube is representedyy= A® b® b, the first three
evolutions give us:

My — ADDOACA - ADDOACDDAGDOOA—

—ADbOAGLPADDCADDSADAGA— ...

Simulation of this process can be used to determine, for piarthe ratio of forms
Ato formsb in the population after a given time. Moreover, as we mewtibearlier,
we can test properties verified by all the processes satgfiese rules of evolution.
For example, Fibonactiproved that the ratio 4/#b of the number ofA to the

5 1n 1602, Fibonacci studied the question of how fast a populaifambbits would grow under
ideal conditions. Imagine that a pair of rabbits, one male and@male, are put in a field. These
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number ofb converges asymptotically towards the golden number, whatthe
initial state.

Applications to the modelling of networks of biological @nactions

The modelling of networks of biological interactions (ggéoeontrol networks, sig-
nalling networks, metabolic cascades, etc.) is a relativelv domain of application
of these techniques. In [17], Fisher and his co-authorsqeeg using the concept
of multiset to represent proteins involved in a cascadetefattions in a signalling
pathway. This avenue has been widely developed, in paatitaltake into account
the different complexes that proteins can form [14, 15].

If multiset rewriting has been used to model signalling reeks and metabolic
pathways, we should not deduce that the cell can be compaeeté t-tube contain-
ing a chemical soup. On the contrary, the cell is a spatiadjiilig organised medium,
with compartments, vesicles, cargos, membranes, etcchvatiow to localise the
different chemical species involved (for example the rémepare localised on the
cell membrane, while the genes are located in the nuclebsry giroteins are an-
chored and diffuse in membranes like the endoplasmic fetitu Among other
things, this localisation helps to make certain reactionsimmore efficient. Other
phenomena, such as the extreme density of proteins in tlae@tiular medium, ren-
der the simple model of chemical soup simply inadequatein@akto account this
spatial organisation is one of the main challenges cugrdated in the modelling
of cellular processes [31, 42].

Heat diffusion in a bar

Above, we stated that the properties of associativity andratativity allow us

to deconstruct a term so that each element can interact wjtlother element, in
the manner of molecules in a well-mixed chemical soup. Bt wie appropriate
encoding, multiset rewriting can be “diverted”, so as tcetako account geometric
information.

The process we want to model is the diffusion of a set of gagialong a line.
This problem also corresponds to the diffusion of heat irirathr, with each parti-
cle representing a quantum of heat. The line is discretizteda sequence of small
intervals indexed by consecutive integers. Each intereatains a number of par-
ticles (possibly zero). At each time step, a particle cap stahe same interval or
diffuse into the neighbouring interval (see Fig. 5). We cepresent a state of the

rabbits are capable of reproducing after one month, so théiea¢rid of the second month, the
female has given birth to another pair of rabbits. To simplify,assume that the rabbits never die
and that each female gives birth to a new pair, composed of a mdla &male, every month
starting from the second month. If we represent a newly-bornkpalr and a mature pair b,
then the rule'; corresponds to the breeding of a new pair and therguie the maturing of a young
pair.
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Fig. 5 Diffusion of particles in a bar. The left-hand figure shows thel@tion over 160 time steps

of 1500 particles initially distributed over 20 intervalstime middle of a bar discretized into 60
intervals. The diagram on the right specifies the behaviourpafrticle (see text). The number of
particles in an interval corresponds to the concentrati@abfemical product or a quantity of heat.
The multiset representing the state of the line (which is diszadtinto 5 intervals numbered from
0to4)is given by: 0506061626 2030404

line by means of a multiset in which each numberepresents a particle present
in the interval numbered. The evolution of the system is then specified by thel
following three rules:

rn: n—n
r,: n—n-1
rg: n—n+1

wheren is an integer and the operatiossand— which appear on the right side are
the usual arithmetic operations. The rujgrespectivelyrs) specifies the behaviour
of a particle that diffuses into the interval on its left @estively right) and the rule
r, specifies a particle that remains in the same interval.

3.2 Paun systems and compartmentalisation

The above encoding allows us to deal with linear geometrigeOtariations have
been proposed to facilitate the representation of more toaofyological structures,
such as the nesting of membranes and compartments in ahmekléments of a
multiset can be molecules or other multisets, which caniin é@ntain molecules
or other multisets.
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This nesting is studied using the formalismR#Eun system@& systems) [36], in
which the classical rewriting of multisets is extended by toncept omembrane
A membrane is a nesting of compartments represented, fon@ra by a Venn
diagran¥ without intersections and with one sole superset:skia of the system
(see Fig. 6).

skin i
— skin

mi ZTIVN

mle ee m?2
| /I\
) e o m3

m3 °
2 ( ) (L ()

skin m1
Fig. 6 Paun systems. Membrane nesting can be represented by a Venn diaghamut witersec-
tions and with one sole superset, by a nesting tree or by a welkéted word

°
oo,%'.

Objects are placed in each region delimited by a membraulehay then evolve
according to diverse mechanisms: an object (or a multisabjefcts) can change into
other objects, but it can also cross a membrane or provoldighelution or creation
of a membrane. Fig. 7 shows some examples of rules of evolintiB systems. For-
mally, such a system can be specified by using several opesati &', ", .. ., each
corresponding to a certain membrane. These operationssoeiative and commu-
tative, but they are not associative with each other (in oim&eep the membranes
separate).

3.3 In parenthesis: the application to parallel programmnn

The dialogue between computing and the other scientifigadises is not all one-
way. Here is an example. Inspired by the chemical metaploonpater scientists
have used multiset rewriting not only to simulate chemiealctions or biological
processes, but also as a parallel programming languagéd&aevas first developed
in the language GAMMA [3]. Here is a particularly elegant exade of a parallel
programme:

X@y/(xmody=0) — y.

This rule specifies that the pair of numbety must be replaced by when the
condition 'y dividesx’ is satisfied (the condition is written after thiesymbol). If we

6 Vienn diagrams, invented by the English logician of the same name, means of visualising set
operations by representing the sets as surfaces delimited $gdctairves.



18 Jean-Louis Giavitto and Antoine Spicher

Fig. 7 Example of a rule of evolution in ad@n system. The symbdl on the right side of a rule
entails the dissolution of the enclosing membrane. The destmat@nbranes are indicated by the
suffix (the membranes are named). The enclosing membrane can abvafsioed to by the name
“out”

apply this rule as far as possible to the multiset composedl tife integers between
2 andn, we obtain a multiset in which the rule cannot be applied #&buse the
condition is no longer satisfied) and which therefore corgtail the prime numbers
up ton.

In the above programme, there is no trace of artificial secjngnin the calcu-
lations: the rule can be applied in any order whatsoevere Nwit the parallelism
comes from the simultaneous application of rules and that'tinfolding” of the
programme consists simply in repeating the applicatiorhefrtiles until a normal
form (a fixed point) is obtained. These programmes are neeruénistic, unless the
rewriting rules are confluent: in that case, when the prograrands, we do obtain
a perfectly determined result, although the intermediateas calculated during the
execution of the programme can differ (we speak of detestimiesults despite a
non-deterministic execution environment).

4 Lindenmayer systemsand the growth of linear structures

In the previous section, we considered a process of regritim associative and
commutative terms, allowing us to model a “chemical soup”tHis section, we
shall explore associative terms: these terms then comesfmsequences and we
speak ofrewriting strings(of symbols). Chomsky’s work on formal grammars [7]
marked the beginning of a long series of works on string rtavg;j and these works
have been at the origin of developments concerning syneamastics and formal
languages in computing. Grammars are generative formglisnother words, they
allow us to construct families of objects, by generating séphrasesa phrase is
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a sequence of symbols generated by successive rewritihgssdt of phrases that
can be generated idanguage

In 1968, the biologist Aristid Lindenmayer (1925-1989yaatuced a new type
of string rewriting to serve as the foundation for a formaddty of developmen-
tal biology [32]: Lindenmayer systems, more often abbr@dao L-systems. The
main difference from Chomsky grammars lies in the stratdgyle application. In
Chomsky grammars, only one rewriting is applied at a timegnehs in L-systems
the rewritings take place in parallel, replacing all the bpis in a phrase at each
step. Lindenmayer justified this strategy by analogy to dellelopment: all the
cells in an organism divide independently and in parallel.

The objective of L-systems is to construct a complex objéke @ plant) by
successively replacing the different parts of aa simpl@aibby means of rewriting
rules. Symbols are interpreted as components of a livingrosmn, such as cells or
organs, rather than words. L-systems have found numerqlisatons not only in
the modelling of plant growth, but also in computer graphiash the generation of
fractal curves or virtual plants.

4.1 Growth of a filamentous structure

A simple example of L-system is the one that describes thethrof cyanobacteria
Anabaena Catenuldl' hese blue-green algae form filaments composed, for our ex-
ample, of four types of cellss, g, D andd, which can be interpreted as follows:
andD are mature cells capable of dividing;andd are quiescent cells. In addition,
the cells are polarise®: andd are polarised towards the right in the filameh&nd

g are polarised towards the left. When we examine a filament,anesee that the
cells do not succeed each other in any old order. And the tiegysystem presented
below generates sequences very similar to those observedure.

D
Gd
sDD

GG dGd

The derivations on the right show that at each step all thebsysrare rewritten
in parallel according to the rules on the left. Numerousatans can be devel-
oped from this basic mechanism, with the aim of extendingettpressivity of the
formalism. One of the most important extensions involveéaching attributes to
the symbols, for example a number representing a size, cccheentration of a
chemical product. Fig. 8 illustrates the use of one suchnsi®@ in a more real-
istic model of Anabaenagrowth. Instead of simply considering mature cells and
quiescent cells, each cell possesses a size that growsimeerRurthermore, in a
nitrogen-free medium, some cells become specialised: ¢berdrysts. Wilcoxet
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al. [44] proposed that a cell differentiates into a heterocystan the action of two
chemical substances, an activator and an inhibitor, whiffise in the filament and
react with each other. This reaction-diffusion model aiaw explain the appear-
ance of an isolated heterocyst cell everyegetative cells, as observed in nature,
with a relatively constant. Prusinkiewicz and Hammel [25] used an L-system to
specify and simulate this system, thereby achieving theilsition of a reaction-
diffusion in a growing medium (the filament), an importan&eple of(DS)Z.

Fig. 8 Differentiation of heterocysts in ainabaendilament. The left-hand figure represents the
same diagram as the right-hand one, but seen from another aihggegraphical representation,
called an extrusion in space-time, was introduced in [25]. i& diegram, times moves from the
top-left corner to the bottom-right corner. Each “slice” regents the cells of a filament at a given
moment in time. The height of each cell represents the concimtrat activator, as does the
shading of the cell (from black to white). The black cells aegetative. Differentiation occurs
when the concentration of activator rises above a threshedd le

4.2 Development of a branching structure

It is easy to represent a branching structure by a stringatogducing two symbols
that serve as “brackets”. There are subtle differencesdmivthe rewriting of such
strings and the direct rewriting of terms. String rewritisghe method used in L-
systems to represent the branching structure of a plantandés of development.
The example below is caricatural, and does not correspotitgrowth of any real
plant. But it does allow us to illustrate the power of this eggeh.

Let us assume that a plant is made up of two types of “brandatmple branches
b and budded branch@&s From one year to the next, budded branches lose their
buds and become simple branches. We therefore have th® rale. A simple
branch grows and produces a section of plant comprising emaede up of three
simple branches with two budded branches branching off & ahd 23 of the way
up. This specification is expressed by the rule:

b — b(GB)b(pB)b.
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In this rule, we use the bracketsind) the represent the development of the lateral
axes. We use the additional symbplandq to indicate development on the left or
the right of these axes.

At the beginning of the 1980s, P. Prusinkiewicz introduceplaghical interpre-
tation of words produced by an L-system [40]. This interatien is based on the
concept of graphical turtle, as used in the LOGO programnginguage, for exam-
ple. This allows to directly visualise the structure of atgedescribed by a word
generated by the L-system. Thus, we use the successivatiani of an L-system
to represent the successive states of a developing platd, dvaw the successive
curves that tend towards a fractal curve.

A state of the graphical turtle is the triplét,y, 6), where(x,y) represents the
current position of the turtle in Cartesian coordinates &ndpresents the orienta-
tion of the turtle. This orientation is interpreted as thglarbetween the body of the
turtle and the horizontal axis. The turtle moves followirgronands represented by
the symbols of a word.

e In our example, the symbal corresponds to the command “move forward one
lengthA”. So if the current state wa,y, 8), then after reading the symbiplit
becomegx+ A cosb,y+ Asing, 0).

e The symboB is interpreted in the same way, except that after drawingoinee-
sponding segment, we also draw a circle centred on the ¢yrosition.

e The symbolg and) save and restore the current position respectively. The po-
sition is saved in a stack. When the turtle meets the symbioFjumps” to the
position corresponding to the open bracket.

e Finally, the symbob (resp.q) increments (resp. decrements) the current aégle
by a predefined angle.

Using this graphical interpretation, the first three derivas of a simple branch are
illustrated in Fig. 9.

5 Beyond linear structures: calculating aform in order to
understand it

L-systems have proved to be perfectly suited to the modgtifrplant growth [40]:
they allow to define in a particularly compact and synthetaywhe creation of
the complex form of a plant and above all, in their recent esitens, to couple the
process of form creation with the physical-chemical preesghat take place within
that form.

However, although L-systems are suitable for the reprasentof linear forms
(filaments or trees), their use for the construction of maraplex shapes (ordinary
graphs, surfaces or volumes) depends on arbitrary encaoldaigapidly becomes
inextricably complex. Researchers are therefore tryingesign more suitable for-
malisms. The import of this search for formalisms to spetlify processes of de-
velopment reaches far beyond the question of simulationtwWo reasons: these
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Fig. 9 Graphical representation of the first three derivations inralenmayer system. The initial
state is given by the wortl (gB) b ( pB) b and the rules of derivation are the two rules defined in
the text. The scale of the representation of each “plant” fewift
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formalisms could fill a conceptual vacuum in biology, andytleeuld potentially
have an enormous epistemological impact. What is more, #pglication could
extend far beyond the domain of biology.

Simulation and explanation

Drawing firstly on purely physical models (osmotic growthtiwlLeduc, optimal
forms with D’Arcy Thompson, reaction-diffusion processéth Turing, etc.), then
purely genetic models (with concepts such as gene actiofergénetic pro-
gramme), the different formalisms proposed over the coafgke last century to
specify the processes of development have filled a condegaaum and modified
the perception of what has explanatory value for biologd3.

As an example, advances in computing and the data produckmblogy al-
low the simulation of certain processes of development witdictions that can
then be empirically validated [8]. Very recently, for insta, several cell-level mod-
els [4, 41] of meristem development (the meristem being toevimg tissue of the
plant) have succeeded in reproducing characteristic piagtic patterns observed
in nature and in linking them to the circulation of auxin (aml hormone) in this
tissue. The accumulation of auxin triggers the developméniew organs, which
modify the form of the meristem and consequently the flow ofiua marvellous
example of(DS)?.

However, no matter how predictive these simulations aeg;, ttan only have an
explanatory value if they allow us to express the procesksgsvelopment in a form
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that is intelligible to the human mind, so that we can anatfisen and reason about
them [29]. After all, what kind of understanding can we hopelérive from the
simple observation of a succession of complex calculafidfis might just as well
observe these processes in nature, instead of reprodin@ngdn a computer.

Computer morphogenesis allows us to define a formal framevimmhich we
can speak rigorously of genetic programme, memory, inftionasignal, interac-
tion, environment, etc. and to relate these concepts to aledety mechanistic view
of development processes. It introduces the concepbwiputationas an explana-
tory scheme in the modelling of development. But if the ernlogn be deduced by
computation from a description of the egg and its interastiwith the environment,
the embryo must be considered both as the result of a congputatd as part of
the computer that produces this result. This problem isistlich computer science
(reflexive interpreters, meta-circular evaluators). Tineirfe will tell whether these
concepts will enable us to grasp that most specific aspedtiofjlbeings: their
development.

Giving form to a population of autonomous agents

The modelling of development processes is important folohists, but it is also
important for computer scientists, who are always lookimgrfew computational
models and for whom biology is clearly a great source of irsain.

Computational models are constrained by the particudgritit a material model
or inspired by a metaphor of what a computation should beaj,odew material
supports for computation are being studied. One celebeatathple is the exper-
iment that Adleman performed in 1994 [1], proving that a comatorial prob-
lem’ can be solved using DNA molecules in a test-tube. But othesipdities
are currently the subject of very active research, inclgdising the growth of
colonies of bacteria, the diffusion of chemical reagentdher self-assembly of
biomolecules ...to compute. The programming of these nawpcational sup-
ports certainly raises some substantial problems, andiighgrthe development
of new languages and algorithms to allow us to use an immenselqtion of au-
tonomous entities (biomolecules, viruses or cells) thegract locally and irregu-
larly, to construct and develop a reliable computation (anfo

But the mechanisms offered by a programming language, oelyatgorithms,
can also be directly inspired by a biological metaphor withr@sorting to biologi-
cal machines built using biotechnologies. For examplelutiamary algorithms are
inspired by the mechanisms studied in evolutionary theewgn though they are
executed on electronic machines like present-day cormgputer

In the same order of idea, formalisms providing a concejtesp of the mech-
anisms of development could well revitalise the conceptppbramme”, by sug-
gesting new approaches in the development of very big sodtweotably in the

7 The problem he chose was the Hamiltonian path problem, consistidgtermining whether a
given graph contains a path that starts at the first vertex, &rtie last vertex, and passes exactly
once through each remaining vertex.
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specification of their architecture and the interconnectif their different parts,
or by offering new mechanisms for hiding useless infornmtabstracting details
or capitalising and reusing code. Computer scientists @ieely seeking, for their
software, properties usually attributed to living mateartonomy, adaptability, self-
repair, robustness, self-organisation. Clearly, theodia¢ between computing and
biology [28, 35], so ambiguous and so fertile, is not abourtd.
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