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1 Explaining living matter by understanding development

1.1 The animal-machine

In 1739, Jacques de Vaucanson (1709–1782) presented a celebrated automaton to
the French Academy of Sciences. It was called theCanard Diǵerateur (Digesting
Duck, Fig. 1), a masterpiece of anatomical simulation, withmore than four hundred
moving parts reproducing the main vital functions (respiration, digestion, locomo-
tion): the animal flapped its wings, ate grain and defecated (the grain being digested
by dissolution, according to the inventor).

In making these “mobile anatomies”, Jacques de Vaucanson was almost certainly
influenced by the biomechanistic philosophy of René Descartes (1596–1650), who
reduced the organs of the human body to parts in a machine “designed by God”. In-
deed, Descartes believed that one can understand life by comparing it to a machine:
that one can explain the main bodily functions — digestion, locomotion, respiration,
but also memory and imagination — as if they were produced by an automaton, like
a clock designed to show the time simply by the layout of its wheels and counter-
weights. But when Reńe Descartes tried to convince Queen Christina of Sweden
that animals were just another form of machine, she is said tohave replied:

Can machines reproduce?

Three centuries were to pass before her question received ananswer. A hundred
years later, the automata of Vaucanson were imitating the main physiological func-
tions, but they still could not reproduce, and it was only with the publication of
an article by John Von Neumann in 1951,The General and Logical Theory of Au-
tomata, that it was finally possible to believe that a machine could effectively build
a copy of itself [34].

To meet Queen Christina’s objection, it is necessary to define precisely what
we mean by “machine” and what we mean by “reproduction”. For Von Neumann,
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Fig. 1 Vaucanson’s duck. Voltaire described Vaucanson in these lines:“While rival of the old
Prometheus’ fame, Vaucanson brings to man celestial flame. Boldly to copy nature’s self aspires,
And bodies animates with heavenly fires”

who had a very functionalist approach to this question, mechanics can ultimately
be reduced to a computer programme, and reproduction consists in duplicating this
programme. This does not mean using a command in the computer’s operating sys-
tem to copy a file containing a programme, but ensuring that the functioning of the
programme produces a complete and functional description of the programme itself.
Fig. 2 shows an example of such a programme written in the programming language
C: its execution produces a file containing the exact copy of its own code. This is
called aself-replicatingcode.

#include<stdio.h>

main(){char*c="\\\"#include<stdio.h>%cmain(){char*c=%c%c%c%.
102s%cn%c;printf(c+2,c[102],c[1],*c,*c,c,*c,c[1]);exit(0);}
\n";printf(c+2,c[102],c[1],*c,*c,c,*c,c[1]);exit(0);}

Fig. 2 A self-replicating code. This programme is made up of two lines ofcode in the program-
ming languageC. The second line of the programme (starting withmain) has been arbitrarily
typeset over three lines to make it more legible

Von Neumann’s purpose was clearly to show that living processes can be re-
duced to mechanical processes, described by operations that can be performed au-
tonomously, without the help of an “invisible mahout”: to a machine, in other words.
And for Von Neumann, like Queen Christina, reproduction anddevelopment are a
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specific characteristic of living things. But for Von Neumann, this characteristic is
just a particular property possessed by certain machines, not a quality that tran-
scends physical processes, giving special status to biological ones. The existence of
a machine, an automaton, capable of reproduction, is therefore a key factor in the
age-old debate opposing the relative status of biology and physics.

This debate has not been easy to settle, reproduction being one of the most fun-
damental processes in the life of organisms and appearing toresist any physical
explanation. Intuition suggests that if, as a result of its functioning, a machineA
can produce a machineB, thenA must contain, in one form or another, a complete
description not only ofB but also of the specific mechanisms instructing it how to
use that description to actually produce (construct)B. This description must be in-
ternal toA, otherwise we would be dealing with a mechanism of copying rather than
reproduction. We should therefore be able to define a certainmeasure of complexity
and show thatA is necessarily more complex thanB. But in this case, our intuition
leads us astray.

1.2 From self-reproduction to development

Modern biologists may ask themselves the same questions as the philosophers and
queens of past centuries, but today they seek to understand the mechanisms of re-
production by elucidating theprocessesleading from the germ cell to the complete
organism: the aim is to understand, step by step, theconstruction of an organism
over the course of time, through the multitude of local interactions of its constituent
elements. In a word,development.

The elements that Von Neumann brought to the debate are very abstract: they are
based on the description of a cellular automaton which reproduces, over the course
of time, the configuration of a spatial subdomain in a neighbouring region. A cellular
automaton can be described by apredefinednetwork of sites, called cells, each cell
possessing one of a finite set of states. The state of each cellis updated according
to a predefined rule of evolution, which takes into account the state of the cell and
the state of its neighbours at timet to calculate the state of the cell at timet +1. The
functioning of the automaton corresponds to the updating ofthe state of its cells at
discrete time intervals (see Fig. 3).

We are a long way from the molecular mechanisms to which modern biologists
wish to reduce biological phenomena. The existence of a self-replicating automaton
suggests that there is no problem of principle in the existence of such a machine, but
it tells us nothing about the “how” of biological processes.Nevertheless, the con-
cepts of programme, code, automaton, memory and information have invaded biol-
ogy and assumed an explanatory value, especially in developmental biology [20]:
biologists need models and metaphors to understand (i.e. torepresent, analyse and
interpret) the huge mass of experimental data they have collected. For example, the
concept ofgenetic codeplays a similar role in the living cell as the rule governing
the evolution of states does in the Von Neumann automaton.
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cell in state 1cell in state 0

t t + 1

one−step evolution of a cellnetwork of cells

Fig. 3 A cellular automaton is a network of cells, each joined to its neighbours by links. Here
the network is a rectangular grid. Each cell possesses a state (here either 0 or 1). The rule of
evolution used here is: the state of a cell is the modulo-2 addition of the states of the neighbouring
cells. An example of the evolution of one cell is shown top right.The three networks below show
three successive stages in the evolution of the automaton. The rule is applied simultaneously to
all the cells. Von Neumann’s self-replicating automaton is a model of this type, where the rules
of evolution lead to the reproduction of the initial configuration of a given region in an adjacent
region

1.3 Development as a dynamical system

The concept ofdynamical systemallows to formalise the idea of process of devel-
opment. A dynamical system (DS) is characterised by observations that evolve over
time. These observations are thevariablesof the system, and they are linked by cer-
tain relations. These variables account for relevant properties of the system (whether
they be biological, physical, chemical, sociological, or other). At a given moment
in time, they have a certain value, and the set of these valuesconstitutes thestate of
the system. The set of all the possible states of a system constitutes its state space
(or configuration space). For example, a falling stone is a system characterised by
the variablespositionandvelocityof the stone. These two variables are not indepen-
dent: if we consider the position of the stone as a function oftime, then its velocity
is the derivative of that function.

The succession of system states over time is called atrajectory. A DS is a formal
way of specifying how the system moves from one point in the configuration space
(one state) to another point (the next state). This can be done directly, by a function
(the function of evolution of the system), or indirectly, bygiving constraints (equa-
tions) on the possible future state (which is not necessarily unique, if the system
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is not deterministic). A variety of mathematical formalisms correspond to this very
general concept of dynamical system. For example, the variables can take contin-
uous or discrete values. Likewise, the progression of time can be continuous or in
discrete steps. Examples of formalisms corresponding to these cases are listed in
Table 1.

In simple cases, the trajectory of a dynamical system can be expressed explicitly
by an analytic function of timet. In the case of the falling stone, for example, the
differential equations dx/dt = v and dv/dt = g can be explicitly integrated to give
the distance travelled by the stone as a function of time:x = gt2/2.

In more complex cases, an analytic equation giving the trajectory does not exist,
and computer simulation is then a favoured approach for studying the trajectories of
the system. In addition, instead of focusing on one particular trajectory, we can look
at qualitative properties satisfied by all the possible trajectories, for example: “if we
wait long enough, the system ends up in a well-defined state inwhich it then re-
mains” or “if the trajectory passes through these states, itwill never return”. When
there is no faster means of predicting properties than by observing or simulating
them, we qualify them asemergent properties. Note that DS with very simple spec-
ifications can produce very complex trajectories (we sometimes speak ofchaotic
behaviour); moreover, calculating the trajectory of the system can beexpensive in
terms of computer time and require a vast amount of memory.

The structure of states

Another important characteristic by means of which dynamical systems can be clas-
sified is the structure of states. In the example of the falling stone, the structure of a
state is simple: it is a pair of vectors (velocity, position).

Very often, the structure of a state reflects the spatial organisation of the system.
Let us take the example of the diffusion of heat in a volume. The distribution of the
temperature has a structure, related to the spatial organisation of the volume. We can
therefore define a scalar field assigning a temperature to each point. The evolution
of this field follows a law of diffusion specified by a partial derivative equation. This
links the temperature at timet +dt of a pointp to the values of the temperature field
at p and in its neighbourhood at timet.

Table 1 Three examples of formalism used to specify a dynamical system according to the con-
tinuous or discrete nature of the variables and of time. Iterated functions correspond to sequences
xn+1 = f n+1(x0) = f (xn) for a given functionf on R. Many other formalisms have also been
studied

C : continuous
D : discrete

differential equation iterated functions finite automaton

Time C D D
State C C D
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Very often, subsystems only interact if they are connected or physically close:
we call this the property oflocality (there is no action at a distance). The structure
of a state then reflects this division into subsystems, and the function of evolution
respects the property of locality. For the evolution of temperature in a volume, each
state assigns a temperature to each point in the volumeV and the state space is
therefore the set of functions ofV in R. The heat diffusion equation governing the
evolution of the system indicates that the temperature of a point inV depends solely
on the temperature of the neighbouring points.

Development as trajectory of a dynamical system

Above, we stated that the concept ofgenetic codehas much in common with the
rules specifying the evolution of cell state in Von Neumann automata. This is the
concept underlying the “all-genetic” paradigm, accordingto which the complete
evolution of the organism is coded in its genetic material, and every characteristic
is uniquely determined by the genes. This viewpoint has beensubstantially chal-
lenged [2], in favour of a more flexible approach, reconciling the genetic and epi-
genetic viewpoints on development. Living systems may be dynamical, but they are
also open systems, interacting with their environment. Development should there-
fore be regarded as a co-construction, depending on interactions both within the
system and outside it (with the environment). Genetic material does not constitute
a complete and sufficient description of any given organism,although it is indis-
pensable. Cell machinery, for example, also plays a centralrole, as has been demon-
strated experimentally by the technique of cloning in whicha nucleus (i.e. the ge-
netic material of a cell) is introduced into a germ cell.

However, the processes of morphogenesis involving the movement and reorgan-
isation of matter are also characterised by a second property: the state space and its
topology can also evolve over time.

Let us illustrate this idea by comparing it to the two examples described above.
In the case of the falling stone, the velocity and the position of the stone change at
each moment but the system is always adequately described bya pair of vectors. In
this case, we say that the dynamical system has astable structure. The same is true
for the evolution of the temperature in the volumeV: V is fixed in advance and each
state is always an element ofV → R. In these two examples, the state space can be
described adequately at the beginning of time, before the simulation; it corresponds
to the space of the measurements of the system. The value of these measurements
changes over time, but the data of the state space and its topology are not variables
of the system and cannot evolve over the course of time.

Quite the opposite holds true for the processes of development: biological pro-
cesses form highly structured and hierarchically organised dynamical systems, the
spatial structure of which varies over time and must be calculated in conjunction
with the state of the system. We call this type of system adynamical system with
dynamical structure, which we shall abbreviate to(DS)2.
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The fact that the very structure of a biological system is dynamical has been high-
lighted by several authors; we can cite, in different domains: the concept ofhyper-
cycleintroduced by Eigen and Schuster in the study of autocatalytic networks [13],
the theory ofautopoietic systemsformulated by Maturana and Varela [43],systems
of variable structuredeveloped in control theory by Itkis [30], or the concept of
biological organisationintroduced by Fontana and Buss to formalise and study
the emergence of self-maintaining functional structures in a set of chemical reac-
tions [18]. The objective of all of these works has been to grasp and formalise the
idea of change in the structure of a system, change that is coupled with the evolution
of the state of the system.

(DS)2 are widespread in models of plant growth and more generally in devel-
opmental biology, in multiscale cell models, mechanisms ofprotein transport and
compartmentalisation, etc. But they are also relevant in other domains, such as the
modelling of mobile networks, Internet and the Web, the development of cities,
traffic jams, self-assembly processes, autocatalytic networks in chemistry, semantic
networks in learning, social behaviour, etc.

An example

To illustrate the concept of(DS)2, let us take the example of the development of
an embryo. The initial state of the embryo is described by thestates0 ∈ S of the
germ cell (however complicated that description might be).After the first division,
we have to describe the state with 2 cells, that is to say a new states1 ∈ S ×S .
But when the numbern of embryo cells becomes large enough, the state of the
system can no longer be adequately described by an element ofS n. This set only
describes the state of each cell; it does not contain the spatial information necessary
to describe the network of cells (their positioning in relation to each other). And yet
this network is of prime importance, because it conditions the diffusion of signals
(chemical, mechanical or electrical) between cells and therefore, in the end, their
functioning. With each movement, division or death of a cell, the topology of this
network changes. For example, duringgastrulation, cells initially far apart become
neighbours, enabling them to interact and changing their destiny (cell differentia-
tion).

1.4 What formalism for dynamical systems with dynamical
structure?

Dynamical systems with dynamical structure are difficult tostudy because they are
difficult to formalise. Let us return to the example of the embryo to illustrate this.

We have indicated that the position of each cell changes overtime, making it
difficult, for example, to specify the processes of diffusion between cells. One solu-
tion that comes immediately to mind is therefore to completethe state of a cell with
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information about its position, and to considerT = S ×R3 as a building block1

allowing to construct the set:

T
∗ = T ∪T

2∪ . . .∪T
n∪ . . .

= T ∪T ×T
∗ .

It is certainly possible to characterise an embryo as a pointin this phase space,
but that does not get us very far:T ∗ has very little intrinsic structure and does
not provide much information about the possible trajectories of the systems. For
example, the function of evolution will be very difficult to define and there is little
chance that it will be continuous.

The problem of locality

The function of evolution will be difficult to define because specifying the position
of each cell in terms of its coordinatesR3 presupposes the definition of a global ref-
erence point. During the evolution of the embryo, the growthof a cell pushes away
the neighbouring cells, which in turn push away their neighbours, until the position
of every cell has been changed. Between two successive states, we therefore have to
express the change in the position of each cell by aglobal transformationof coor-
dinates. Because it must express globally the changes in each position, and because
these changes are due to multiple concurrent local transformations, the expression
of this transformation can be arbitrarily complex.

The origin of this problem lies in theextrinsic and globalexpression of the form
of the system2 and one solution is therefore to specify intrinsically the position of
each cell, for example by including the distance from its neighbours in the state
s∈ S of each cell. In this case, the specification of changes in theposition of a cell
is local, but as the neighbourhood of each cell changes, we are again faced with the
problem of a state space that changes over time.

The problem of continuity

Let us return to the example of the falling stone. The position and the velocity of
the stone vary continuously. The state of the system therefore varies continuously
over time and the trajectory of the system is acontinuous functionof time in the

1 To simplify, we only take into account the position of each cell in R3, but we should also specify
its form, which conditions its neighbourhood and its exchanges with other cells (for example the
surface exchange area between two neighbouring cells, which conditions intermembrane flow).
2 In the approach described, the specification of the position of the cells uses a global reference
point independent of the growing embryo. This reference point corresponds to the identification of
points in the space surrounding the form, and not to a process intrinsic to the growing form: the
laws governing the movement, division and death of cells would be the same if the embryo was
developing within a toric volume (but the result could be different because the neighbourhoods of
the cells would be different).
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state space. This continuity allows to reason in terms of infinitesimal evolutions of
the system and to write a differential equation characterising the trajectory. In more
complicated cases, we obtain a partial derivative equation(when the state has a spa-
tial structure) or a set of such equations when several different modes of functioning
have to be taken into account (a finite and usually small number).

In the case of embryo development, this is no longer possible: as long as there is
no movement3, division or death of cells, the statesbelongs to a certainT n and this
evolution is continuous (assuming that the electric potentials, chemical concentra-
tions, mechanical constraints, etc. evolve continuously). But the essential morpho-
genetic events (for example a cell division that changes thestate fromT n to T n+1)
are by nature discontinuous4.

Towards other solutions

The modelling and simulation of the evolution of a(DS)2 are therefore particularly
arduous: it is difficult to define the structure and the dynamics of the system at the
same time, because one is dependent on the other. The examplegiven above high-
lights the inadequacy of global and continuous formalisms (we want to express an
evolution as a succession of discrete morphogenetic eventscorresponding to qual-
itative discontinuities and changes). However, it is stillpossible to describe these
systems, with the laws of evolution often being informally described as a set of
local transformations acting on an ordered set of discrete entities.

Faced with these difficulties, several researchers have suggested usingrewrite
systemsto formalise this type of description.

2 Rewrite systems

2.1 Introduction

Rewrite systems (RS) are among the formalisms that computerscientists have ap-
propriated and developed, especially for modelling changes in the state of a process.
A rewrite system is a mechanism allowing to define the replacement of one part of
an object by another. The objects concerned are usuallytermsthat can be repre-
sented by a tree, of which the inner nodes are operations and the leaf nodes are
constants (see Fig. 4). An RS is defined by a set of rules, and a rule is a pair denoted
α → β . A rule α → β indicates how a sub-termα can be replaced by a termβ .

3 Cell movement is sufficient to change the topology and thereforethe interaction between cells.
4 In the example we have been using, morphogenetic events are discontinuous because the mod-
elling is done at cell level. We could have modelled the concentration of different molecules at
each point in space, which might have avoided this problem of discontinuity (the movement of
each molecule beinga priori continuous). But this raises another problem: how do these concen-
trations represent the biological entities that interest us: cells, tissues, organs, etc.?
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An example

Let us take the arithmetical expressions and the rule 0+x→ x. Intuitively, this rule
specifies that any expression that can take the form “0 added to something denoted
by x” can be rewritten more simply as “the thing denoted byx”. Thus, the expression
e= 1+(0+3) can be rewritten ase′ = 1+3 by applying the above rule to the sub-
term (0+ 3) of e. We also writee→ e′ to indicate thate can be rewritten ase′

through one sole application of the rule.
The sequencee→ e1 → . . . → en → e′ is called aderivationof e. We say thate

is anormal formif there is noe′ such thate→ e′.
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(0+1) + (0 + 0)
0 + x −> x x + y −> y + x

Fig. 4 Representation of the term(0+ 1) + (0+ 0) and application of the two rules 0+ x → x
andx+ y→ y+ x. At each reduction, the strategy here is to apply one rule at a time. The subtree
filtered by the left side of the rule to be applied is circled by adashed line. The applications are
non-deterministic, in the sense that we could have chosen other applications at each step. For the
first reduction, for example, we could have applied the same rule 0+ x→ x to the left subtree of
the root rather than the right subtree. We could also have chosento apply the rulex+y→ y+x to
any of the three inner nodes (3 possibilities). The final term obtained is the constant 1, and this is
anormal formfor the two rules

RS and decision procedure in an equational theory

The original motivation behind RS was to provide a decision procedure in equa-
tional theories. In these theories, the aim is to prove automatically the equality of
two complex terms solely by using predefined elementary equalities. The idea is
to orientate the equations (for example, to orient the equality 0 + x = x into a rule
0+ x → x) and to use the rules obtained to derive the normal forme′ of a terme.
The normal forme′ is equivalent toe (since each substitution transforms a subterm
into an equivalent term) and can be interpreted as a simplification ofe. Two terms
e1 ande2 are then equivalent in the theory if they reduce to the same normal form
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e. For example,e1 defined by 0+(1+3) is equivalent toe2 defined by 1+(0+3),
becausee1 ande2 reduce to the same normal forme: 1+3.

For this decision procedure always to succeed, there must exist a normal form for
each expression (property ofnormalisation) and each expression must have one sole
normal form (property ofconfluence). These two properties are not quite sufficient
for the decision procedure to calculate automatically; at each step we must also
choose a derivation, i.e. choose which subterm will be rewritten and by which rule:
this is thestrategyof rule application.

The theory of RS [9, 10] is mainly used in algebra and logic, but it can be ap-
plied in almost every branch of computing (from Petri networks to symbolic cal-
culus, from the theory of demonstration to lambda calculus). One key result is that
RS, considered as processes of calculation, areTuring-complete(any computational
process, i.e. described by a Turing machine, can be formalised by an RS). The use
of rules to transform a term is such a fundamental operation that several generic
environments have been developed to define and apply RS (see,among others, the
websites of the projects ELAN [16] and MAUDE [33]). The toolsdiffer in the terms
they take into account, theα patterns allowed on the left-hand side of a rule for se-
lecting subterms, and the strategies of application that can be defined.

2.2 Rewrite systems and the simulation of dynamical systems

The above presentation suggests that a ruleα → β specifies a termβ equivalent
to (and simpler than) the termα. But we can interpret this rule as the result of a
calculation (the expressionβ is the result of calculating the expressionα) or as the
evolution of a subsystem changing from stateα to stateβ . RS can therefore be used
to model and simulate DS:

• a state is represented by a term and the state of a subsystem isrepresented by a
subterm;

• the evolution function is encoded by the rules of the RS in thefollowing manner:
the left side of the rule corresponds to a subsystem in which the elementsinteract,
and the right side of the rule corresponds to the result of their interaction.

Thus, the derivation of a terms corresponds to a possible trajectory of a DS start-
ing from the initial states. A rewrite rule then corresponds to the specification of
the evolution of a subsystem. A normal form corresponds to a fixed point in the
trajectory (the system is in equilibrium and no evolution can take place).

An example

For the development of the embryo, a rulec⊕ i → c′ can be interpreted as a cell in
the statec which, on receiving a signali, evolves to the statec′; a rulec→ c′⊕ c′′

represents a cell division; a rulec → /0 (c gives nothing) represents apoptosis; etc.
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[17, 23]. The idea is that the evolution of a biosystem is specified by rewrite rules
of which the left side selects an entity in the system and the messages sent to it, and
the right side describes the new state of the entity. The operator⊕ which appears in
the rule denotes the composition of local entities in a global system (in our example,
the aggregation of cells in an embryo). The capacity to represent both the changes
of state and the appearance and disappearance of cells within the same formalism
makes RS good candidates for the modelling of(DS)2.

2.2.1 Dealing with time

One important factor in the modelling of a(DS)2 is the treatment of time. The model
of time favoured in RS is clearly an event-driven, atomic anddiscrete model: time
passes when an evolution occurs somewhere in the system, theapplication of a rule
corresponds to an event and specifies an atomic and instant change in the state of
the system. The concept of duration is not taken into account(although it could
be, within this formalism, by considering the first and last events). The choice of a
strategy of application provides a certain degree of control over the model of time:
for example, a maximal parallel application of rules to change from one global state
to another corresponds to synchronous dynamics, while the application of one sole
rule corresponds to asynchronous dynamics.

2.2.2 Dealing with space

A rule of the formc⊕ i → c′ presupposes that a signali produced by a certain
cell will reach its targetc somewhere else in the system. The operation⊕ used
to amalgamate the states of the subsystems and the messages of interaction into
the state of a complete system must therefore express the spatial dependencies and
functional organisation of the system studied.

The concept of rewriting has mainly been developed and studied for the rewriting
of terms. These represent a severe restriction on RS, because their use requires the
encoding of the highly organised structure of(DS)2 in tree form. The possibility
of defining rules of evolution depends on this encoding. Thiswork demands a great
deal of creativity and intuition. It is difficult to represent in a satisfactory manner the
organisation of a biological system into molecules, compartments, cells, tissues, or-
gans and individuals, and this has motivated an extension ofthe concept of rewriting
to structures more sophisticated than terms (for example, we can define a concept
of rewriting on a graph, see also [21, 22]).

Nevertheless, even when they are limited to trees, RS offer remarkable examples
of modelling of (DS)2, particularly in the biological domain. By playing on the
properties of the operators, it is possible to model severaltypes of organisation. In
the following sections, we shall give examples where:

• the operation⊕ is associative and commutative, which allows to model a “chem-
ical soup”;
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• several operations can be considered simultaneously, as a means to introduce the
idea of compartmentalisation;

• the operation⊕ is simply associative, which allows to represent sequencesand
tree structures.

3 Multiset rewriting and chemical modelling

The state of a chemical solution can be represented by amultiset: a set in which one
element can appear several times, as in a chemical solution where several molecules
of the same species are present at the same time. A multiset can be formalised by a
formal sum in which the operator⊕ is associativeandcommutative. For example:

(a⊕b)⊕ (c⊕b)

represents a multiset (e.g. a chemical solution) containing the elements (e.g. the
molecules)a, b andc, where two copies ofb appear. Since the operation⊕ is asso-
ciative, we can discard the brackets, and the property of commutativity allows us to
reorganise the elements in this sum as we like:

(a⊕b)⊕ (c⊕b) = a⊕b⊕c⊕b = a⊕b⊕b⊕c = c⊕b⊕a⊕b = . . .

A multiset therefore corresponds to a tree in which associativity allows us to “flat-
ten” the branches, and commutativity allows us to permute the leaves.

In a chemical solution, Brownian motion agitates the molecules, and after a suf-
ficiently long time each molecule will have had the opportunity to meet and interact
with any other molecule in the solution. Once we have represented the state of a
chemical solution as a multiset, it is therefore easy to formulate the chemical re-
actions as rewriting rules on multisets. The associativityand commutativity of the
operator⊕ play the role of Brownian motion and allow to “group together” arbitrar-
ily the elements of the multiset corresponding to a left sideof the rule before that
rule is applied. For example, the three rules:

r1 : a⊕a→ a⊕a⊕b r2 : a⊕b→ a⊕b⊕b r3 : b⊕b→ b⊕b⊕a

represent second-order catalytic reactions between typea and typeb molecules (a
collision between two molecules catalyses the formation ofa third molecule, with-
out consuming the first two). Thus, if a reactionr1 occurs in statea⊕c⊕a⊕b, the
result will be the statea⊕ c⊕a⊕b⊕b where an extrab has been produced. Note
that it is not necessary for the twoa molecules to be side by side, because we can
always rearrange the term to make it so.

Several chemical reactions can happen at the same time,in parallel. This cor-
responds to the simultaneous application of several rules to different molecules.
The strategy of applying as many rules as possible at a given time step is called a
maximal parallelapplication. Such a strategy is non-deterministic: on the multiset
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a⊕a⊕b we can applyr1 or r2, but not both at the same time, due to a lack of re-
sources. In this case, one of the rules is chosen at random. A reduction step is then
repeated to simulate the evolution of the state of the chemical solution. Several ap-
proaches are possible, in terms of adjusting the strategy ofrule application, to take
into account the kinetics of chemical reactions [5, 24].

Note that in this approach, each molecule is explicitly represented and each inter-
action is explicitly treated: this is known asagent-based simulation. This approach
can be compared to more classic approaches which represent the concentration of
each chemical species rather than each molecule. Obviously, in this particular case,
the agent-based approach is more costly in computing time and memory, but it al-
lows to simulate finely the complex phenomena, such as fluctuations and correla-
tions, that are beyond the reach of global approaches.

This abstract formalisation of chemical reactions constitutes a domain of re-
search calledartificial chemistry[11, 12], tackling problems ranging from the auto-
matic generation of combustion reactions [6] to the study ofmechanisms of self-
organisation in the evolution of self-catalytic networks [18].

3.1 Some examples of application

A simple example of population growth

To illustrate multiset rewriting and its application to modelling, we shall look at
an example of a biological nature: the multiplication of a unicellular organism in a
test-tube. We assume that a cell exists in two forms,A andb: A represents a mature
cell ready to divide andb a young cell that will evolve to formA. Each cell division
of A produces one cell of typeA and one cell of typeb. These evolutions can be
formalised by the two rules:

r1 : A −→ A⊕b

r2 : b −→ A

If the initial state of our test-tube is represented bym0 = A⊕b⊕b, the first three
evolutions give us:

m0 → A⊕b⊕A⊕A→ A⊕b⊕A⊕b⊕A⊕b⊕A→

→ A⊕b⊕A⊕b⊕A⊕b⊕A⊕b⊕A⊕A⊕A→ . . .

Simulation of this process can be used to determine, for example, the ratio of forms
A to formsb in the population after a given time. Moreover, as we mentioned earlier,
we can test properties verified by all the processes satisfying these rules of evolution.
For example, Fibonacci5 proved that the ratio #A/#b of the number ofA to the

5 In 1602, Fibonacci studied the question of how fast a populationof rabbits would grow under
ideal conditions. Imagine that a pair of rabbits, one male and onefemale, are put in a field. These
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number ofb converges asymptotically towards the golden number, whatever the
initial state.

Applications to the modelling of networks of biological interactions

The modelling of networks of biological interactions (genetic control networks, sig-
nalling networks, metabolic cascades, etc.) is a relatively new domain of application
of these techniques. In [17], Fisher and his co-authors proposed using the concept
of multiset to represent proteins involved in a cascade of interactions in a signalling
pathway. This avenue has been widely developed, in particular to take into account
the different complexes that proteins can form [14, 15].

If multiset rewriting has been used to model signalling networks and metabolic
pathways, we should not deduce that the cell can be compared to a test-tube contain-
ing a chemical soup. On the contrary, the cell is a spatially highly organised medium,
with compartments, vesicles, cargos, membranes, etc., which allow to localise the
different chemical species involved (for example the receptors are localised on the
cell membrane, while the genes are located in the nucleus; other proteins are an-
chored and diffuse in membranes like the endoplasmic reticulum). Among other
things, this localisation helps to make certain reactions much more efficient. Other
phenomena, such as the extreme density of proteins in the intracellular medium, ren-
der the simple model of chemical soup simply inadequate. Taking into account this
spatial organisation is one of the main challenges currently faced in the modelling
of cellular processes [31, 42].

Heat diffusion in a bar

Above, we stated that the properties of associativity and commutativity allow us
to deconstruct a term so that each element can interact with any other element, in
the manner of molecules in a well-mixed chemical soup. But with the appropriate
encoding, multiset rewriting can be “diverted”, so as to take into account geometric
information.

The process we want to model is the diffusion of a set of particles along a line.
This problem also corresponds to the diffusion of heat in a thin bar, with each parti-
cle representing a quantum of heat. The line is discretized into a sequence of small
intervals indexed by consecutive integers. Each interval contains a number of par-
ticles (possibly zero). At each time step, a particle can stay in the same interval or
diffuse into the neighbouring interval (see Fig. 5). We can represent a state of the

rabbits are capable of reproducing after one month, so that at the end of the second month, the
female has given birth to another pair of rabbits. To simplify, weassume that the rabbits never die
and that each female gives birth to a new pair, composed of a male and a female, every month
starting from the second month. If we represent a newly-born pairby b and a mature pair byA,
then the ruler1 corresponds to the breeding of a new pair and the ruler2 to the maturing of a young
pair.
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Fig. 5 Diffusion of particles in a bar. The left-hand figure shows the evolution over 160 time steps
of 1500 particles initially distributed over 20 intervals inthe middle of a bar discretized into 60
intervals. The diagram on the right specifies the behaviour of aparticle (see text). The number of
particles in an interval corresponds to the concentration ofa chemical product or a quantity of heat.
The multiset representing the state of the line (which is discretized into 5 intervals numbered from
0 to 4) is given by: 0⊕0⊕0⊕1⊕2⊕2⊕3⊕4⊕4

line by means of a multiset in which each numbern represents a particle present
in the interval numberedn. The evolution of the system is then specified by thel
following three rules:

r1 : n −→ n

r2 : n −→ n−1

r3 : n −→ n+1

wheren is an integer and the operations+ and− which appear on the right side are
the usual arithmetic operations. The ruler2 (respectivelyr3) specifies the behaviour
of a particle that diffuses into the interval on its left (respectively right) and the rule
r1 specifies a particle that remains in the same interval.

3.2 P̆aun systems and compartmentalisation

The above encoding allows us to deal with linear geometry. Other variations have
been proposed to facilitate the representation of more complex biological structures,
such as the nesting of membranes and compartments in a cell: the elements of a
multiset can be molecules or other multisets, which can in turn contain molecules
or other multisets.
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This nesting is studied using the formalism ofPăun systems(P systems) [36], in
which the classical rewriting of multisets is extended by the concept ofmembrane.
A membrane is a nesting of compartments represented, for example, by a Venn
diagram6 without intersections and with one sole superset: theskin of the system
(see Fig. 6).

((.)...(..(.)))

skinskin

m1 m2

m3

skin m1 m2 m3

m3
m2

m1

Fig. 6 Păun systems. Membrane nesting can be represented by a Venn diagram without intersec-
tions and with one sole superset, by a nesting tree or by a well-bracketed word

Objects are placed in each region delimited by a membrane, and they then evolve
according to diverse mechanisms: an object (or a multiset ofobjects) can change into
other objects, but it can also cross a membrane or provoke thedissolution or creation
of a membrane. Fig. 7 shows some examples of rules of evolution in P systems. For-
mally, such a system can be specified by using several operations⊕,⊕′,⊕′′, . . ., each
corresponding to a certain membrane. These operations are associative and commu-
tative, but they are not associative with each other (in order to keep the membranes
separate).

3.3 In parenthesis: the application to parallel programming

The dialogue between computing and the other scientific disciplines is not all one-
way. Here is an example. Inspired by the chemical metaphor, computer scientists
have used multiset rewriting not only to simulate chemical reactions or biological
processes, but also as a parallel programming language. Theidea was first developed
in the language GAMMA [3]. Here is a particularly elegant example of a parallel
programme:

x⊕y/ (x mody == 0) −→ y .

This rule specifies that the pair of numbersx,y must be replaced byy when the
condition “y dividesx” is satisfied (the condition is written after the/ symbol). If we

6 Venn diagrams, invented by the English logician of the same name, are a means of visualising set
operations by representing the sets as surfaces delimited by closed curves.



18 Jean-Louis Giavitto and Antoine Spicher

a b c

a
m m

a
a b

a
a

a

m p

ab cab c

b

Fig. 7 Example of a rule of evolution in a Păun system. The symbolδ on the right side of a rule
entails the dissolution of the enclosing membrane. The destination membranes are indicated by the
suffix (the membranes are named). The enclosing membrane can always be referred to by the name
“out”

apply this rule as far as possible to the multiset composed ofall the integers between
2 andn, we obtain a multiset in which the rule cannot be applied (because the
condition is no longer satisfied) and which therefore contains all the prime numbers
up ton.

In the above programme, there is no trace of artificial sequencing in the calcu-
lations: the rule can be applied in any order whatsoever. Note that the parallelism
comes from the simultaneous application of rules and that the “unfolding” of the
programme consists simply in repeating the application of the rules until a normal
form (a fixed point) is obtained. These programmes are non-deterministic, unless the
rewriting rules are confluent: in that case, when the programme ends, we do obtain
a perfectly determined result, although the intermediate values calculated during the
execution of the programme can differ (we speak of deterministic results despite a
non-deterministic execution environment).

4 Lindenmayer systems and the growth of linear structures

In the previous section, we considered a process of rewriting on associative and
commutative terms, allowing us to model a “chemical soup”. In this section, we
shall explore associative terms: these terms then correspond to sequences and we
speak ofrewriting strings(of symbols). Chomsky’s work on formal grammars [7]
marked the beginning of a long series of works on string rewriting, and these works
have been at the origin of developments concerning syntax, semantics and formal
languages in computing. Grammars are generative formalisms. In other words, they
allow us to construct families of objects, by generating sets of phrases: a phrase is
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a sequence of symbols generated by successive rewritings. The set of phrases that
can be generated is alanguage.

In 1968, the biologist Aristid Lindenmayer (1925–1989) introduced a new type
of string rewriting to serve as the foundation for a formal theory of developmen-
tal biology [32]: Lindenmayer systems, more often abbreviated to L-systems. The
main difference from Chomsky grammars lies in the strategy of rule application. In
Chomsky grammars, only one rewriting is applied at a time, whereas in L-systems
the rewritings take place in parallel, replacing all the symbols in a phrase at each
step. Lindenmayer justified this strategy by analogy to celldevelopment: all the
cells in an organism divide independently and in parallel.

The objective of L-systems is to construct a complex object (like a plant) by
successively replacing the different parts of aa simpler object, by means of rewriting
rules. Symbols are interpreted as components of a living organism, such as cells or
organs, rather than words. L-systems have found numerous applications not only in
the modelling of plant growth, but also in computer graphics, with the generation of
fractal curves or virtual plants.

4.1 Growth of a filamentous structure

A simple example of L-system is the one that describes the growth of cyanobacteria
Anabaena Catenula. These blue-green algae form filaments composed, for our ex-
ample, of four types of cells,G , g , D andd , which can be interpreted as follows:G
andD are mature cells capable of dividing;g andd are quiescent cells. In addition,
the cells are polarised:D andd are polarised towards the right in the filament;G and
g are polarised towards the left. When we examine a filament, we can see that the
cells do not succeed each other in any old order. And the rewriting system presented
below generates sequences very similar to those observed innature.

g D D

G d

D

    G G  d G d

The derivations on the right show that at each step all the symbols are rewritten
in parallel according to the rules on the left. Numerous variations can be devel-
oped from this basic mechanism, with the aim of extending theexpressivity of the
formalism. One of the most important extensions involves attaching attributes to
the symbols, for example a number representing a size, or theconcentration of a
chemical product. Fig. 8 illustrates the use of one such extension in a more real-
istic model ofAnabaenagrowth. Instead of simply considering mature cells and
quiescent cells, each cell possesses a size that grows over time. Furthermore, in a
nitrogen-free medium, some cells become specialised: the heterocysts. Wilcoxet
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al. [44] proposed that a cell differentiates into a heterocyst under the action of two
chemical substances, an activator and an inhibitor, which diffuse in the filament and
react with each other. This reaction-diffusion model allows to explain the appear-
ance of an isolated heterocyst cell everyn vegetative cells, as observed in nature,
with a relatively constantn. Prusinkiewicz and Hammel [25] used an L-system to
specify and simulate this system, thereby achieving the simulation of a reaction-
diffusion in a growing medium (the filament), an important example of(DS)2.

Fig. 8 Differentiation of heterocysts in anAnabaenafilament. The left-hand figure represents the
same diagram as the right-hand one, but seen from another angle.This graphical representation,
called an extrusion in space-time, was introduced in [25]. In this diagram, times moves from the
top-left corner to the bottom-right corner. Each “slice” represents the cells of a filament at a given
moment in time. The height of each cell represents the concentration of activator, as does the
shading of the cell (from black to white). The black cells are vegetative. Differentiation occurs
when the concentration of activator rises above a threshold level

4.2 Development of a branching structure

It is easy to represent a branching structure by a string, by introducing two symbols
that serve as “brackets”. There are subtle differences between the rewriting of such
strings and the direct rewriting of terms. String rewritingis the method used in L-
systems to represent the branching structure of a plant and its rules of development.
The example below is caricatural, and does not correspond tothe growth of any real
plant. But it does allow us to illustrate the power of this approach.

Let us assume that a plant is made up of two types of “branch”: simple branches
b and budded branchesB . From one year to the next, budded branches lose their
buds and become simple branches. We therefore have the ruleB → b . A simple
branch grows and produces a section of plant comprising an axis made up of three
simple branches with two budded branches branching off it, 1/3 and 2/3 of the way
up. This specification is expressed by the rule:

b −→ b〈qB〉b〈 pB〉b .
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In this rule, we use the brackets〈 and〉 the represent the development of the lateral
axes. We use the additional symbolsp andq to indicate development on the left or
the right of these axes.

At the beginning of the 1980s, P. Prusinkiewicz introduced agraphical interpre-
tation of words produced by an L-system [40]. This interpretation is based on the
concept of graphical turtle, as used in the LOGO programminglanguage, for exam-
ple. This allows to directly visualise the structure of objects described by a word
generated by the L-system. Thus, we use the successive derivations of an L-system
to represent the successive states of a developing plant, orto draw the successive
curves that tend towards a fractal curve.

A state of the graphical turtle is the triplet(x,y,θ), where(x,y) represents the
current position of the turtle in Cartesian coordinates andθ represents the orienta-
tion of the turtle. This orientation is interpreted as the angle between the body of the
turtle and the horizontal axis. The turtle moves following commands represented by
the symbols of a word.

• In our example, the symbolb corresponds to the command “move forward one
length∆ ”. So if the current state was(x,y,θ), then after reading the symbolb it
becomes(x+∆ cosθ ,y+∆sinθ ,θ).

• The symbolB is interpreted in the same way, except that after drawing thecorre-
sponding segment, we also draw a circle centred on the current position.

• The symbols〈 and〉 save and restore the current position respectively. The po-
sition is saved in a stack. When the turtle meets the symbol〉 , it “jumps” to the
position corresponding to the open bracket.

• Finally, the symbolp (resp.q) increments (resp. decrements) the current angleθ
by a predefined angle.

Using this graphical interpretation, the first three derivations of a simple branch are
illustrated in Fig. 9.

5 Beyond linear structures: calculating a form in order to
understand it

L-systems have proved to be perfectly suited to the modelling of plant growth [40]:
they allow to define in a particularly compact and synthetic way the creation of
the complex form of a plant and above all, in their recent extensions, to couple the
process of form creation with the physical-chemical processes that take place within
that form.

However, although L-systems are suitable for the representation of linear forms
(filaments or trees), their use for the construction of more complex shapes (ordinary
graphs, surfaces or volumes) depends on arbitrary encodingthat rapidly becomes
inextricably complex. Researchers are therefore trying todesign more suitable for-
malisms. The import of this search for formalisms to specifythe processes of de-
velopment reaches far beyond the question of simulation, for two reasons: these
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Fig. 9 Graphical representation of the first three derivations in a Lindenmayer system. The initial
state is given by the wordb〈qB〉b〈 pB〉b and the rules of derivation are the two rules defined in
the text. The scale of the representation of each “plant” is different

formalisms could fill a conceptual vacuum in biology, and they could potentially
have an enormous epistemological impact. What is more, theirapplication could
extend far beyond the domain of biology.

Simulation and explanation

Drawing firstly on purely physical models (osmotic growth with Leduc, optimal
forms with D’Arcy Thompson, reaction-diffusion processeswith Turing, etc.), then
purely genetic models (with concepts such as gene action or the genetic pro-
gramme), the different formalisms proposed over the courseof the last century to
specify the processes of development have filled a conceptual vacuum and modified
the perception of what has explanatory value for biologists[20].

As an example, advances in computing and the data produced inbiology al-
low the simulation of certain processes of development withpredictions that can
then be empirically validated [8]. Very recently, for instance, several cell-level mod-
els [4, 41] of meristem development (the meristem being the growing tissue of the
plant) have succeeded in reproducing characteristic phyllotactic patterns observed
in nature and in linking them to the circulation of auxin (a plant hormone) in this
tissue. The accumulation of auxin triggers the developmentof new organs, which
modify the form of the meristem and consequently the flow of auxin: a marvellous
example of(DS)2.

However, no matter how predictive these simulations are, they can only have an
explanatory value if they allow us to express the processes of development in a form
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that is intelligible to the human mind, so that we can analysethem and reason about
them [29]. After all, what kind of understanding can we hope to derive from the
simple observation of a succession of complex calculations? We might just as well
observe these processes in nature, instead of reproducing them on a computer.

Computer morphogenesis allows us to define a formal framework, in which we
can speak rigorously of genetic programme, memory, information, signal, interac-
tion, environment, etc. and to relate these concepts to a completely mechanistic view
of development processes. It introduces the concept ofcomputationas an explana-
tory scheme in the modelling of development. But if the embryo can be deduced by
computation from a description of the egg and its interactions with the environment,
the embryo must be considered both as the result of a computation and as part of
the computer that produces this result. This problem is studied in computer science
(reflexive interpreters, meta-circular evaluators). The future will tell whether these
concepts will enable us to grasp that most specific aspect of living beings: their
development.

Giving form to a population of autonomous agents

The modelling of development processes is important for biologists, but it is also
important for computer scientists, who are always looking for new computational
models and for whom biology is clearly a great source of inspiration.

Computational models are constrained by the particularities of a material model
or inspired by a metaphor of what a computation should be. Today, new material
supports for computation are being studied. One celebratedexample is the exper-
iment that Adleman performed in 1994 [1], proving that a combinatorial prob-
lem7 can be solved using DNA molecules in a test-tube. But other possibilities
are currently the subject of very active research, including using the growth of
colonies of bacteria, the diffusion of chemical reagents orthe self-assembly of
biomolecules . . . to compute. The programming of these new computational sup-
ports certainly raises some substantial problems, and is driving the development
of new languages and algorithms to allow us to use an immense population of au-
tonomous entities (biomolecules, viruses or cells) that interact locally and irregu-
larly, to construct and develop a reliable computation (a form).

But the mechanisms offered by a programming language, or by new algorithms,
can also be directly inspired by a biological metaphor without resorting to biologi-
cal machines built using biotechnologies. For example, evolutionary algorithms are
inspired by the mechanisms studied in evolutionary theory,even though they are
executed on electronic machines like present-day computers.

In the same order of idea, formalisms providing a conceptualgrasp of the mech-
anisms of development could well revitalise the concept of “programme”, by sug-
gesting new approaches in the development of very big software, notably in the

7 The problem he chose was the Hamiltonian path problem, consistingin determining whether a
given graph contains a path that starts at the first vertex, endsat the last vertex, and passes exactly
once through each remaining vertex.
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specification of their architecture and the interconnection of their different parts,
or by offering new mechanisms for hiding useless information, abstracting details
or capitalising and reusing code. Computer scientists are actively seeking, for their
software, properties usually attributed to living matter:autonomy, adaptability, self-
repair, robustness, self-organisation. Clearly, the dialogue between computing and
biology [28, 35], so ambiguous and so fertile, is not about toend.
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