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Abstract. In the past century, several conceptual and technological
breakthroughs produced the digital computers and open the digital in-
formation age. At the very same time, the Watson –Crick model of the
digital coding of the genetic information was developed. Despite this
parallel development, biology as long focused in the understanding of
existing systems shaped by natural evolution whilst computer science
has built its own (hardware and software) objects from scratch.

This situation is no longer true: the emergence of synthetic biology opens
the doors to the systematic design and construction of biological (fluid)
machines. However, even if fluid machines can be based on a kind of
digital information processing, they differ from the discrete dynamical
systems we are used in computer science: they have a dynamical struc-
ture.

In this paper, we stress the parallel between the development of digital
information processing and genetic information processing. We sketch
some tools developed or appropriated in computer science that can be
used to model and specify such fluid machines. We show through an ex-
ample the use of MGS, a domain specific language, in the proof of concept
of a “multicellular bacterium” designed at the 2007 iGEM competition.

Keywords: fluid machines, synthetic biology, computer modeling and
simulation, (DS)2: dynamical systems with a dynamical structure, spatial
computing, topological rewriting, domain specific language (DSL), MGS.

1 Introduction

In the preface of [10], Tibor Gánti highlights the divergence of information pro-
cessing researches as they apply to biological systems (cells) or to artificial sys-
tems (computers). As early as 1944, Erwin Schrödinger speculates about “pro-
grams” and “genetic code” [34]. Since, information processing has been a con-
stant source of fruitful analogies for genetics [25] and biology has provided many
motivations and algorithms to computer science (from evolutionary algorithms
to artificial neurons). But, despite the parallel developments of computer sci-
ence and genetics, cf. Fig. 1, biology as focused in the understanding of existing
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Fig. 1. A parallel history: In the two domains, the storage, the replication, the com-
munication and the modification of (digital or genetic) information is studied.

systems shaped by natural evolution whilst computer science has designed and
studied its own hardware and software objects from scratch.

Considering biological entities, like cells or organisms, as “machine” has a
long history. For instance, in the 17th century, when René Descartes tried to
convince Queen Christina of Sweden that animals were just another form of
machine, she is said to have replied: show me a clock that reproduces [1]. Three
centuries were to pass before her question received an answer in 1951 with the
publication of an article by John Von Neumann [40]. A machine, in the abstract
and ideal form of a computation, could effectively build a copy of itself. Therefore,
the reproduction argument cannot be used to distinguish in principle biological
systems from machines.

The idea that living matter, and specifically cells, can be used as computers is
appealing for several reasons: nanoscale devices, massive parallelism, low energy
consumption, possible change in computability and complexity classes. . . and
also the hope that computing with biological devices may give to the correspond-
ing software properties usually attributed to living matter: autonomy, adaptabil-
ity, self-repair, robustness, self-organization.

Tibor Gánti uses the term fluid machineries to describe machines based on
chemical processes utilized in the living world. In [10] he introduces the chemoton
(chemical automaton), a minimal cell model composed of three stochiometrically
coupled autocatalytic subsystems: a metabolism, a template replication process,
and a membrane enclosing the other two. The qualifier “fluid” stresses the fact
that, in contrary to electrical machines, real geometrical directions cannot be as-
signed to the energy exchanged between the components of the fluid automaton.
Nevertheless, they can be described as dynamical systems with a (chemical) state
that evolves in time. This is also the case for genetic process engineering [41,42],
another example of chemical machines harnessing the cellular machinery. In this
engineering discipline, existing genetic elements are modified to implement into
cells biochemical logic circuits and programmed intercellular communication.
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The objective is to achieve complex, predictable and reliable input/output cell
behaviors.

However, we advocate that the term “fluid” also outlines another important
property of living systems: they have a dynamic structure. Biological processes
form highly structured and hierarchically organized dynamical systems, the spa-
tial structure of which varies over time and must be calculated in conjunction
with the state of the system (this is specially obvious in developmental biology).
We call this type of system a dynamical system with dynamical structure [12,13],
which we shall abbreviate to (DS)2.

The fact that the very structure of a biological system is dynamical1 has been
highlighted by several authors; we can cite: the concept of hyper-cycle introduced
by Manfred Eigen and Peter Schuster in the study of autocatalytic networks [6],
the theory of autopoietic systems formulated by Humberto Maturana and Fran-
cisco Varela [39] or the concept of biological organization introduced by Walter
Fontana and Leo Buss to formalize and study the emergence of self-maintaining
functional structures in a set of chemical reactions [9]. The objective of all of
these works has been to grasp and formalize the idea of change in the structure
of a system, change that is coupled with the evolution of the state of the system.

Coming back to the question of harnessing biological processes to compute,
it is interesting to follow the metaphor: if we want to use cells as computing
devices, what makes a population of idealized cell intrinsically different from a
Turing machine? It may be that, from a technical point of view, there is no
difference, meaning that Turing computation and “cell computation” coincide in
term of computability. However, the computing devices differ definitively, in the
same way that lambda expressions differs from Turing machines.

A Turing machine has a fixed structure. The tape is unbounded and only a finite
part of the tape is used during the computation; however, the structure of the tape is
fixed a priori : a sequence of symbols. This means that the control of the machine is also
fixed: the head can move only to the left or to the right. The writing of a symbol on the
tape is fully determined by the state of the control automaton of the Turing machine
and a symbol in its (left or right) neighborhood. We can say that the control part of
the Turing machine (control automaton and neighborhood) is predefined. At first sight,
the situation does not seem too much different for a population of cells. Obviously the
cells in a tissue share the same genetic program and two cells interact and change
accordingly their state2 because they are neighbors. And the dynamic organization of
a set of cells can be coded in someway into a linear tape. However this coding is not
straightforward at all. The structure of a living system is not predefined: cells growth,
divide and their emerging organization as tissue or organisms exhibits a great variety
that must be computed with the system evolution and cannot be predicted by the

1 Biological systems are not the only ones that may exhibit a dynamic structure. For
example, in control theory, these questions have also been addressed for instance
with systems of variable structure [38].

2 The state of a cell is a complex value that changes due to internal processes. But
the state of a cell can also change because of the interactions with the cells in the
neighborhood through diffusion and active transport, by endo- and exocytosis, by
mechano-transduction, by propagation of an electric field, etc.
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simple inspection of the genetic program. Moreover, this neighborhood is dynamic. It
means that the control part of a biological system (genetic program and neighborhood)
cannot be fixed a priori.

The modeling, “the programming”, the simulation and the analysis of such
(DS)2 raise a difficult problem: how to define an evolution function when its set
of arguments (the state variables) is not completely known at the specification
time?

In the rest of this paper we sketch a formalism and an experimental program-
ing language called MGS, which address this problem. MGS relies on a notion of
“spatial structures rewriting” to specify local interactions between the system
components. This approach enables the specification of the components evolu-
tion as well as their dynamic organization.

2 A Brief Introduction to MGS

2.1 Lessons from L Systems and P Systems

Computer Science has developed many languages and tools to help model and
simulate dynamical systems. P systems (membrane computing) [30] and L sys-
tems [33] are examples of bio-inspired formalisms that have been successfully
used in the modeling of biological (DS)2. We will motivate MGS concepts based
on relevant features of these two formalisms.

A Common Computational Mechanism. First, one can note that P and L
systems share the following three characteristics.
Discrete Space and Time. The structure of the state (the membranes hierarchy
in a P system, the parenthesized string in a L system) consists of a discrete
collection of values. This discrete collection of values evolves by discrete steps.
We call “spatial” the organization of the elements in the collection because this
structure does not unfold in time.
Temporally Local Transformation. The computation of a new value in the new
state depends only on values for a fixed number of preceding steps (and as a
matter of fact, only one step).
Spatially Local Transformation. The computation of a new collection is done
by a “structural combination” of the results of more elementary computations
involving only a “small and static subset” of the initial collection. “Structural
combination”, means that the elementary results are combined into a new collec-
tion, irrespectively of their precise value. “Small and static subset” makes explicit
that only a fixed subset of the initial elements are used to compute a new ele-
ment value (this is measured for instance by the diameter of an evolution rule
in a P systems, or the context of a rule in a L system).
A Rewriting Mechanism. Considering these shared characteristics, the abstract
computational mechanism is always the same: (1) a subcollection A is selected in
a collection C; (2) a new subcollection B is computed from the collection A; (3)
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the collection B is substituted for A in C. These three basic steps are reminiscent
of the notion of rewriting and, indeed, P systems can be described as multiset
rewriting and L systems as a kind of string rewriting. However, we prefer to
call it a transformation because the notion of rewriting is mainly developed on
terms (strings are terms in an associative monoid and multisets are terms in an
associative and commutative monoid) and we want to be more general.

In addition to transformation specification, there is a need to account for the
various constraints in the selection of the subcollection A (the pattern language)
and the replacement B, and in the rule application strategy. For example, for
L systems and P systems, the basic rule application strategy is the maximal
parallel one.

Locality and Interaction. From the perspective of the simulation of (DS)2,
several features are appealing in the L systems and in the P systems formalisms.

First, summing up the local evolutions triggered by the rules specifies the
global evolution of the state. So there is no need to have a global picture of the
state to specify its evolution.

Secondly, elements referred in a rule are referred implicitly through pattern
matching. For instance, a pattern a refers to some occurrence of a in the collec-
tion: there is no need to use a global reference to a. A global reference (like a
coordinate) may be difficult to maintain as the collection evolves (for instance
when new symbols are inserted elsewhere).

Third, element in a pattern are related through the relationships induced by
the organization of the collection. For example, in a string, the pattern ab denote
two symbols a and b that must be consecutive in the string. For multisets, each
element is neighbor to all the other elements of the multiset.

2.2 The Topological Organization of the State

After this presentation, the main difference between the two formalisms, for the
purpose of simulation, appears to be the organization of the collection: an im-
brication of multisets of symbols or a parenthesized string of symbols. Thus, our
idea is to generalize the approach of P and L systems by developing a framework
where multiple organizations can be considered uniformly. This is the notion of
topological collections introduced in [19] to describe arbitrary complex spatial
structures that appear in biological systems [15] and other dynamical systems
with a time varying structure [16,20].

The definition of topological collection is based on a mathematical device
developed in algebraic topology: the notion of chain [23] that extends the notion
of labeled graph.
Incidence Structures. An abstract combinatorial complex K = (C,≺,dim) is a
set C of abstract elements, called topological cells, provided with a partial order
≺, called the boundary relation, and with a dimension function dim : C → N
such that for each c and c′ in C, c ≺ c′ ⇒ dim(c) < dim(c′). The reader must pay
attention not to confuse biological and topological cells. We write c ∈ K when a
cell c is a cell of C. A cell of dimension p is called a p-cell. We say that a cell c′
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is a border of a cell c if c′ ≺ c. The boundary of a cell c is the set of borders of c.
The faces of a p-cell c are the (p−1)-cells c′ such that c′ ≺ c and we write c > c′

or c′ < c; c′ is called a coface of c. Two cells c and c′ are q-neighbors either if
they share a common border of dimension q or if they are in the boundary of a
q-cell (of higher dimension).

A cell of dimension 0 corresponds to a point, a 1-dimensional cell corresponds
to a line (an edge), a cell of dimension 2 is a surface (e.g. a polygon), etc. For
example, a graph is an abstract combinatorial complex (ACC) built only with
0- and 1-cells. Another example is pictured in Fig. 2.

Topological Collections. The next step is to attach a value to the cells of a
complex. Algebraic topology takes this value in a commutative group since it
gives a natural group structure to the set of chains [23]. We relax this assumption
for topological collections: a topological collection C is a function that associates
a value from an arbitrary set V with cells in an ACC, see Fig. 2. Thus the notation
C(c) refers to the value of C at cell c; C(c) is called the label of the cell c. Labels
can be used to capture geometric properties or to represent the arbitrary state
of a subsystem (a mass, a concentration of chemicals, or a force acting on certain
cells).

We write |C| for the set of cells for which C is defined. The collection C can
be written as a formal sum

∑
c∈|C| vc ·c where vc

df
= C(c). With this notation, the

underlying ACC is left implicit but can usually be recovered from the context.
By convention, when we write a collection C as a sum

C = v1 · c1 + · · ·+ vp · cp

we insist that all ci are distinct. This notation is directly used in MGS to build
new topological collections on arbitrary ACC of any dimension. Notice that this
addition is associative and commutative: the order of operations used to build a
topological collection is irrelevant.

In the MGS programing language, topological collections correspond to aggre-
gate data types. These data types differ by the specification of their underlying

f

e1

c1

e3

e2c3 c2

f

c3c1c2

e2 e3e1

(0, 4)

6

55

(3, 0)

12

(−3, 0)

Fig. 2. On the left, the Hasse diagram of the boundary relationship of the ACC given
in the middle: it is composed of three 0-cells (c1, c2, c3), of three 1-cells (e1, e2, e3) and
of a single 2-cells (f). The three edges are the faces of f , and therefore f is a common
coface of e1, e2 and e3. On the right, a topological collection associates data with the
cells: positions with vertexes, lengths with edges and area with f .
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cellular complex. In the current implementation of the MGS language, usual data
structures (records, sets, sequences, trees, arrays, etc.) are represented by special
kinds of one-dimensional topological collection, namely vertex-labeled graphs: el-
ements of the data structure are attached to the vertexes and the edges represent
the relative accessibility from one element to another in the data structure. MGS
also handles more sophisticated spatial structures corresponding to arbitrary
ACC of any dimension.

2.3 Topological Rewriting

The next move is to define a suitable notion of topological collection transfor-
mation. As mentioned in the introduction, the transformation of a topological
collection must be able to express changes in the labels as well as changes in the
underlying spatial structure.

A dedicated definition has been developed in [19]. However, thanks to the
term structure of a topological collection, transformations can be defined in the
framework of set rewriting, following an approach similar to that taken in [31]
for hyper-graphs: using the additive representation of topological collections,
topological rewriting can be simply defined as an adapted version of conditional
first-order associative-commutative term rewriting, see [36] for the details.

A transformation T is a function specified by a set of rewriting rules {p1 ⇒
e1, . . . , pn ⇒ en} where each pi is a pattern and each ei is an expression. An
application of a rule matches a sub-collection with pk that is then substituted by
the result of expression ek. In rewriting rules, patterns match sub-expressions,
that is, partial sums of the whole sum representing the topological collection
that the rule is applied on. It is in this sense that the additive structure of
topological collections is preserved (but a transformation is not necessarily an
homomorphism).

Patterns. The formal definition of topological rewriting is less interesting than
the actual syntax of the pattern language used to specify the left hand side (lhs)
of a rewriting rule: as a matter of fact, the lhs of a rule must match a sub-
collection, that is a subset of C and a sub-relation of the incidence relation ≺ of
the complex K. This information can be difficult to specify without the help of
a dedicated language. We have studied several pattern languages. We use here
a very small fragment of the MGS path pattern language. Path patterns can be
composed with respect to the neighborhood relationships but we don’t use this
feature in the example developed in this paper.
Pattern Variables. A pattern variable x matches a cell and its label. Patterns
are linear : two distinct pattern variables always refer to two distinct cells. The
identifier x can be used elsewhere in the rule to refer to the label of the matched
cell; the cell itself can be referred through the special identifier ˆx. This conven-
tion avoids the introduction of two identifiers to match a cell and its associated
value. Using the additive notation for topological collections, and without the
previous convention, this pattern is translated to x · ˆx where the variable x
ranges over the labels, and where the variable ˆx ranges over the cells.
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Conditional rules. A guard can be used to specify a condition that must be
satisfied by the matching. For instance, expression x/x > 5 matches a cell ˆx
labeled by an integer x greater than 5.
Strategies. Rule applications are controlled through a rule application strategy.
Several strategies are available in MGS like the maximal parallel application and
the Gillespie stochastic simulation algorithm used in the simulation of chemical
reactions [35]. These strategies control the advancement of time in the simulation
(synchronous, asynchronous, stochastic, etc.). They are often non-deterministic,
i.e., applied on a collection C, only one of the possible outcomes (randomly
chosen) is returned by the transformation.

Multisets as “Free” Collections. Let an ACC K = {⊥, c1, c2, . . .} where
the ci are incomparable and ⊥< ci. The corresponding topological collection is
a multiset and the associated notion of transformation corresponds to classical
multiset rewriting. In this sense, any topological collection can be obtained from
a multiset by putting additional constraints on ≺.

Note that the previous definitions of topological collections and transforma-
tions are useful for developing a unified simulation framework but have less in-
terest if one is concerned by the derivation of properties specific to an underlying
topology.

3 The modeling of a “multicellular bacteria”

In this section, we illustrate the use of the MGS framework for the modeling and
the simulation of a fluid machine.

3.1 The international Genetically Engineered Machine (iGEM)
Competition

The emergence of synthetic biology [8,22,4,24] opens the doors to the systematic
design and construction of biological (fluid) machines. After the construction
of the first artificial genetic regulatory networks in E.coli around 2000 [11,7],
this domain mainly develops around the engineering of synthetic gene net-
work [21,27,5]. It has been largely popularized through the iGEM competition,
a yearly competition launched by the MIT in 2003 [3]. The competition is aimed
at undergraduate students that are given the opportunity to design, model and
assemble BioBricks [26] to produce new biological functions integrated into liv-
ing systems. More than 160 teams coming from all around the world participate
in the 2011 issue.

3.2 Objectives of the Synthetic Multicellular Bacterium Project

The 2007 French team supervised by Ariel Lindner and Samuel Bottani partici-
pated in the competition and was ranked first in the “foundational research” cat-
egory for their Synthetic Multicellular Bacterium project. Unlike most projects
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involving a regulatory network functioning in a single cell following a straight-
forward sensing/transduction/actuation loop, the functioning of the Synthetic
Multicellular Bacterium is implemented at the population level. MGS was used
to produce most of the simulations needed to validate the design (one simulation
was done in MATLAB). To save room, we present here only the design idea of
the Synthetic Multicellular Bacterium and one of the supporting MGS models.
The interested reader may found additional information in [37] where several
simulations that are inspired or that extend the initial Synthetic Multicellular
Bacterium simulations are presented.

The project is aimed at the design of a synthetic multicellular bacterium.
This organism would allow the expression of a lethal or dangerous transgenic
gene in the Escherichia coli bacterium without disturbing the development of
its biomass. The main difficulty was to install a mechanism of irreversible bacte-
rial differentiation that makes possible to express the transgene only in a part of
the population unable to reproduce. The two lines, germinal (not differentiated)
and somatic (differentiated and unable to reproduce), are interdependent and
then constitute a multicellular organization (hence the name “multicellular bac-
terium”). To ensure that the ratio between the two populations makes it possible
for the system to grow, the sterile somatic cells are designed to provide to the
germinal cells a molecule essential to their reproduction: DAP (diaminopime-
late). Fig. 3 sketches the general principle of the project. This design asked for
the development of two distinct biological functionalities, one for the cellular
differentiation and the other for the feeding of DAP to the germinal cells.

This design is an example of a fluid machine: it is the dynamic organization of
the whole population (into two differentiated subpopulations) that is viable and
functional. A single cell cannot survive: it is either sterile or unable to reproduce
alone. The Paris team provided experimental evidences and theoretical proofs
that the Synthetic Multicellular Bacterium organism is viable.

reproduces

the organism the organism

cannot reproduce

differentiates into

is required for

Germline Soma

Fig. 3. The Synthetic Multicellular Bacterium is composed of two cell types: germ cells
(G) and somatic (S) cells. G cells are able to live by producing two different types of
cells: G cells and S cells. S cells are derived from G cells by an irreversible differentiation
step, exhibiting a new function required for the survival of the G cells. S cells cannot
reproduce. This dependency between G and S cells defines the organism. Additional
informations is available at [2,37].
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DNA
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Fig. 4. Gene regulatory networks of the germinal and somatic cells describing the
feeding device (light gray) and differentiation device (dotted box). Cre, dapA and
ftsK are genes, LOX is a recombination site and T are terminators. Figure reprinted
from [37] and adapted from [2].

3.3 The Paris Team Proposal

The Paris team has proposed an original construction to implement this func-
tionality into the E.coli bacterium. The gene regulatory network of the proposal
is described in Fig. 4. Two functions are described: a feeding device based on the
production of DAP molecules (light gray) and a differentiation device based on
a classical Cre/LOX recombination scheme (dotted box).

In the germline G, the natural promoter controls the expression of fstK,
a gene essential for replication. On the contrary, the dapA gene is not active
since it lacks a promoter to initiate its transcription and G is auxotrophic in
DAP (the corresponding protein product of the gene dapA). DAP diffuses in the
environment and is rapidly degraded.

A dapAp promoter is sensitive to DAP concentration and it is located before
the gene Cre. The production of Cre, in presence of DAP in the environment,
initiate the recombination/differentiation process.

After recombination, the genomic reassembly leads, by the excision of the
parts between the two LOX genes, to the soma cell type S (and a plasmid that
is rapidly degraded). In the feeding device S, DAP is under the control of its
constitutive promoter and can be expressed. The synthesized DAP diffuses in
the environment allowing to reach G cells. Lacking ftsK genes, S cells are sterile
and eventually die.

3.4 One MGS model of the Synthetic Multicellular Bacterium

Several models of the Synthetic Multicellular Bacterium have been developed
to study, through simulation, various questions. We present here a model that
integrates a simple mechanical and a biological behavior.
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In this example, we abstract individual biological cells by disks localized in
a 2D Euclidean space (the third dimension is not considered as the Synthetic
Multicellular Bacterium is supposed to grow in the plane of a petri dish). Cells
push away each other and consequently change their positions in space and
their immediate neighborhood. Thus, this neighborhood must be dynamically
computed according to the position of the disks in the plane. The state of a cell
is described by a record:

record bact = { x, y, vx, vy, fx, fy, size, radius, dap, soma }

which includes the position, velocity and force exercised on the cell, its radius,
the local DAP concentration, and the differentiation state (germinal or somatic).

Our approach is based on the specification of cell-cell dynamical interactions
and the computation of the neighborhood of the cells using an implicit Delaunay
triangulation. This approach has already been used in systems biology for the
modeling of cell population [32]. The MGS declaration

delaunay D(c:bact) = [c.x, c.y]

defines Delaunay collection called D: a graph where nodes are cells and edges are
computed implicitly by the run-time using the vector of coordinates extracted
from the cells using the function D.

Description of the Model. The modeling of Synthetic Multicellular Bac-
terium is organized into two coupled models: a mechanical model and a biological
model.

The Mechanical Model. The mechanical model consists of a mass/spring sys-
tem. Bacteria are considered as punctual masses localized at the center of their
associated circle; the presence of a spring between two masses depends on the
neighborhood computed by the Delaunay triangulation. The elongation of the
springs rest lengths captures the mechanical effect of the growth of the bacteria.

Each cell computes its acceleration by summing all mechanical forces in-
duced by its incident springs, and consequently moves in space. This is done
by the transformation Meca. Meca sums the forces applied on each cell using a
neighborsfold expression. A naive Euler schema is used twice to integrate during
the time step, acceleration into velocity and velocity into new positions.

fun interaction(ref, src) =
let x = ref.x - src.x and y = ref.y - src.y in
let dist = sqrt(x*x+y*y) in
let spring = 0.0-K*(dist-(ref.radius+src.radius))/dist
in fx=x*spring - ref.vx*MU, fy = y*spring - ref.vy*MU

fun addVect(u, v) = fx = u.fx + v.fx, fy = u.fy + v.fy
fun sum(x, u, acc) = addVect(acc, interaction(x,u))



12 Jean-Louis Giavitto

trans Meca[Dt] = {
e => let f = neighborsfold(sum(e), fx=0,fy=0, ˆe)

in e + { x = e.x + Dt*e.vx, y = e.y + Dt*e.vy,
vx = e.vx + Dt*f.fx, vy = e.vy + Dt*f.fy,
fx = f.fx, fy = f.fy } * ˆe

}

The overall form of the unique rule of the Meca transformation is e => v * ˆe
which means that this rule only update the value associated to the cell matched
by e.

The computation of the value v requires some explanation. Variables in cap-
ital represent parameters of the model (constant defined elsewhere). The defini-
tions interaction, addVect and sum specify auxiliary functions. All functions are
curried in MGS: so, sum(e) is a function awaiting the remaining arguments u and
acc. The + operator between records denotes the asymmetric merge. The expres-
sion r1 + r2 computes a new record r having the fields of both r1 and r2: r.a has
the value of r2.a if the field a is present in r2, otherwise it has the value of r1.a.
The expression neighborsfold (f, init , c) iterates a binary reduction function f
over the labels of the neighbors of c to build up a return value. The argument
init is used to initialize the accumulator. Note that the neighborsfold operator
rely on the ACC structure underlying the topological collection to determine the
neighbors of c.

The Biological Model. The DAP diffusion dap_diff is modeled by a classical con-
tinuous model (numerical integration of the diffusion equation is done using a
simple Euler explicit schema). New rules are added to deal with cellular growth,
division and death: in presence of DAP, G cells grow by increasing their radius.
When the G cell radius reaches a threshold, the cell divides. S cells keep on
growing then die when another threshold is reached. The corresponding trans-
formation is called Cell and computes the evolution during a time step Dt:

fun divide(b) =
(b + { size = (b.size / 2.0), ...}) * newcell(D),
(b + { ..., x = noise(b.x), y = noise(b.y) }) * newcell(D)

trans Cell[Dt] = {
x / x.soma & x.size > 4
=> if random(1.0) < 0.01 then <undef> else x * ˆx

x / x.soma
=> (x + { size = x.size + Dt*GRate }) * ˆx

x / x.size < 2
=> let dap_diff =

neighborsfold(\y,acc.acc + Dt*DIFF*(y.dap-x.dap), 0, x) in
let dap = dap_diff.dap / neighborcount(x) - Dt*CONS
in if (dap <= Mdap) then if (random(1.0) < DProb)

then (x + { soma = true }) * ˆx
else (x + { dap = dap }) * ˆx

else (x + { dap = x.dap + dap, size = ...}) * ˆx
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x / x.size >= 2
=> let dap_diff = ...

in if (dap >= Mdap) then divide(x) else ...
}

The first rule gives the fate of a somatic cell of size greater than 4: it goes to
apoptosis (cell death) with a probability of 1% per Dt period. The second rule
gives the fate of a somatic cell with a size less or equal to 4 (rules are tried in
the order of their specification). Such cells increase in size. Third rule apply to
germinal cell of size less than 2. Such cells acquire DAP from the environment.
If the amount of DAP in the environment is below a given threshold Mdap, the
cell can spontaneously turn to a somatic cell, with some probability.

The fourth rule is interesting: it specifies the division of a bacterium if some
conditions are meet. The function divide returns two new labeled cells (new cells
for collection of type D are build by the expression newcell(D)). The first has the
same coordinates as the argument. The second cell has the same coordinates
perturbed by some small noise. The mechanical evolution will separate quickly
the two cells and will reorganize the whole structure. This reorganization will
impact the diffusion of DAP. So there is a feedback loop between the spatial
organization of the system and the process inhabiting this organization.

Integration of the Two Models. As classical functions, transformations can
be arbitrarily composed. This is the key to the coupling of the two models. The
iteration of a function can be specified by the MGS option iter. It allows to
deal with different time scales: assuming that the mechanical process is faster
than the cellular process the whole model is captured by the following evolution
function:

fun SMB(state) = Cell[Dt=∆2t](Meca[Dt=∆1t, iter=∆2t/∆1t](state))

where the named argument Dt corresponds to the time step used in transforma-
tions Meca and Cell. Here transformation Meca is applied ∆2t

∆1t
times for only one

application of Cell.

4 Conclusions

The example above remains simple: there is no need for sophisticated pattern-
matching, yet it is a (DS)2 and it exhibits clearly a feedback loop between the
spatial structure and the processes inhabiting the structure. The conclusions
that are drawn below are also supported by other applications.

The MGS description is concise thanks to the notion of collection and the no-
tion of transformation, which unify (for the purpose of the simulation) the han-
dling of a wide family of dedicated data structures [14]. The MGS specification
follows the natural structure of the model: there is generally one evolution rule
for each type of evolution. Evolution rules can express simultaneously structural
as well as state changes. They can be grouped into transformation associated to
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some kind of physical laws (mechanics, chemistry, etc.) making manifest mul-
tiphysics simulation (i.e., involving multiple physical domains). The coupling
between transformations is easily controlled because the functional nature of a
transformation. This enables multiscale models. Although transformations are
associated to discrete step evolution, the example shows that numerical integra-
tion of continuous processes can be integrated smoothly with discrete evolutions
(such as cell division in the rule 4 of the transformation Cell). The alternative
models developed for the Synthetic Multicellular Bacterium (each model focuses
on a specific time scale using a dedicated theoretical framework) outline the ver-
satility of the approach. For instance, stochastic model can be expressed simply
through the choice of a dedicated rule application strategy [35].

Past work on MGS have focused on the development of a framework rel-
evant for simulation and the validation of MGS concepts through numerous
examples, including application in system and synthetic biology; see the MGS
home page: http://mgs.spatial-computing.org. The theoretical investiga-
tion of the topological framework (e.g., can we develop a natural complexity
notion on patterns and on topological operations? Can we develop a dedicated
static analysis framework for MGS programs? Is there a relevant notion of model-
checking? Etc.) is underway.
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