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Abstract

We sketch the rationals of the MGS programming language. MGS is an experimental
programming language developed to study the application of several spatial computing
concepts to the specification and simulation of dynamical systems with a dynamical struc-
ture. MGS extends the notion of rewriting by considering more general structure than
terms. The basic computation step in MGS replaces in a topological collection A, some
subcollection B, by another topological collection C. A topological collection is a set of
element structured by a neighborhood relationships describing an underlying space rep-
resenting a data structure or constraints that must be fulfilled by the computation. This
process proposes a unified view on several computational mechanisms initially inspired
by biological or chemical processes (Gamma and the CHAM, Lindenmayer systems, Paun
systems and cellular automata).

1 Dynamical Systems and their State Structures

A dynamical system (or ds in short) is a phenomenon that evolves in time. At any point in
time, a dynamical system is characterized by a set of state variables. Intuitively, a ds is a
formal way to describe how a point (the state of the system) moves in the phase space (the
space of all possible states of the system). It gives a rule telling us where the point should
go next from its current location. The evolution of the state over time is specified through a
transition function or relation which determines the next state of the system (over some time
increment) as a function of its previous state and, possibly, the values of external variables
(input to the system).

This description outlines the change of state in time but does not stress that the set of
state variables can also change in time and that the a priori determination of the phase space
cannot always be done. This is a common situation in biology [FB94, FB96, Ros91] where
such ds can be found in morphogenetic processes such as in plant growing, developmental
biology or evolutionary processes. They also naturally appear in complex adaptive systems
which exhibits dynamic networks of interactions and relationships not predefined aggregations
of static entities (distributed systems, social networks, etc.).

This kind of systems share the property that the structure of the phase space must be
computed jointly with the current state of the system. Note that if the set of state variables
evolves in time, so does the transition function. We qualify such systems as (ds)2: dynamical
systems with a dynamical structure [Gia03].

∗This presentation rely partially on work presented already in [GM01c, GM02a, GMCS05, GS08b].
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Computer Science has developed (or appropriated) many languages and tools to help model
and simulate dynamical systems. However, the dynamic character of the structure raises a
difficult problem: how to define a transition function when its set of arguments (the state
variables) is not completely known at the specification time?

2 Space for Structuring Computation

The MGS project is an attempt to answer the previous question based on the assumption that
the state of a (ds)2 can be dynamically structured in term of spatial relationships where only
“neighbor” elements may interact.

Very often, a system can be decomposed into subsystems and the advancement of the state
of the whole system results from the advancement of the state of its parts [GGMP02]. The
change of state of a part can be intrinsic (e.g., because of the passing of time) or extrinsic,
that is, caused by some interaction with some other parts of the system.

The direct interactions of arbitrary elements in a system are not always allowed nor desir-
able and only “neighbor” elements may interact. For instance, for physical systems, subsystems
are spatially localized and when a locality property1 holds, only subsystems that are neigh-
bors in space can interact directly. So the interactions between parts are structured by the
spatial relationships of the parts. For abstract systems, in many cases the transition function
of each subsystem only depends on the state variables of a small set of parts (and not on the
state variables of the whole system). In addition, if a subsystem s interacts with a subset
S = {s1, . . . , sn} of parts, it also interacts with any subset S′ included in S. This closure
property induces a topological organization: the set of parts can be organized as an abstract
simplicial complex [GMCS05].

The neighborhood relationship, which instantiates the locality property of the computa-
tions, can be formalized using concept from algebraic topology, see [GMCS05]. This relation
represents physical (spatial distribution, localization of the resources) or logical constraints
(inherent to the problem to be solved).

So, the idea is to describe the global dynamics by summing up the local evolutions trig-
gered by local interactions. Note that two subsystems s and s′ do not interact because they
are identified per se but because they are neighbors. Such a feature enables the potential
interaction of subsystems that do not yet exist at the beginning of the simulation and that do
not know each other at their creation time.

3 Computing in Space, Space in Computation and Spatial Com-
puting

We have described the rational behind the idea of using spatial relationships to structure the
specification of a (ds)2. However, the use of spatial relationships can invade all domains of
computing.

Spatial relationships adequately represent physical constraints (spatial distribution, local-
ization of the resources) or logical constraints (inherent to the problem to be solved). Physical

1The locality property states that matter/energy/information transmissions are done at a finite speed. This
property is not always relevant, even for physical systems, for instance because processes may occurs at two
separate time scales: changes at the fast time scale may appear instantaneous with respect to the slow one.
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constraints are given by distributed computations where the computing resources are localized
in different places in space.

Logical constraints arise when position and shape are input to computation or a key part of
the desired result of the computation, e.g. in computational geometry applications, amorphous
computing [AAC+00], claytronics [ABC+05], distributed robotics or programmable matter...
to cite a few. More generally, logical constraints are given by the accessibility relation involved
by a data structure [GM02a]. For instance, in a simply linked list the elements are accessed
linearly (the second after the first, the third after the second, etc.). In arrays, a computation
often involves only an element and its neighbors: the neighborhood relationships are left im-
plicit and implemented through incrementing or decrementing indices. The concept of logical
neighborhood in a data structure is not only an abstraction perceived by the programmer and
vanishing at the execution. Indeed, the computation usually complies with the logical neigh-
borhood of the data elements such that some primitive recursion schemes, e.g. catamorphisms
and others polytypic functions on inductive types [MFP91] can be automatically defined from
the data structure organization.

As an example, consider parallel computing. Parallel computing deals with both logical and
physical constraints: computations are distributed on physical distinct computing resources
but the distribution of the computation is a parameter of the execution, a choice done at a
logical level to minimize the computation time, and does not depend on some imposed physical
localizations induced solely by the problem to be solved.

[DHGG06] introduce the term spatial computing to recognize that space is not an issue
to abstract away but that computation is performed distributed across space and that space,
either physical or logical, serves as a mean, a resource, an input and an output of a computa-
tion.

4 Unifying Several Biologically Inspired Computational Models

One of our additional motivations is the ability to describe generically the basic features of
four models of computation: Gamma (chemical computing) [BFL01], P systems (membrane
computing) [Pău01], L systems [RS92] and cellular automata (CA) and related models of
crystalline computing [Mar98, Tof04]. They have been developed with various goals in mind,
e.g. parallel programming for Gamma, calculability and complexity issues for P systems,
formal language theory and biological modeling for L systems, parallel distributed model of
computation for CA (this list is not exhaustive). However, all these computational models
rely on a biological or biochemical metaphor. They have been used extensively to model ds.
So, it is then very tempting to ask if a uniform framework may encompass these formalisms,
at least with respect to simulation purposes.

We assume that the reader is familiar with the main features of these formalisms. A
Gamma program, a P or a L system and a CA can be themselves viewed abstractly as a discrete
dynamical system: a running program can be characterized by a state and the evolution of
this state is specified through evolution rules. From this point of view, they share the following
characteristics:

Discrete space and time. The structure of the state (the multiset in Gamma, the mem-
branes hierarchy in a P system, the string in a L system and the array in a CA) consists
of a discrete collection of values. This discrete collection of values evolves in a sequence
of discrete time steps.
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Temporally local transformation. The computation of a new value in the new state de-
pends only on values for a fixed number of preceding steps (and as a matter of fact, only
one step).

Spatially local transformation. The computation of a new collection is done by a struc-
tural combination of the results of more elementary computations involving only a small
and static subset of the initial collection.

“Structural combination”, means that the elementary results are combined into a new collec-
tion, irrespectively of their precise value. “Small and static subset” makes explicit that only a
fixed subset of the initial elements are used to compute a new element value (this is measured
for instance by the diameter of the evolution rule of a P systems, the local neighborhood of a
CA, the number of variables in the right hand side of a Gamma reaction or the context of a
rule in a L system).

Considering these shared characteristics, the main difference between the four formalisms
appears to be the organization of the collection. The abstract computational mechanism is
always the same:

1. a subcollection A is selected in a collection C;

2. a new subcollection B is computed from the collection A;

3. the collection B is substituted for A in C.

We call these three basic steps a transformation. In addition to transformation specification,
there is a need to account for the various constraints in the selection of the subcollection A and
the replacement B. This abstract view makes possible the unification in the same framework
of the above mentioned computational devices. The trick is just to change the organization
of the underlying collection.

Constraining the Neighborhood. There is a priori no constraint in the case of Gamma:
one element or many elements are replaced by zero, one or many elements. The means that
the topology underlying a multiset makes all elements connected.

In the case of P systems, the evolution of a membrane may affect only the immediate
enclosing membrane (by expelling some tokens or by dissolution): there is a localization of
the changes. The topology of P systems are nested multiset: in a membrane all element are
connected but membranes are organized in a strict hierarchy.

L systems are based on string (or sequence of elements). This also exhibit locality: the
new collection B depends only on the context of A (the immediate neighbors in the string)
and it is inserted at the place of A and not spread out over C.

For CA, the changes are not only localized, but also A and B are constrained to have the
same shape: usually A is restricted to be just one cell in the array and B is also one cell to
maintain the array structure.

5 MGS

MGS generalizes the previous formalisms by considering collection of elements with arbitrary
neighborhood relationships and by developping a suitable notion of rewriting of such collec-
tions.
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We see a collection as a set of places or positions organized by a topology defining the
neighborhood of each element in the collection and also the possible subcollections. To stress
the importance of the topological organization of the collection’s elements, we call them “topo-
logical collection”.

The topology needed to describe the neighborhood in a set or a sequence, or more generally
the topology of the usual data structures, are fairly poor [GM02a]. So, one may ask if the
machinery needed is worthwhile. Actually, more complex topologies are needed for some
biological modeling applications or for self-assembly processes [GS08a, SMG11]. And more
importantly, the topological framework unify various situations. notions, see [GM01b].

Now, we come back to our initial goal of specifying the dynamical structure of a ds. A
collection is used to represent the state of a ds. The elements in the collection represent either
entities (a subsystem or an atomic part of the ds) or messages (signal, command, information,
action, etc.) addressed to an entity. A subcollection represents a subset of interacting entities
and messages in the system. The evolution of the system is achieved through transformations,
where the left hand side of a rule typically matches an entity and a message addressed to it,
and where the right and side specifies the entity’s updated state, and possibly other messages
addressed to other entities. If one uses a multiset organization for the collection, the entities
interact in a rather unstructured way, in the sense that an interaction between two objects is
enabled simply by virtue of their both being present in the multiset (the topology underlying
a multiset makes all elements connected). More organized topological collections are used for
more sophisticated spatial organization.

We do not claim that topological collection are a useful theoretical framework encompass-
ing all the previous formalisms. We advocate that few notions and a single syntax can be
consistently used to allow the merging of these formalisms for programming purposes.

To go Further. The interested reader may refer to [GM02a, GM01a, GMC02] for the spa-
tial approach of data structure. The mathematical concepts behind the MGS approach are
presented in [GM01b, Spi06, GS08b, SMG10]. The modeling and the simulation of (ds)2

are exposed for example in [GGMP02, Gia03, SMG04, GS08b]. Applications in systems biol-
ogy are presented in [GM03, SM07, MSG09, SMG11]. Algorithmic applications are sketched
in [GM01c, MJ05, SMG10]. Relation with novel approaches of computing, like P systems or
autonomic computing, are showed in [GM02c, DHGG06, GS08a, GS08b, GMS08]. Further
examples and documentation can be found at the MGS home page:

mgs.spatial-computing.org
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