Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Theoretical Computer Science 431 (2012) 219-234

Contents lists available at SciVerse ScienceDirect
mputer Science

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Integrated regulatory networks (IRNs): Spatially organized
biochemical modules

Jean-Louis Giavitto”, Hanna Klaudel?, Franck Pommereau **

2 [BISC, University of Evry and Genopole, Tour Evry 2, 523 place des terrasses de I'’Agora, 91000 Evry, France
b JRCAM - UMR STMS 9912 CNRS, 4 place Igor Stravinsky, 75004 Paris, France

ARTICLE INFO ABSTRACT

Keywords: In this paper, we aim at modeling and analyzing the regulation processes in multi-cellular
Logical regulatory networks biological systems, in particular, tissues. The modeling framework is a generalization of
Eﬁﬁ%ﬁiﬁiiﬂfggﬁ:ﬁe several exis‘ting formalism;. lr} particulgr, itcanbe seen as an extension of logi.cal regulatory
Spatial modeling networks (d la Thomas) with information about cells’ physical state and environment, e.g.,
Systems biology their spatial relationships. The resulting formalisms, called integrated regulatory networks
(IRNs) is equipped with a transition systems semantics that preserves the possibility of
an enumerative and exhaustive state space exploration. This paper presents the modeling
framework, its semantics, as well as a prototype implementation that allowed preliminary

experiments on some applications related to biology.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Regulation processes are the corner stone to understanding many aspects of biological systems. They occur at many
levels like transcription and translation of the genetic material, or protein modifications. They define complex networks of
interactions that cannot be easily understood without resorting to formal modeling and automated analysis. The generalized
logical formalism initially proposed by René Thomas in the seventies [41-43], is a discrete modeling formalism that has
proved to be an effective way to capture regulation processes and analyze them. It has been successfully applied to the
study of a variety of regulatory networks comprising relatively large number of components [35,36]. This formalism however
does not provide any modeling device to specifically address the question of multi-cellular systems, where the regulatory
networks of cells can influence each other in a way that is dependent on the spatial relationships between the cells.

On the other hand, several formalisms inspired by formal language theory have been used to model and simulate the
dynamics of multicellular systems. For instance, Lindenmayer systems are generative grammars that have been successfully
used since the seventies in the modeling of plant growth and developmental biology [29,34]. This framework is widespread
for the realistic simulation of developing organisms, but has not been the target of automated analysis like model-checking.

This paper aims at proposing a modeling framework integrating regulation and development in multi-cellular systems.
It takes into account physical information about cells (like weight, volume or spatial organization) as well as about the
environment (like temperature or mechanical stress). We are particularly interested by the modeling of the dynamics of
tissues and, following the central dogma of molecular biology [12], the physical transformations of cells (like migration,
division and apoptosis - cell death) will be governed by the regulatory processes.

This framework is devoted to the analysis of systems such as developmental processes, invasive cancers, plant growth,
etc. Therefore, one of our main objectives in such a modeling framework is to preserve the ability to perform model-checking
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based analysis in order to be able to assess causality-related properties and reveal rare events, which usually cannot be
obtained through simulation. This constrains the possible choices for modeling physical information. In particular, there
should be a finite number of possible evolutions from a given configuration and they should be enumerable. Moreover, each
configuration should be represented in a normalized form, allowing the recognition of two identical configurations. For
instance, floating-point positions are not a possible solution; instead, we shall use solutions based on discrete (qualitative)
and combinatorial structures.

Contributions. Our starting point is a qualitative modeling approach developed in [9,10] based on logical regulatory
networks [41-43] and extended later to introduce modularity [7,8]. In this extension, modularity allows a systematic
modeling of multi-cellular systems, each cell being represented by a module. However, the spatial relationships between
the modules within a model is represented in a very coarse way, with no link to any kind of geometrical or topological
information. Moreover, in this setting, the number of modules is fixed when the model is first built. In [15], we extended
this by including explicitly the spatial aspects of a system and allowing spatial transformations through explicit cells division
(by duplication), apoptosis (by destruction) or migration. Finally, only two kinds of discrete space representation were
considered and the interactions between the logical (regulatory) specification and the spatial specification of the system
were rather ad-hoc.

In the present paper, we further generalize and unify these approaches by considering physical aspects and not only
spatial ones. Physical aspects include arbitrary transformations as well as environmental factors which are not necessarily
controlled by the regulatory processes (e.g., the temperature) but affect the model dynamics (e.g., the rate of diffusion).

Spatial aspects are the physical aspects concerned with the topological or geometrical organization of the system. Their
modeling is specified through rewriting rules, called transformations, acting on topological collections [14]. Topological
collections generalize the notion of labeled graphs to higher dimensional objects. This framework, implemented in the
language MGS, has been used in the context of P systems [17] and in several large modeling projects in systems biology
[2,18,39].

The resulting framework, called IRNs for Integrated regulatory networks, allows the specification and the analysis of
spatially organized biochemical modules. It is given a semantics in terms of transition systems that is implemented in a
prototype, allowing to prove the feasibility of the approach and to run preliminary experiments on simple applications. We
present in particular two instances of spatial information specification. One is based on sequences that can be extended
or shrunk and is used to specify and analyze a model for the cell division and differentiation of a filamentous blue-green
alga Anabana catenula [46,23]. The other one is based on predefined grids and applied to the modeling of a quorum sensing
mechanism.

Notice that the approach presented in this paper is applicable only if a unique sort of module is considered at the same
time, i.e., if all the cells in a tissue are of the same kind. The extension to take into account multi-sorted systems is quite
straightforward, but the resulting notations are much more complex. Our prototype implementation actually does not
have any such limitation. However, for this paper, an intuitive and simpler presentation has been preferred. Furthermore,
this paper does not consider the expression and analysis of properties in the models, we simply provide a framework
with enumerable state spaces which is enough to guarantee that any model-checking technique is potentially applicable
(in particular, modal/temporal logic based approaches).

Outlines. The next section introduces the background of our work, in particular the modeling formalisms we start from
(for regulatory aspects as well as for the modeling of spatial information). Our contributions are then presented in Sections 3
and 4, the former is dedicated to the definition of the syntax and semantics of IRNs, while the latter presents some
experiments. The paper ends with a conclusion and a discussion about future works.

2. Background

In this section we present some background material about logical regulatory networks and about topological collections
and their transformations. These formalisms will be used in the definition of the IRN framework and will be illustrated
through an example: the modeling of the growth of a blue-green alga.

2.1. Arunning example

Anabana catenula is a cyanobacterium that grows in filaments of one hundred cells or more. The sequence of cells is
composed of small and large cells that are polarized to the right or to the left.

In case of nitrogen starvation, a differentiation process occurs: specialized cells called heterocysts differentiate from the
photosynthetic vegetative cells. Heterocysts are anaerobic factories for nitrogen fixation and are located at regular intervals
along each filament.

Plant signals exert both positive and negative regulatory control on heterocyst differentiation. Wilcox et al. have proposed
an activator-inhibitor model of heterocysts differentiation where the high concentration of the activator triggers the
heterocysts differentiation [46]. The production of the activator is an autocatalytic reaction and also catalyzes the production
of the inhibitor. The inhibitor is an antagonist substance that represses the activity of the activator when its concentration is
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Fig. 1. Left: the formal definition of a simple regulatory network for one cell of Anabana. Middle: its graphical abstract representation. Right: the
corresponding state space where each node is a state labeled by x4, Xs, and each edge corresponds to the change of one variable as indicated in its
label.

high enough. The diffusion of the inhibitor to the neighboring cells prevents neighbors becoming heterocysts and explains
why heterocysts appear in a regular spaced pattern in the filament. A possible IRN model of the growth and differentiation
processes of Anabana will be presented in Section 3.2.

2.2. Logical regulatory networks

Alogical regulatory network [41-43] is usually depicted as a graph whose vertexes are regulatory components, for example,
genes or proteins, and whose arcs indicate how each component is influenced by others. A simple regulatory network for an
Anabena cell is depicted in the middle of Fig. 1. Component Sz encodes the size of the cell (0 for small, 1 for big); component
Hc encodes whether the cell is heterocyst (with value 2), vegetative (value 0) or in an intermediary state (value 1). The
intuition of the network depicted this way is that He is auto-regulated and inhibits Sz. This is thus a network of influences,
not to be confused with an automaton nor with the corresponding state space. Different shapes of arrows heads indicate
activation (—) or inhibition (—).

More formally, a regulatory network is defined as a set of regulatory components, each component Cmp being associated
with a regulatory function next ¢, that provides the following information: its codomain defines the range of values Cmp
can assume, the current value of Cmp being denoted as xc,,,; its arguments define the regulatory components Cmp depends
on; its evaluation defines the level toward which Cmp is called to evolve by steps of £=1. For example, in Fig. 1, Hc is always
called to evolve towards 2, but starting from 0, it must go through 1. I

A state s of a regulatory network is a binding that provides for each component Cmp its current level s(Cmp) = Xcmp.
In other words, a binding is a partial function on a finite domain associating values to components. Given a state s and a
component Cmp, it is possible to evaluate next ¢y, yielding a targdcfet value Xcp,' for Cmp. If Xcmy' # Xcmp, this defines a
possible evolution of the system to a state s that is such that s'(C) = s(C) for each component C # Cmp, and:

H /
, ar | Xemp + 1 i Xemp” > Xemp
s (Cmp) = . ,
Xemp — 1 1 Xemp' < Xemp -

Such an evolution rule allows to define the state space that is suitable to perform model-checking of various reachability- or
causality-related properties. The right part of Fig. 1 shows the state space of the regulatory model of Anabena.

2.3. Topological collections and topological rewriting

Integrative modeling of biological processes (e.g., in system biology) relates different models that operate on different
levels of abstraction and various spatial and time scales. The spatial organization of cells is crucial and the description of
the morphogenetic processes at a cellular level implies the integration of molecular mechanisms such as cell-cell signaling,
mechanical stresses and genetic regulation embedded in a complex dynamic geometry [11].

Topological collections have been introduced in [17] to describe arbitrary complex spatial structures that appear in
biological systems [18] and other dynamical systems with a time varying structure [14,22]. Fig. 2, adapted from [40],
summarizes the main spatial representations actually used in biological modeling (see also [5] for a review). The notion
of topological collection has been used successfully to represent all these kinds of space.

A topological collection is a weakening of the notion of topological chain that is developed in algebraic topology and
corresponds to a labeled cellular complex [31]. An (abstract) cellular complex is a formal construction that builds a space
in a combinatorial way through more simple objects called topological cells.! Each topological cell abstractly represents a
part of the whole space. The structure of the whole space, corresponding to the partition into topological cells, is considered

T The reader must pay attention not to confuse biological and topological cells.
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Fig. 2. Various representation of space often used in systems biology according to [40]. (a) In particle space, molecules are represented as individual
particles with positions in a continuous space. (b) Such methods accommodate a discrete dynamics when particles jump in time and space by calculating
the maximum distance that the particle can travel and interact in the time slot. Lattices discretize regularly the space: in microscopic lattices (c) at most
one particle is allowed to occupy a lattice site while mesoscopic methods (d) allow several ones. (e) Mesh spaces are usually used to solve PDE (e.g., in
reaction-diffusion systems) or for cellular automata like models. (f) Compartmental spaces focus on the molecular transfers between compartments.

through the incidence relationships, relating a cell and the cells in its boundary. A topological chain is a function from a cellular
complex to a set of labels equipped with some algebraic structure [31].

Transformations of topological collections are defined by rewriting rules. A general notion of topological collection
rewriting [ 14] has been developed in a logical style [17] and in a more operational style [38].

2.3.1. Topological collections

In this paper, we focus on a particular case of topological collections, namely on graphs. We can then forget some of the
full technical machinery for topological collections manipulation, the target topological collection downgrading to a labeled
graph. Let V be a set of symbols used to denote the vertexes and E a set of symbols used to denote the edges of the graph.
For technical reasons, an edge is not an element of V x V: the connection between vertexes and edges are captugfed by a
strict partial order (i.e., an irreflexive, transitive and antisymmetric binary relation) on the set of topological cells C = VUE,
written <¢. We have v < e if vertex v is one of the ends of edge e. A one dimensional abstract cellular complex K = (A, <)
on C is a partially ordered subset (?f (C, <¢) and < is called the incidence relationships of the complex K.

A topological collection over K = (A, <) with labels in LL (the set of possible labels) is a triple (K, C, L) where C is a partial
function from A C C to L. For convenience, such a collection is denoted by C. Moreover, |C| denotes the set of cellsc € A
for which C(c) is defined, and vert(C) = A N V is the set of the vertexes of C.

The topological collection C can be written as a formal sum } ¢ £c - ¢ where £ £ C(c). With this notation, K and
L %re left 1mp11c1t but can usually be recovered from the context. By conventlon when we write a collection C as a sum

={;-c1+ -+ ¥, - ¢y, We insist that all ¢; are distinct. Notice that the addition is associative and commutative.

2.3.2. Topological rewriting

In the framework of this paper, topological rewriting can be defined as a simple kind of graph rewriting following an
approach similar to that taken in [32]: using the additive representation of topological collections, topological rewriting
can be simply defined as an adapted version of conditional first-order associative-commutative term rewriting, see [38] for
the details. The formal definition of topological rewriting is less interesting than the syntax of the pattern language used to
specify the left hand side (lhs) of a rewriting rule: as a matter of fact, the lhs of a rule must match a sub-collection, that is a
subset of (K, C, ). This includes a sub-relation of the incidence relation < of K. This information can be difficult to specify
without the help of a dedicated language.

We rely here on the syntax of the path pattern language defined for MGS [20]. A transformation T is a function specified
by a set of rewriting rules {p; — eq, ..., pn — e,} where each p; is a pattern and each e; is an expression. An application
of such a rule matches a sub-collection with one p; that is then substituted by the result of expression e;. The path pattern
language relies on the constructions below.

e Alabel ¢ € L matches a vertex labeled by this value. So, it corresponds to the term £ - “v where "v is a fresh variable
ranging over the vertexes.

e A pattern variable v matches a vertex and its label. The identifier v can be used elsewhere in the rule to refer to the
label of the matched cell; the cell itself can be referred through the special identifier "v. Using the additive notation for
topological collections, this pattern is translated to v - “v where v ranges over the labels, and variable “v ranges over the
vertexes.
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e A guard / can be used to specify a condition that must be satisfied by the matching. For instance, expression v/v > 5
matches a cell “v labeled by a integer greater than 5.

e Associative operator “,” is used to specify a path, i.e., a sequence of elements. A comma implies also some constraints
on the incidence relationships linking the two arguments: in the additive notation, the pattern v, w translates to the

conditional pattern
v-4w-"w /3% N < u A Tw < .
In other words, the vertexes matched by v and w are linked by edge u.

Rule applications are controlled through a rule application strategy. Several strategies are available in MGS like the
maximal parallel application used in Lindenmayer or P systems, and the Gillespie stochastic simulation algorithm used in the
exact simulation of chemical reactions [37]. These strategies are non-deterministic, i.e., applied on a collection C, only one of
the possible outcomes (randomly chosen) is returned by the transformation. We will see later on how our implementation
overcomes this limitation in order to explore the whole state space.

2.3.3. Modeling the growth of Anabana

In this section, we apply topological collections to the modeling of the growth of Anabzna. In MGS, several specialized
types of topological collections are available for the modeler as predefined data types. Here we will use sequences to
model the one dimensional organization of the alga. Sequences are a particular kinds of topological collections where
the underlying graph are linear, i.e., the set of vertexes V is equipped with a total order <. In addition, this total order is
compatible with <, that is, if there exists an edge e such that v < eand v’ < e, then v < v’ or v’ < v. Edges are directed
and the direction is taken into account by the comma operator.

We use the four symbols: left, right, Left and Right, to represent the various states of polarity and size of an Anabena cell.
The following four transformation rules give the fate of each kind of cell [30]:

left — Left  Left — left, Right  right — Right  Right — Left, right

meaning that a small left polarized cell grows into a big left polarized cell, a big left polarized cell divides into a small cell with
the same orientation, and a big cell with opposite orientation, etc. Note that the comma operator is overloaded and appears
also in the right hand side (rhs). In this context, it is simply used to build the new sequence to substitute. Thus, irrespectively
of the complexity of the sub-collection to be substituted and the complexity of the underlying spatial organization, the lhs
and rhs of a rule handle simple paths (sequences).

The “one symbol = one cell state” approach for the modeling of Anabena is no longer acceptable when the number of
possible states increases. So, we shall use arbitrary values to label the topological cells of a collection and we illustrate here
the use of MGS records to handle concisely a state as a product of sub-states. A record is a dictionary associating values to
names, i.e., it implements a binding (the fields of the record form the domain of the binding). For example, we can use a
record with two fields to specify the polarity and the size of a cell:

{ Polarity = left; Sz = small }.

Curly brackets are used in MGS to delimit the record r; application r(a) to access the value of a field. Special constructions
can be used to ease the pattern-matching of such objects. In particular, a pattern

{ Polarity = left; Sz =size }asr

matches any record with at least a field “Sz” and a field “Polarity” with value left. The construction “as” is used to give a
name to the matched record. This identifier, and the identifier used to match the value of a field, can be used elsewhere in
the rule. For example, the two previous rules used to increase the size of left and right polarized cell, can be summarized by
a single rule:

{Sz=small }asr — r+{ Sz = big }.

The + operator in the rhs denotes the asymmetric merge of records [33]. The expression r; 4+ r, computes a new record r
having the fields of both r; and r,: r(a) has the value of r, (a) if the field a is present in r,, otherwise it has the value of 1 (a).
We take the same notations for bindings.

It is possible to recover various kinds of rewriting using dedicated incidence relationships: set and multiset rewriting
(e.g., as in P systems), string rewriting (e.g., as in Lindenmayer systems) or array rewriting (e.g., as in lattice gas automata).
However, if topological rewriting is very expressive for simulation purposes, the automated analysis of the behavior of the
iterated applications of topological rewriting rules is very difficult. These difficulties are partly caused by the wide range of
rewriting strategies that can be used and by the intertwining between the management of the labels (logical part) and of
the structure (physical part).

So, the obvious follow-up was to combine the logical and the physical parts of the model and to establish a uniform
presentation of both aspects, especially from the point of view of the control, in order to ease the analysis of such models.
This is proposed in the IRN formalism.
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3. Integrated regulatory networks

3.1. Intuitive presentation

Integrated regulatory networks (IRNs), an extension of logical regulatory networks, are presented in several steps. First,
logical regulatory networks are generalized by removing the condition that component value domains are integer intervals
[0; n] and that they evolve by steps of 1. Then, we introduce the notion of modules as in [8,15]. This results in the
definition of local variables and their update functions. For example, local variables may be regulatory components or
modules characteristics like weight or size. To model regulation, it is of course possible to resort to local variables whose
domains are integer intervals [0; n] and that actually evolve by +1.

The evolution of a local variable within a module may depend on the values of some local variables in other modules.
This is modeled as a local measure, allowing to collect those values in the neighborhood of the evolving module. For example,
a local measure may integrate the concentrations of a regulatory component diffused toward a cell from its neighbors
according to the distances between cells.

Next, to model spatial relations between modules, we localize them on a topological collection. Neighborhood
relationships between modules are represented by a labeled graph. For example, the graph may reflect the spatial
arrangement of cells in a tissue, or the positions of bacterias in a population. The vertexes of this graph are module identifiers
and a vertex and its associated label correspond to a given module. Two modules i and j are neighbors if there is an edge
between the vertexes labeled i and j. Topological collections are used to implement a database that records the neighborhood
relationships, which can be queried and updated efficiently. So, local variables become bindings attached to the vertexes
of the collection. Similarly, local measures taken from a module i become a computation of a single value from (possibly
several) multisets of pairs (£;, X,.r;) Where ¢; is the label of the arc between i and j and X,,,; is the value of a local variable
Ivar in module j. Local measures are actually generalizations of integration functions from [8].

The whole graph may be labeled itself, yielding global variables. Global variables may reflect environmental parameters
like temperature or pressure. Moreover, global measures are obtained by computing a value from an observation of the whole
graph. For example, a global measure may be the number of cells in the tissue, or the average of a local variable over the
cells.

Finally, we introduce graph updates to allow for evolutions of the structure of the graph. They correspond to physical
modifications in the system, for instance a reconfiguration of the spatial relationship like in cells migration, but also in cells
division or death.

3.2. Anabzna example

In this section, we will sketch the use of the IRN formalism to the modeling of the growth of Anabena and the
cell differentiation process described in Section 2.1. This example implies a fundamental mechanism in development: a
morphogenesis driven by a reaction-diffusion process taking place in a growing media.

The first model allowing an extensive simulation of this process was developed in the field of parametric L systems [24].
It is based on the numerical resolution of a set of coupled differential equations that specify the diffusion and the reaction
of the two morphogens amongst the cells (considered as homogeneous compartments). The cell division process (which
introduce additional equations to solve at each division) is specified using an L system grammar where each symbol is
labeled by a set of continuous variables (concentrations, size, etc.).

In contrast to this model, we propose here a discrete and qualitative model of Anabana growth and differentiation. Our
goal is not to compare this model with parametric L systems, but to investigate the usability of model-checking techniques
in the analysis of developmental processes. For example, one of our goals is to check that our model cannot produce two
neighbor heterocysts.

The system and its evolutions are formalized as follows. First, we assume that Anabana cells are linked in one sequence
containing a number Nbr of cells (a global measure), the maximal number of cells being limited to Nbr, in order to ensure
the finiteness of the dynamics (the corresponding transition system).

The environment can provide nitrogen (modeled by a global variable Nitro) to sustain the growth of the population. This
variable is simply controlled by the number of cells in the system, i.e., if Nbr is below a fixed threshold Nbry then Nitro
remains constant, otherwise it decreases.

A cell is characterized by two local variables: its size Sz and its kind Hc (for the sake of simplicity, we forget the polarity).
The size Sz can be small or big. The kind Hc belongs to {vegetative, undetermined, heterocyst}, where undetermined is an
intermediary state in the transition between the vegetative and heterocyst states. If there is some nitrogen, cells cannot
become heterocysts. There is nitrogen if it is provided by the environment (i.e., Nitro is non zero) or because there are
heterocysts in the neighborhood: this property is modeled as a local measure Ah, a Boolean function indicating whether
a neighbor is heterocyst (Ah stands for “Any heterocyst?”). A small cell can grow if there is some nitrogen or if there are
heterocysts in the neighborhood. A big cell divides under the same conditions (and if the population is less than Nbr,) to give
two small children cells. The latter is modeled as a graph update Div. If there is no more nitrogen and if there is no heterocyst
in the neighborhood, a cell can change its kind from vegetative to undetermined, and then to heterocyst. A heterocyst remains
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current Nitro = Nbry [ = Nbry
0 0
anyn >0 n [ n—1
Nitro
0 >0
current He AR
false true
vegetative undetermined vegetative .
- - vegetative
undetermined heterocyst undetermined
heterocyst heterocyst
He
heterocyst vegetative or undetermined
Nitro
current Sz 0 =0
Ah
false true
small small small big big
big big
Fig. 3. Evolution tables of variables: Nitro (top), Hc (middle) and Sz (bottom).
local variable @ v v v v -
local measure {Im v v v v -
global variable gv - - v v -

global measure

graph update v v v

Fig. 4. Graphical conventions: measures are depicted in dotted lines; local objects are depicted by round nodes while global objects are depicted by
square nodes. The check marks indicate whether an arc is allowed (v') or not (-) toward the node types in the left column from each node type in the
top row.

/ -

heterocyst as long as there is a starvation of nitrogen. A heterocyst does not grow and cannot divide. Notice that since we do
not model cells death in this example (for simplicity), the population will never decrease. So, whenever a nitrogen starvation
occurs, it becomes permanent.

The expected dynamics is formally defined by the evolution function specified in the tables given in Fig. 3. We will see
later on how division Div is specified.

3.3. Formal specification of the framework

An integrated regulatory network (IRN) is specified by the finite set of its global and local variables with their variable
update functions, its local and global measures definitions, and its graph update functions. A state of an IRN is defined by a
binding A of its global variables and a topological collection C that will define, in particular, the bindings for the vertexes
(local variables) and the edges.

3.3.1. Syntactical aspects

To support intuition, IRNs are depicted using the conventions described in Fig. 4. The shape and style (dotted or plain line)
of the components denote their nature while the arcs indicate a potential influence (resulting in corresponding arguments in
the function). Note that only one kind of arrow tip is used because influences may be arbitrary and not limited to inhibition
or activation, as in logical regulatory networks. The constraints about the arcs are defined consistently with the arguments
allowed for each kind of update function. The rationale is as follows: local variables and measures can depend both on local
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Nitro[+— Nbri—»

Fig. 5. In black: graphical representation of the IRN specification of Anabana; in the upper part, global variable Nitro, global measure Nbr and graph update
Div; in the middle part, local variables Hc and Sz; in the lower part, local measure Ah. In gray, a view of a linear graph C with three vertexes with the
corresponding local variables.

and global information that is available to every module; global variables or measures occur globally in the system and so
cannot depend on any local information; graph updates occur at some given module and thus can depend on local or global
information, but no function can depend on a graph update because it does not compute any value but instead transforms
the spatial structure (i.e., C). Moreover, we assume that any variable may depend on its current value, so we do not need
to draw self-loops in the graphical representation. Finally, we require that an IRN is well-formed, in the sense that there
is no mutual recursion between measures and all functions are total on their finite domain and computable. Using these
conventions, the Anabana example can be depicted as shown in Fig. 5.

We assume that IRN variables range over finite sets of values and may be updated using variable update functions. For
each global or local variable var, there is a unique update function that computes the new value of var and whose allowed
parameters are defined consistently with the constraints given in Fig. 4 (e.g., a global variable update may take as parameters
only global variables or global measures as shown in the corresponding row). As for regulatory networks, x,., denotes the
current value of variable var. By convention, the same name is used for the variable and its update function. For example, in
Anabana modeling, global variable Nitro can be specified by:

Nitro(be,) € {0, ey n}

for a given n > 0 and is defined according to Fig. 3.

Alocal variable has a value in each module i in C, which is computed by an update function with the same name (common
to all modules) that may take parameters as specified by Fig. 4. For example, in Anabana modeling, local variables Hc and
Sz may be specified by giving their update functions:

He (Xheiy Xnitros Xani) € {vegetative, undetermined, heterocyst}
Sz(Xszi, Xnitro» Xani) € {small, big}

where x,5; is the value of the local measure Ah computed for module i. They are defined according to Fig. 3. The notation
Xari 1S also used to denote the value of the local variable /var in module i.

Measures are obtained from observations of the topological collection C. We distinguish global measures that are obtained
by observing C globally, and local measures that are obtained by observing a module i and its neighborhood in C.

A global measure is defined by a function (with the same name) that returns a value in a finite set, taking as parameters C
and the binding A for the global variables, and possibly other parameters as allowed by Fig. 4. For example, in the Anab&na
modeling, global measure Nbr may be specified as:

Nbr(C, 1) € {0, ..., Nbrp}

returning the number of vertexes in C, bounded by Nbr,.

A local measure /m is defined using a function with the same name that returns a value from a finite set, taking as
parameters the values of /var in all the neighbors of i for each local variable /var it depends on, and possibly other parameters
as allowed by Fig. 4. These values of each such Ivar, denoted by Xj,.e;, are collected as a multiset of pairs (¢;, Xy ar;), Where
¢; is the label of the edge between i and j in C. In the Anabana example local measure Ah may be specified as:

Ah(Xic@i) € {true, false}

returning true if there is at least one heterocyst in the neighborhood of i, and false otherwise.

A graph update is a function that takes as parameters a topological collection C, a binding A for global variables, and
a module identifier i. It either returns an empty set when the application conditions have not been met, or computes a
set of new collections {Cy, ..., C;} (n > 0). We assume that, for each C, vert(C) \ {i} < vert(Cy) and all the modules in
vert(C) \ {i} are unchanged, i.e., that the transformation is local to i. Notice that this does not forbid to make changes on the
edges and their labellings, for instance, a cell migration will change the edges. In terms of topological collections, a graph
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update corresponds to a set of transformations. In the Anabana example, graph update Div(C, i) returns an empty set of
graphs if the conditions for division are not met, or a singleton graph where the cell i has been replaced by two identical
cells with Sz = small.

3.3.2. Dynamics

A state of an IRN is represented by a pair (A, C) where X is a binding assigning values to the global variables, and C is
a topological collection that records the graph structure and the value of the local variables as bindings attached to the
vertexes. In other words, we have x,,, = A(gvar) for a global variable gvar and x,,,,; = C(i)(lvar) for a local variable /var
and a vertex i.

Schematically, a state (A, C) of an IRN may evolve to another one (A’, C’) in one of the following manners, if the
corresponding application conditions are met and if (A", C’) # (A, C):

e by applying a graph update gup to the current topological collection for a module i: the resulting topological collection
is C’ returned by gup(C, i), and the global variables are unchanged PR A

e by applying a global variable update: the resultlngdtfopologlcal collection is unchanged ¢’ = C and binding A’ is A updated
for some global variable gvar such that A'(gvar) = gvar(---);

e by applying a local variable updattdefon amoduleiof C: the resultmg topological collection C’ is C where /var at module i
has been updated, i.e., C’ (l)(lvar) = Ivar(---)and C'(i')(v) = C(i")(v) for every i’ # iand every v # Ivar, and the global
variables are unchanged A’ Lo

Given an initial state (Ag, Cp), and the evolution rules defined above, one may build a transition system describing the
dynamics of the IRN.

Implementation of the dynamics for Anabana. In the Anabzna example, graph update Div may be implemented as the
following MGS transformation on C:

¢, ({Sz=big,Hc=k}asc), ¢
/ (c=1) A (Nbr(C,A) < Nbrp) A (k # heterocyst)
A (X(Nitro) > 0 V ¢(Hc) = heterocyst V ¢;(He) = heterocyst)

— ¢, c+{ Sz=small }, c+{ Sz=small }, ¢;

where ¢; and ¢, match the left and the right neighbors of the cell c. The condition "¢ = i holds when the vertex associated
to cell c is i. The rest of the guard checks that the condition to divide are met (see Section 3.2). Recall that, e.g., ¢; used in
the rhs of the rule denotes the labeling of vertex "¢;, which is a binding that records the local variables of the corresponding
module. So, for example, ¢;(Hc) is the value of Hc in module ¢;. Two additional exclusive rules are defined similarly to handle
the case of a cell at one end of the filament.

The value of a global or a local measure is obtained by invoking the corresponding function with the appropriate
parameters. For example, Nbr is computed as:

Nbr(C, A) = size(C)

where the function size in MGS returns the number of vertexes in the topological collection.

Alocal measure /m, needs to read the current values of each involved local variable /var in all the neighbors of module i.
For example, local measure Ah for amodule i can be computed in MGS using function NeighborFold(i, f , init). This is a higher-
order function that iterates a binary reduction function f over the labels of the neighbors of i to build up a return value. The
argument init is used to initialize the accumulator. In our example, we have:

Ah(C, A, i) = NeighborFold(i, (\x, acc.acc V (x(Hc) = heterocyst)), false)

where \Xq, ..., Xy.expr is the MGS notation for a lambda abstraction.

The update of a global variable gvar corresponds to a call to the corresponding update function with the appropriate
parameters computing a new value for gvar belonging to dom(gvar). For example, the update function of global variable
Nitro is defined as follows:

Nitro(Xnor) = if (Xnitro > 0) A (Xnpr = Nbry) then Xy, — 1 else Xnjtro-

The update of a local variable /var in a module i is defined similarly and corresponds to a call to the corresponding update
function with the appropriate parameters, computing X,,..;, a new value for /var in i, which belongs to dom(/var). The actual
updating is applied through a transformation with a single rule. For example, in the Anabana modeling, the application of
the update function for the size of a cell is given by

c/("c=1i) = ¢+ {Sz = Sz(c(Sz), M(Nitro), Ah(C, A, i)}

where function Sz is specified in Fig. 3.
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3.4. Properties of IRNs

3.4.1. Conservative extension of existing formalisms

As we have shown in our incremental presentation, IRNs form a conservative extension of various formalisms. First, the
generalized logical formalisms [43] may be recovered by using a single module with only local variables whose update
functions are compatible with logical regulatory networks (in particular, they enforce variations by steps of £1). The
extension with modules from [8] can then be recovered by using several modules with only local variables, local measures
to implement so-called integration functions (used to aggregate the values of local variables in neighbor modules), and
labeling the edges of the graph by real numbers in the segment [0; 1] (an abstract notion of distance). The dynamics in [8]
is given by colored Petri nets executions while IRNs are executed as transition systems. There is an obvious correspondence
between both because every transition of the Petri net implements exactly one update function. Finally, we have seen at the
beginning of Section 3 how the current work is derived from our own extension of [8] proposed in [15].

3.4.2. DOL systems encoding

IRNs can easily encode some formalisms proposed to model biological development [29], in particular DOL systems. A
DOL system is a triple G = (X, h, w) where X is an alphabet, h is a finite substitution on X (into X'*) and w, the initial word,
is an element of X . Letter “D” stands for deterministic (the derivation sequence is unique) and the numerical argument of
the L system gives the number of interactions in the rewriting process: a OL system is a context free L system. For DOL system,
there exists at most a single production rule for each element a of X' given by a — h(a). (We assume L systems such that
the length of h(a) for all a is strictly greater than 1.) The translation of the production rules in topological rewriting rules is
straightforward: the production rulesa — a; - - - a; in the L system translates into the equivalent MGS rules: a — ay, ..., ay
for each symbol a € X'. However, a maximal parallel rewriting strategy must be used to respect the synchronous evolution
of L systems, which we will emulate.

If each symbol is represented as the value of a local variable, this approach does not translate directly into an IRN, because
the IRN evolutions of modules are asynchronous. Thus, we decide to manage the application explicitly, using a flag which
indicate where a production can take place. Our approach is to apply the production sequentially, letter by letter, from left
to right, starting from the first letter.

More precisely, we consider an oriented ring topology. A module is composed of three local variables: S with values in
X, Start with a Boolean value indicating the beginning of the word in the ring topology (there is exactly one module with a
variable Start set to true) and Flag € {quiet, done, ready, go} used to trigger the application of a production.

The application of a production is translated into a graph update function consisting of a rule for each production
a — a;...ay of the DOL system:

{S = a, Start = s, Flag = go} — {S = a,, Start = s, Flag = quiet},
{S = a,, Start = false, Flag = quiet},
{S = a_,, Start = false, Flag = quiet},
{S = ay, Start = false, Flag = done}.
We assume that there is exactly one module with F/ag equal to go in the initial state and this module has Start set to true.

When the graph update function applies, it substitutes the module with a go flag by several new modules.
The local variable Fiag evolves following the update function below:

quiet  if Xg,y = done A Xyex; = ready
ready if Xg,g = quiet A Xpr,; = done
go if Xgag = ready A Xprey; = quiet
Xfag  for the other cases.

df
Flag(XPreviv XNexti) =

In this function, local measures Prev and Next give the value of Flag at the previous and the next module (with respect to
the ring orientation). Fig. 6 illustrates the propagation of the flags.

The initial state of the system is composed of modules with variable Start set to false except for one module m, and with
variable Flag set to quiet, except for the module m where it is equal to go. A word generated by the L system can be read as
the values of S (in the direction of the ring), starting from the unique module m with Start set to true, when xg,g,. is equal
to go.

3.4.3. Further properties of IRNs

The IRN formalism enjoys also some other interesting properties and we want to stress three of them in particular. The
first one is that the size of a model specification is independent from the number of cells in the system. This means that the
description of the dynamics, through the various update functions, is generic. What is remarkable is that this is not true if
we simply unfold over the cells a logical formalism a la Thomas.
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Fig. 6. A complete evolution of an IRN encoding a DOL system with rules such that each letter is replaced by two copies in upper case. The value of the flag
is given by the subscript, the left-most cell is the one starting the word and the ring is left-right oriented.

A second important property is that our framework is polytypic, that is, generic with respect to the topology of the
underlying graph [25]. This property enables for example to use the same model on NEWS grids or on hexagonal grids
(see below, Section 4.2). Polytypism is achieved in our case through the use of the polytypic neighborhood operator (the coma
operator described in Section 2.3.2) or iterators like NeighborFold (Section 3.3.2).

Finally, thanks to syntactical restrictions and the definition of the dynamics, the transition system (state space) of an IRN
is always finite. This enables various analysis techniques, in particular model-checking.

4. Applications

4.1. Anabana continued

Thanks to the previous formalization, we can model-check various properties of the Anabana dynamics. Fig. 7 shows
an explicit representation of the transition system for a given initial configuration. On such graphs, it can be checked, for
example, that no reachable state has two neighbor heterocysts. In the instance depicted in Fig. 7, one can see that nitrogen
does not decrease before the initial cell has divided, which corresponds to the chosen parameter Nbry = 2.

The transition system has been computed using our prototype that includes the set of MGS functions already presented.
Because MGS is a simulation tool, it could compute only one trajectory among the possible ones (i.e., one maximal path
from the top-most node in Fig. 7). Such a state space is perfectly suitable to perform various model-checking approaches:
for instance it is easy to check that no reachable state has two neighbor heterocysts. More elaborated properties may be
expressed using a temporal logic and checked automatically using appropriate tools.

To compute the whole state space, we have used an external program that drives MGS to perform the actual computation
while the program is only responsible for building the transition system ensuring that all the possible executions have been
explored. The coupling between MGS and the exploration program is currently made exploiting the capability of MGS to be
used in interactive mode: the driver program sends commands to the MGS shell and retrieves the corresponding outputs.
This way of coupling works well on small examples like those considered in this paper but it has at least two important
limitations: it is slow because its requires to convert data from/to text, and it is error prone because such a conversion is
complex in general. A way to overcome this problem is to use for a future implementation a lower-level coupling through
the internal API of MGS.

To conclude about the Anabana example, Table 1 shows the evolution of the state space size with respect to the choice
of various parameters. It shows in particular that the well known state space explosion phenomenon mainly depends on
Nbr,. This is not surprising: the number of states clearly grows exponentially with the number of cells, but parameter Nbry
and the initial value of x,;,, are global and do not really increase the combinatorial explosion (in particular, they have no
influence on the stable states). Similarly, adding more cells to the initial state does not reduce significantly the state space
when the chosen configuration is not close to a stable state.

4.2. Quorum sensing

The Anabana example shows the interplay between the logical and the physical part of a system. However, it involves
only a simple linear organization of the cells.

In this second example, we will sketch the use of topological collections to model a more elaborate geometry and
the benefit of polytypism. We are interested in the sketch of a bacterial communication mechanism promoting collective
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Fig. 7. The transition system generated from the initial state corresponding to a single small vegetative cell and Xy a 1, with both parameters
Nbr,, and Nbry set to 2. Each state is depicted as a rectangle whose label gives first xy;, then, for each module, the value o(ffeach local variable
Hc d:?md Sz encoded by the initial character of the corresponding symbol. For example, 0:hB,vs stands for an IRN state with A = {Nitro = 0} and
C = {Hc = heterocyst, Sz = big}, {Hc = vegetative, Sz = small} (two vertexes linked by comma operator). There is an edge between two nodes
iff a corresponding transition exists. Edge labels are either Hi, Si or N, corresponding respectively to an evolution of He, Sz in module i, or Nitro globally.
Leaf nodes in this directed acyclic graph (there is no periodic behavior) are stable states.

Table 1
State space size for the Anabeena example wrt various initial configurations.

Nbry, Nbry Initial state States  Transitions  Stable states

2 2 1:vs 39 42 16
2 2 2:vs 43 50 16
2 2 3:vs 47 58 16
3 2 1:vs 223 346 56
3 2 2:vs 235 378 56
3 2 3:vs 247 410 56
3 3 1:vs 191 286 48
3 3 2:vs 199 306 48
3 3 3:vs 207 326 48
5 4 3:vs 5375 12466 896
5 4 3:vs,vs 5373 12464 896
5 4 3:VS,VS,Vs,Vs 5361 12432 896

behavior within a population: quorum sensing. This term refers to a type of decision-making process whereby the detection
and the synthesis of small diffusing autoinducer molecules enable a single cell to coordinate its behavior with the rest of the
bacterial population. This mechanism has mainly been proposed to serve as a means to regulate gene expression with the
local density of the cell population [47].

In our example, we assume that the sources of the signaling molecules are a specialized cell type within a tissue or a
biofilm. The spatial organization of the tissue will be modeled by Group Based Fields or GBFs that generalize the idea of grids
to several dimensions and several neighborhood structures.

We first present the notion of GBF then a simple model of quorum sensing.
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Fig. 8. Left: a GBF defining a square grid, with two generators e and n. Right: a GBF defining a hexagonal grid with three generators e, n and nw, and a
constraintn — nw = e.

4.2.1. Group based fields
GBF are topological collections whose vertexes are elements in an Abelian group [16]. The group is defined by a finite
presentation:

G:<91a---,9n;w1:0,...wn:O)

where G; = {g1, ..., dn} is a set of generators together with some constraints w; on their combinations: wj is a group
element which equates to zero (we use an additive notation and 0 denotes the identity element of the group). The graph
underlying the GBF is the Cayley graph of the finite presentation: the set of vertexes V is composed of the elements of the
group G and there is an edge labeled by g € G, between the vertexes hand h" iff h + g, = h'.

For instance, in order to define a square grid, also called a NEWS grid (north, east, west, south), we may use two generators
e (east) and n (north). This is illustrated in the left part of Fig. 8. Similarly, a hexagonal grid can be defined by means of three
generators n, e and nw (north-west) and a constraint n — nw — e = 0, as illustrated in the right part of Fig. 8. As shown by
the dashed path, we have 2 - n+e = 2 - e + n + nw, which can be also checked in an algebraic way, by substituting nw with
n — e in this equality as allowed by the constraint. Notice that this grid is called hexagonal rather than triangular because
the grid can be paved by hexagonal cells placed on the vertexes.

The GBF structure is thus adequate to define the arrangement on a grid, in any number of dimensions. In such grids, a
distance can be naturally defined as the minimum number of steps in order to reach one point from the other (this is the
approach of geometric group theory). For instance, in the hexagonal grid of Fig. 8, points at e and n are at distance 1 because
only one step in direction nw is required to reach the latter from the former; similarly, points n and 2 - n + e are at distance 2.

The main drawback with grids is that inserting new elements is not possible: there must exist a “hole”, i.e., an unallocated
vertex, to place the cell to be inserted. However, the simplicity of grids is well adapted to model, for instance, accretive
growth that occurs at the borders of a tissue [19].

4.2.2. Asimple discrete quorum-sensing process

The purpose of the toy model we develop here is to illustrate the spatial representation capabilities of IRNs and not to
develop a realistic or a relevant model of quorum sensing. Thus, we simplify this mechanism as follows: we assume that each
cell is able to sense a signaling molecule (inducer) in its immediate environment (e.g., the inducer can bind to a membrane
receptor and induces the transcription of some genes) and then activate the synthesis of the inducer itself.

The cellsin a tissue are represented by modules organized in a GBF. Each cell is characterized by a local variable M ranging
over {0, ..., M} and representing a discrete level of the signaling molecules produced by the cell. The concentration M
evolves in a cell accordingly of the local concentration computed as a local measure D. To simplify, we assume that D simply
computes the average value of the concentrations in the neighbors, which can be implemented in MGS as:

D(C, A, i) = round(NeighborFold(i, +, 0)/NeighborFold(i, succ, 0))

where succ is the successor function on integers. Then, the variable update function for M simply computes the average
between the current value of M in the cell and the value observed through D in the neighborhood (i.e., the cell evolves
toward the concentration sensed in the neighborhood). Finally, we assume that cells whose initial concentration is M are
sources so that M does not change for them.

We choose initial states in which all the non-source cells have M set to 0. This results in stable states showing gradients
of concentrations decreasing from the source cells. The gradient is the consequence of the rounding to integers that forbid a
progressive convergence toward the concentration of source cells (as it would happen in a continuous setting) and creates
a decreasing of the sensed average values as cells are farther from the sources.

Two examples are represented in Fig. 9, one uses the NEWS grid and the other the hexagonal grid. This shows the polytypic
features of IRNs: the specification of the measure and of the update functions remains the same in the two examples
(including their MGS implementations), only the type of the underlying topological collection changed. Fig. 10 shows the
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Fig. 9. Each row shows the initial and final state of a quorum sensing process. Only the declaration of the underlying spatial representation changes between
the two rows: exactly the same variables, update functions and implementations have been used.
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Fig. 10. The transition system of a quorum sensing process for two rows of cells on a square grid.

transition system of a quorum sensing process. One can see that the chosen topology is crucial to determine the system
evolution and the final pattern.

5. Related and future works

In this paper, we advocate the need of a modeling framework suitable to represent and study the regulations in multi-
cellular systems, taking into account the spatial relationships between the cells as well as the spatial transformations
resulting from cells divisions, migrations, or apoptosis. Discrete algebraic formalisms like P systems, process algebras or
Petri nets are very relevant because automated tools can be used to help both the modeling and the systematic analysis
of system behaviors (cf. [1] for the model-checking of P systems). Such formalisms may take spatial relationships into
account. For instance, classical membrane systems rely on membranes inclusion to abstract the spatial organization of
cellular processes. However, the limitations of this structure has been recognized [17] and leads to the development of
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several variants: tissue P systems [45], population P systems [4], etc. Some process algebras (e.g., used to study mobility or
variants of w-calculus used for biological modeling) rely also on a notion of localization but often the spatial relationships
are not explicitly exposed (the algebra of locations is encoded into identifiers) or too limited (nesting structures). [3,6,26]
are among the rare works where geometry (especially a notion of distance) is embedded in a process algebra to deal with
the dynamic spatial arrangement of cells through simulation. These frameworks focus on the articulation of local coordinate
frames but the affine maps do not allow enumeration of the state spaces.

The IRN framework presented in this paper, based on the well-known formalism of logical regulatory networks combined
with spatial information, may be enriched and extended in several directions.

First, the current definition of IRNs only supports systems having a unique kind of modules. However, it is due to a
deliberate presentation decision allowing us to focus on essential IRN concepts using simple notations. Natural extensions
to many different kinds of modules may easily be provided and are already handled by our prototype implementation which
does not have any such limitations. Future works will provide a generalized formal definition of the framework presented in
the paper. We also intend to run case studies in order to assess the relevance of our proposal: in particular we shall consider
models of Drosophila embryo as in [8] and extend them with cells divisions.

Second, concerning spatial transformations, we focus here on labeled graphs. However, our mathematical description is
not based on the usual graph morphisms and pushouts like in [13] but is inspired by the approach of Raoult and Voisin [32]
where graph rewriting based on a (multi-)set point of view is developed. The proposed model is close to term rewriting
modulo associativity and commutativity (where the left hand side of a rule is removed and the right hand side is added).
This kind of approach also allows to extend results from term rewriting to topological rewriting (as we did for termination
in [21]). Note that the notions of topological collection and topological rewriting are more general and may handle higher
dimensional objects, a feature relevant in a lot of application areas [44].

Another direction of future research consists in relaxing some constraints concerning the dynamics definition; for
example, to allow alternative update strategies or infinite state spaces. Concerning the former, the current framework
defines the dynamics of the system using an asynchronous strategy. This approach is relevant, e.g., for regulation networks.
But we have seen in Section 3.4.2 an example that could be more easily expressed using a synchronous maximal parallel
update strategy. The design space of update strategy is largely open, from asynchronous to synchronous and from
deterministic to non-deterministic ones. For the latter research direction, the actual IRN specification restrictions ensure
finiteness of the state space, but may become artificial in practice. Some of these restrictions may be relaxed by resorting to
abstraction and specific reduction techniques, like those in [27,28], which originally have been designed for systems with
dynamic process creation.

Finally, we intend to study an alternative approach for spatial information in order to address systems such as blood-cells
populations. The idea is to implement the spatial relation as a purely stochastic relation reflecting the idea that such cells
are in constant movement but may meet occasionally.
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