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Abstract. Acoustic waves travelling in a duct with viscothermal losses at the wall and
radiating conditions at both ends obey a Webster-Lokshin model that involves frac-
tional time-derivatives in the domain and dynamical boundary conditions. This system
can be interpreted as the coupling of three subsystems: a wave equation, a diffusive
realization of the pseudo-differential time-operator and a dissipative realization of the
impedance, thanks to the Kalman-Yakubovich-Popov lemma.

Existence and uniqueness of strong solutions of the system are proved, using the Hille-
Yosida theorem.

1 Introduction

The Lokshin model originally presented in [6] and referred to in [4] in a half-space
has then been derived in a bounded space in [11], and modified in [5].

In the case of constant-coefficients, it has been solved analytically and analyzed
in both time-domain and frequency-domain in [9], while the principle of an en-
ergy analysis has been given in [8].

The problem at stake here is in a bounded domain, with non-constant coeffi-
cients (due to Webster equation for horns and space-varying coefficients for the
viscothermal effects). Existence and uniqueness of strong solutions of the free
evolution problem is proved in an energy space (see also [13]), and the coupling
between passive subsystems is used as main method of analysis, as in [7, ch. 5].
We begin with the formulation of the problem in §2; a key point is the refor-
mulation as coupled first-order systems in §3, thanks to diffusive realizations of
fractional differential operators; the analysis of the global system follows in §4.
The following slight extensions or wider perspectives are in view:

e existence of weak solution of a variational formulation of the coupled prob-
lem; uniqueness with dynamical boundary conditions of any order?

e numerical analysis of the variational problem;

e use some infinite-dimensional analogue of the KYP lemma for some more
realistic impedances, as in [3];
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e study of the boundary-controlled equation;
e proof of precompactness of strong trajectories in the energy space, following
[7, ch. 3], in order to apply LaSalle’s invariance principle.

2 Mathematical formulation of the model

Both models from [11] or [5] are of the following type:
> 1
i +1(2) 0,9 +£(2) 9,6~ 50:(r> 0.4) = 0 (1)
where z € [0, 1] is the space variable, r,e,n € L>(0,1; Rt ) and the radius of the
duct fulfills » > 79 > 0; dynamical boundary conditions are associated with (1).
We prefer to work on first order systems in the (p, v) variables:

1 _
Oip = _r_zaz (7"2 v)—¢ 0y 1/217 -n atl/QP ) (2a)
o = —=0,p, (2b)
pi(s) = F24(s) 05(s) fori=0,1. (2c)

The boundary conditions (2c) at z = 4 are formulated in the Laplace domain,
with shorthand notation p;(t) = p(z = i, t); the impedances Z;(s) are strictly
positive real, i.e. Re(Z;(s)) > 0, Vs, Re(s) > 0.

3 A coupled formulation

3.1 Dissipative realizations for positive-real impedances
(Kalman-Yakubovich-Popov lemma)

For a strictly positive real impedance Z;(s) of rational type, we choose a minimal
realization (A;, B;, Ci, d;) with state z; of finite dimension n; (4; € R™ *™
B; € Ru*L (C; € RY™ and d; € R); then, following e.g. [1,12], there exists
P, e Rixni P, = PT > (0, such that the following energy balance holds:

1
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3.2 Dissipative diffusive realizations for positive pseudo-differential
time-operators

We refer to [13, § 5.] for the treatment of completely monotone kernels, and [10]
and references therein for links between diffusive representations and fractional
differential operators.

For a positive measure M on R*, such that ¢; (M) = 0+°° dﬁ(g) < 400, we de-
fine: Hy = L2(RY,dM), Vyy = L? (RY, (1 +¢)dM), and Hy = L2(RY,£dM).
The spaces Hy, Vy and Hy are defined analogously for a positive measure N.
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First diffusive representations. Consider the dynamical system with input
p € L?(0,T) and output § € L?(0,T):

Op(&,t) = =€ p(&,t) + p(t) with ¢(£0) =0 VEeR, (3a)
+oo
0(t) = / P(E,1) AM(E) . (3b)

As an example, dMp(€) = ps(€) dé with density pg(€) = 22U ¢=F provides
a diffusive realization of the fractional integral I”, a pseudo-differential time-
operator, the symbol of which is s77, with 0 < 8 < 1; it realizes § = I°p = Bt_ﬁp.
The following energy balance will be useful:

ATﬂﬂewdﬁ:%A+w¢@JYdMA1£TA+m£w§02MWﬁ. )

Extended diffusive representations. Consider the dynamical system with
input p € H*(0,T) and output § € L(0,T):

aP(&,t) = —E@(&,t) + p(t) with $(£,0) =0 VEERT, (5a)
+oo

+0oo
i) = / aFEIN©) = [ [pt) — EFE D] AN(E) . (5b)

0

As an example, dN1_4 (&) = p1—o (&) d€ with density p1— (&) provides a diffusive
realization of the fractional derivative D%, a pseudo-differential time-operator,
the symbol of which is s%, with 0 < a < 1; it realizes § = D%p = 07p.

The following energy balance will be useful:

T - 1 + o0 _ ) T +0co ~2
| roina=5 [ eaerravy [ [ w-corava. @

3.3 An abstract formulation

Thus, the global system (2a)—(2c) can be put in the abstract form §; X+.A4 X =0,
where:

g —AO.(II() - B() ’U(Z = 0)
X1 —Al.'l}l - Bl ’U(Z = 1)
al? = L0.(r?v) +¢ 0+°°g0dM+17f0+°°[p—§®] dN .
v 8zp
4 Sp—p
2 §p—p

together with the boundary conditions p(z = 0) = —Cozo — dov(z = 0) and
p(z =1) = Ciz1 +di v(z = 1). In the sequel, we shall analyze the well-posedness
of this system.
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4 Well-posedness of the global system

4.1 Functional spaces

Let L2, = L*(0,1;7%(2) dz), H) = {p € L%, fol [p? + (0:p)%] r*(z)dz < +oo}

and H! = {v € L$2,f01 r2(z)v? + T%(z)[az(r%)P dz < +oo}.
The natural energy space is the following Hilbert space:

H=R" x R™ x L2, x L2, x L*(0,1; Hyr;e v dz) x L*(0,1; Hy;nr dz)

with scalar product for X = (zo,z1,p,v,9,3)T and Y = (yo,y1,q,w, ¥, )T
(X, Y = 1§ (25 Powo) + 75 (2] Pran) + (p, @12, + (v, )z,
1 1
+ [ vme@r@as [ G o @@, ®

We define the space V C H:

Y =R" x R™ x H; x H x L*(0,1; Var;er? dz) x L2(0,1;1‘~IN;177‘2 dz) ,
and the domain of operator A by:

p(z=0) = —Cozg —dov(z =0)

D(A) =S (w0, 21,p,v,0,8)" €V, |plz=1) = Cray + dyv(z = 1) :
(p—€7) € L*(0,1; Vivsnr? dz)

4.2 Existence and uniqueness of strong solutions (Hille-Yosida
theorem), regularity results and energy equalities

Theorem 1.

VX € D(A),3'X(t) € CH([0, +oo[; H) N C°([0, +oc[; D(A)), such that
X +AX =0 on [0,+00], and X(0) = X, .

This solution satisfies & {1[|X(t)|13,} = —(AX(t), X(t))n < 0.
Proof. The monotonicity of A follows from the identity: VX € D(A),

a0 = 6T 0o )+ ST ()

1 1
+/ ||<,0||§~1Mz-:r2 dz+/ ||p—§g5||qu17r2 dz . (9)
0 0

Hence (AX, X)y > 0,VX € D(A).

The details of the proof of mazimality of A will be skipped. For a given Y € H,
seeking for X € D(A) solution of (I + A)X = Y can be done through the
following steps:
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2.
3.
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solve the algebraic part with respect to zg, 1 (requires s = 1 ¢ specA;);
solve the algebraic part with respect to ¢, ¢ and check the functional spaces;
solve the differential system (I) with respect to (p,v), which leads to a regular
Sturm-Liouville problem with boundary conditions:
(a) test this equation in (p,v) with (¢,w) € Hy x L2,

) set w = d.q and deduce a variational formulation for (p,q) € Hy x H},
(c¢) apply Lax—Milgram theorem (see [2, ch. VIII]) (requires Z;(s = 1) > 0),

) show that solution p of the variational problem, together with v defined
adequately from p, are solutions of the initial differential system (I),
belong to the appropriate spaces and fulfill the boundary conditions.

From the monotonicity and maximality of operator A, we conclude with Hille-
Yosida theorem. 0O

References

1.

10.

11.

12.

13.

S. Boyd, L. El Ghaoui, E. Féron, and V. Balakrishnan. Linear matriz inequalities
in systems and control theory, volume 15 of Studies in Applied Mathematics. STAM,
1994.

H. Brézis. Analyse fonctionnelle. Théorie et applications. Masson, 1992.

R. F. Curtain. Old and new perspectives on the positive-real lemma in systems
and control theory. Z. Angew. Math. Mech., 79(9):579-590, 1999.

R. Dautray and J.-L. Lions. Mathematical analysis and numerical methods for
science and technology, volume 5, chapter X VI, pages 286-290. Springer, 1984.
Th. Hélie. Monodimensional models of the acoustic propagation in axisymmetric
waveguides. J. Acoust. Soc. Amer., submitted, 2003.

A. A. Lokshin and V. E. Rok. Fundamental solutions of the wave equation with
retarded time. Dokl. Akad. Nauk SSSR, 239:1305-1308, 1978. (in Russian).

Z. H. Luo, B. Z. Guo, and O. Morgul. Stability and stabilization of infinite di-
mensional systems with applications. Communications and Control Engineering.
Springer Verlag, 1999.

D. Matignon, J. Audounet, and G. Montseny. Energy decay for wave equations
with damping of fractional order. In Fourth int. conf. on math. and num. aspects
of wave propagation phenomena, p. 638640, June 1998.

D. Matignon and B. d’Andréa-Novel. Spectral and time-domain consequences of
an integro-differential perturbation of the wave PDE. In Third int. conf. on math.
and num. aspects of wave propagation phenomena, p. 769-771, April 1995.

D. Matignon and G. Montseny, editors. Fractional Differential Systems: models,
methods and applications, volume 5 of ESAIM: Proceedings, December 1998. SMALI.
URL: http://wuw.edpsciences.org/articlesproc/Vol.5/

J.-D. Polack. Time domain solution of Kirchhoff’s equation for sound propagation
in viscothermal gases: a diffusion process. J. Acoustique, 4:47-67, Feb. 1991.

A. Rantzer. On the Kalman—Yakubovich-Popov lemma. Systems & Control Let-
ters, 28:7-10, 1996.

O. J. Staffans. Well-posedness and stabilizability of a viscoelastic equation in
energy space. Trans. Amer. Math. Soc., 345(2):527-575, October 1994.



