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ABSTRACT
In this paper we propose a new method for a generalized model

representing the time-varying spectral characteristics of quasi -
harmonic instruments. This approach comprises a linear source-
filter model, a parameter estimation method and a model evalua-
tion based on the prototype’s variance. The source-filter-model is
composed of an excitation source generating sinusoidal parameter
trajectories and a modeling resonance filter, whereas basic-splines
(B-Splines) are used to model continuous trajectories. To estimate
the model parameters we apply a gradient decent method to a train-
ing database and the prototype’s variance is being estimated on a
test database. Such a model could later be used as a priori knowl-
edge for polyphonic instrument recognition, polyphonic transcrip-
tion and source separation algorithms as well as for resynthesis.

1. INTRODUCTION

The purpose of our approach is to define an accurate as well as
compact representation of the time-varying spectral characteristics
of a single, quasi-harmonic instrument sound. While we assume
the spectral envelope to be determined by the partial’s amplitude
trajectories, our model is meant to predict the time-varying ampli-
tude trajectories for signals of unknown origin. Therefore, in order
to prototype an instrument, we need to estimate the model param-
eters using a training database and to evaluate the performance of
each prototype, we use a test database to estimate the variance of
the predicted partial’s amplitude trajectories.

Two approaches for a compact representation of the spectral
characteristics of quasi-harmonic instruments have been proposed
recently. In [1] a representational model based on additive analy-
sis and Principal Component Analysis (PCA) is presented in a first
step, while in a subsequent stage, the spectral evolutions are mod-
eled as Gaussian Processes, i.e., as trajectories of varying mean
and covariance in PCA space. Applied to musical instrument recog-
nition, the model has been shown to significantly improve classifi-
cation results compared to a Mel-Frequency-Cepstral-Coefficient
based method. A source-filter-decay model is proposed in [2] and
successfully applied to musical content analysis in [3] and [4]. In
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that approach the spectral envelope of an instrument sound is mod-
elled by a source representing a vibrating object and a resonance
filter related to the instrument’s body which colors the generated
sound. A decay filter is further used to model the time-varying
characteristics.

In our approach we also adopt a linear source-filter model with
similar interpretations of its components, but we extend this ap-
proach by taking the time variability into account for the complete
amplitude envelope including attack and release regions. We will
further introduce BSplines [5] for modeling the time varying spec-
tral envelope as a smooth trajectory with respect to the different
regions of the amplitude envelope as well as for modeling the fil-
ter’s resonance curve. Finally, this yields a model parameterization
determined only by the definition of the B-Splines.

In section 2 we will give a comprehensive description of our
assumed signal model as well as our proposed source-filter model,
while section 3 describes how to estimate the model parameters
using a training database. Section 4 will represent the variance
measure and in section 5, results for some selected prototypes in-
cluding their variance values and resynthesized amplitude trajec-
tories are presented.

2. THE MODEL

Based on the general assumption that the spectral characteristics
of an instrument sound are being determined by the partial’s am-
plitude trajectories, we start with an overview of the signal model
being used throughout this work. The subsequent paragraphs will
show how this signal model will be represented by our approach
for a source-filter-model and how resynthesis can be employed.

2.1. Signal Model

In additive analysis/synthesis it is assumed that a signal x[n] can be
approximated as a sum of quasi-stationary sinusoids [6], so called
partials.

x[n] ≈ x̃[n] =
KX

k=1

a[k, n]cos(φ[k, n]) (1)
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In equation (1) k is the partial index, while K denotes the
amount of partials, a denotes the amplitude for partial k at time
frame n, as φ its phase. Though, the signal is modeled by its
deterministic component only. We furthermore scale the partial
amplitude values by their summed energy maximum over time to
analyse the signal characteristics independently of the actual en-
ergy, yielding a normalized maximum signal level of 0dB. As a
consequence, we denote A[k, n] to be the scaled energy level of a
partial’s amplitude given in dB.

Since the spectral envelope varies over time, particularly dur-
ing attack and release, an assumption has to be made, with regard
to this variability. As time itself is an unfavorable unit due to vary-
ing durations of attack and release and by arbitrary signal lengths,
we assume the variation of the spectral envelope to be directly re-
lated to the relative energy level of the signal. Accordingly, we
assume the spectral envelope to be constant for a specific relative
energy level and consider different envelopes for different levels.
This also includes the assumption of the spectral envelope to be
independent of the actual volume. Thus, the relative energy level
L[n] over time is given by 3

E[n] =
KX

k=1

(a[k, n])2 (2)

L[n] = 10 · log10

„
E[n]

max(E[n])

«
(3)

Moreover, we have to take into consideration that levels below
0dB may correspond to either the attack or release, but spectral
envelopes may differ for these regions. We therefore have to de-
termine the signal’s attack nA and release nR time frames and
find some suitable partitioning na, respective nr of an entire sig-
nal x̃[n]. In case of an continuously excited signal, we assume a
sustain part to be present in the signal and therefore na denotes
time frames, covering the attack and parts of the sustain within the
signal, whereas nr denotes parts of the sustain to full release re-
gion. For an impulsive excited signal in contrast, na denotes the
attack region only as nr does for the release region, because a sus-
tain part is assumed to be absent. To determine nA and nR we
use a simple threshold method applied to the relative energy level
over time and distinguish between the continuous and impulsive
case by applying different values for the threshold denoted by γ.
The continuous case is shown in 1 and a suitable partitioning using
adjoint bounds to determine na and nr is presented in the inequal-
ities 4 and 5. Here we use a threshold value below 0dB, whereas
in the impulsive case the threshold is set to 0dB giving nA = nR

reflecting the absence of a sustain region.

0dB

←  r
A

r
R

 →

r
s

γ

r

L \ dB

Figure 1: Symbolic representation for attack/release determination
in the case of a continuous excitation.

ra : r ≤ 1
2
(rA + rR) (4)

rr : r ≥ 1
2
(rA + rR) (5)

Regarding our signal model the partitioned amplitudes of the par-
tials can be denoted A[k, na] and A[k, nr]. The resulting amount
of time frames for either the attack to sustain or sustain to release
regions will later be referred to by NA and NR.

Additionally, as we are only considering quasi-harmonic in-
struments, the frequency values of the partials will be approxi-
mated as being in an integer ration regarding its fundamental and
being constant throughout an entire signal leading to eq. 6

f(k) = f0 · k , k = 1 . . . K (6)

While f0 denotes the fundamental frequency, f(k) gives a se-
quence of frequency values of size K. As a result this approxi-
mation significantly simplifies our modeling approach.

2.2. Source-Filter Model

Our approach is based on the distinction of features being corre-
lated to the fundamental frequency f0 and features being indepen-
dently of the fundamental. Features correlated to f0 may refer
to characteristics such as odd harmonics being stronger than even
ones and therefore are better described as a function of the partial
index k instead of actual frequencies. In contrast, formants or res-
onances refer to f0 independent features and have to be described
explicitly by their frequency values. In our source-filter model we
refer to this distinction by expressing the f0 correlated features
within the source and the f0 independent features within the filter.
By this approach, the source will generate an envelope as a func-
tion of the partial index and without considering the fundamental,
while the filter colors this envelope by taking the frequencies of
the partials into account explicitly.

2.2.1. Source Model

By assuming the source to include the f0 correlated features we
use an oscillator model to reflect this. Additionally, in contrast
to [2], we assume the variation of the spectral envelope in time
to be correlated with the fundamental frequency, rather than in-
dependent from f0. Thus, the temporal behaviour of the spec-
tral envelope is assumed to be related to the partial index rather
than to actual frequencies. This makes our oscillator dependent on
the relative signal level L as well as on the partial index k. By
taking into account that the progression of each partial over the
relative energy is continuous, we model the partial’s trajectories
using piecewise polynomials. As described in [5], the linear su-
perposition of weighted basic-splines (B-Splines) gives maximally
smooth trajectories and the B-Spline functions are completely de-
termined by the size of their segments and their order o, denoting
the amount of segments covered by a single B-Spline polynomial.
Due to linear superposition, the order of the piecewise polynomi-
als follows o − 1, therefore the order o also defines the degree of
smoothness of the function approximated by the superposition. As
B-Spline polynomials are defined to converge to zero at their lim-
its, zero size segments are used to model trajectory values at the
limits differing from 0. Figure 2 shows a set of 7 B-Splines Up as
functions of level L. So, as we want to model the spectral envelope
for a specific range of relative levels of an entire signal, we need
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Figure 2: B-Spline polynomials Up of order 3 for 5 segments over a
level range of -90 to 0dB. Two zero size segments have been added
to both extrema.

to introduce two different oscillators to either express the signals’s
attack to sustain or sustain to release regions.

O(k, L)A =
PX

p

g
A
k,pUp(L) (7)

O(k, L)R =
PX

p

g
R
k,pUp(L) (8)

In equations 7 and 8 the source model for the attack to sustain and
the sustain to release oscillator is shown – indicated by the sub-
scripts A and R, respectively. Each oscillator value is expressed
by the weighted superposition of B-Spline polynomials for a single
partial k at an arbitrary level L. Therefore, for both oscillators the
weighting paramters g represent a sequence of coefficients for the
piecewise polynomials for each single partial. The overall number
of polynomials is denoted by P . Hence, the source generates an
entire partial envelope for arbitrary signal levels, whereas the pro-
gression of a single over the relative level is expressed as a contin-
uous trajectory. This perspective holds for the attack to sustain as
well as the sustain to release oscillator.

2.2.2. Filter Model

The filter covers every part of an instrument not directly associated
with the source. This primarily relates to the instrument’s body. As
we want the filter to model the features independent of f0, the filter
is assumed to lower or raise the partial’s amplitude values O(k, L)
excited by the source with respect to their actual frequency val-
ues f(k). Furthermore, the filter is assumed to be time-invariant
and therefore frequency dependent only. Since we are only us-
ing information regarding the partials for all instrument signals,
all information regarding the filter’s frequency response will only
be obtained at their frequency positions. But, as with the partial
trajectories generated by the oscillators, the frequency response is
assumed to be continuous, thus we also use B-Splines to model the
filter. In contrast to the oscillator models, the B-Spline functions
have to be defined in the frequency domain and as we expect the
filter curve to exhibit prominent resonance peaks at lower levels
and less prominent but dense peaks at higher frequencies, we pro-
pose frequency dependent segment sizes. Therefore, the segments
will be distinguished by multiples of octave bandwidths with fac-
tors less or equal to 1, starting with the lowest possible funda-
mental frequency of each instrument. Consequently, the filter may
model resonances and formants at lower frequencies more accu-
rately and averaged within certain bandwidths at higher frequen-
cies. Figure 3 shows 12 B-Spline polynomials Vq as a function of
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q
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Figure 3: B-Spline polynomials Vq of order 4 for 3 octaves with
a segment size of 1/3 octave. 3 zero size segments are added at
extreme values.

frequency f . So we can finally express the filter as a weighted, lin-
ear superposition of B-Splines for a complete set of polynomials
denoted by Q.

F (f) =
QX

q

zqVq(f) (9)

The weights zq therefore denote a sequence of size Q, weighting
the appropriate B-Spline functions. Note, that the actual amount
of B-Splines will later be determined by the bandwidth expressed
as a fraction of an octave that will fit into the frequency range
beginning the the lowest possible fundamental of each instrument
up to some maximum frequency value.

2.2.3. Synthesis

As our model approach is meant to predict the time-varying spec-
tral envelope for a signal of unknown origin, the synthesis has tobe
done with respect to this signal, considering its relative level L and
fundamental frequency f0. Therefore, these informations have to
be determined in advance. Because O(k, L)A and O(k, L)R de-
pend on the level L, the relative level of the signal has to be re-
solved as a function of na and nr , respectively, utilizing eq. 3
and as F (f) depends on the frequency, the fundamental frequency
f0 has to be determined to solve eq. 6. Taking this into account,
prediction of the time-varying spectral envelope is given by a lin-
ear combination of the appropriate oscillator model and the filter
shown in eq. 10 with respect to the level function L[na] and f(k).

Â(k, L[na], f0)A = O(k, L[na])A + F (f0 · k) (10)

Note, eq. 10 only shows the synthesis for the attack to sustain
regions as conversion for the sustain to release region can easily be
done by using the oscillator O(k, L)R and level function L[nr].

As na and nr are adjoint within the temporal development of
the signal, the spectral envelope predictions employed by the syn-
thesis formula for both oscillator models can easily be connected
to create the final time-varying spectral envelope.

3. PARAMETER ESTIMATION

Parameter estimation has to be done jointly to the oscillator models
as well as to the filter model and is applied to the weighting coef-
ficients of the B-Spline functions only. This introduces a model
parameterization that is restricted to the amount of segments over
a predefined level range for the oscillator models as well as the size
of the segments for the filter model given as a fraction of octave
bandwidths and their respective orders. Since we model the par-
tial’s amplitude trajectories according the relative signal level of
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the signal, it is obvious to determine Up(L[na]) and Up(L[nr]) as
well as Vq(f(k)) in advance, because while parameter estimation,
these three functions will remain constant for each single training
sample and can further be regarded as a projection of the training
samples from input space to model space. For convenience and
better readability, we introduce a matrix/vector notation, shown in
table 1. The parameters to estimate are shown at the top, while

GA [K × P ] : g
A
k,p

GR [K × P ] : g
R
k,p

zA [Q×NA] : zq

zR [Q×NR] : zq

UA [P ×NA] : Up(L[na])

UR [P ×NR] : Up(L[nr])

AA [K ×NA] : A(k, na)

AR [K ×NR] : A(k, nr)

V [Q×K] : Vq(f(k))

ÂA [K ×NA] : Â(k, na, f0)A

ÂR [K ×NR] : Â(k, nr, f0)R

Table 1: Matrix/Vector notation conventions

all data dependent variables are shown at the middle and the two
predicted spectral envelopes are shown at the bottom. Note, as we
assume the partial’s frequencies to be constant over time frames n,
the matrices zA and zR will also be invariant over NA and NR.

Since we make use of a gradient decent method to estimate the
model parameters, we need to define a cost function and its gradi-
ents. In this method, the parameters GA, GR and z will adapt
iteratively according to their negative gradient of the cost function
until the gradient function converges. Finally, after the cost func-
tion has converged, the fixed set of model parameters is called a
prototype for the instrument, which has been used for estimation.

3.1. Cost Function

For estimation of the model parameters we introduce a squared
cost function. As shown in eq. 11, the Forbenius norm is used
to indicate that we are taking the entrywise squared values of all
values within the matrix and average over all partials k and time
frames n to resolve the equation to a scalar value. Finally, both
costs for the attack to sustain and sustain to release are averaged.

c =
1

2K

“ 1
2NA

˛̨
˛
˛̨
˛
“
GAUA + VT zA

”
−AA

˛̨
˛
˛̨
˛
2

2

+
1

2NR

˛̨
˛
˛̨
˛
“
GRUR + VT zR

”
−AR

˛̨
˛
˛̨
˛
2

2

”
(11)

Since this equation gives the cost for a single training sample, we
average over all sample cost to measure the cost for the complete
training database.

3.2. Gradient Functions

To get the gradients, the first derivative of the cost function with
respect to the parameters has to be solved. This can be done by
applying the chain rule once.

∂c

∂GA
=

1
NA

`
(GAUA + VT z)−AA

´
UT

A (12)

∂c

∂GR
=

1
NR

`
(GRUR + VT z)−AR

´
UT

R (13)

Note, as we want to get the gradients for all K sequences of B-
Spline coefficients for the oscillator models, neither averaging over
k nor averaging over the oscillator models has to be done. For the
filter coefficients, on the other hand, averaging over both oscilla-
tors remains necessary as well as averaging over all time frames,
deploying its time invariance. Therefore, only a single gradient
vector z of size Q has to be resolved.

∂c

∂z
=

1
2K

 
V

1
NA

NAX

na

“`
GAUA + VT zA

´
−AA

”

+V
1

NR

NRX

nr

“`
GRUR + VT zR

´
−AR

”!
(14)

4. MODEL VARIANCE

To estimate the model’s prediction accuracy, we employ a statis-
tical model shown in eq. 15, proposing the true spectral envelope
A being determined by our predicted envelope Â and some addi-
tive noise R. The noise is assumed to be drawn from a gaussian
distribution and independent of L and f0.

A[k, n] = Â(k, L[n], f0) + R[k, n] (15)

Therefore, by turning our regression model into a statistical, its
variance is determined by the variance of the additive noise. Addi-
tionally, this variance may also be interpreted as the mean square
error or our estimator Â. In contrast to all previous considerations,
we will estimate the model’s variance using linear amplitude val-
ues, indicated by their respective lower case letters. Eq. 16 shows
how to estimate the variance, whereas the level contour L[n] and
fundamental frequency f0 of the data sample a[k, n] has been used
to predict the spectral envelope â(k, L[n], f0).

σ
2 =

1
KN

˛̨˛̨
a[k, n]− â[k, L[n], f0]

˛̨˛̨
(16)

We take the expectation of all variance values of a complete test
database, which gives us a single scalar value to quantify the model’s
prediction accuracy and finally transform it to decibel scale.

5. RESULTS

We evaluated our approach using 7 instruments taken from the
RWC musical instrument database [7]. This database contains
three variants for each single instrument, each played by a dif-
ferent instrumentalist and various dynamic styles, giving us the
possibility to achieve a high degree of generalization for the ex-
pected spectral envelope. Various model parameterizations regard-
ing the definition of the B-Splines for the oscillator models as well
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as the filter model have been applied and for each a 10-fold cross-
validation method has been used. Since online estimation has been
shown to perform up to 5 times faster than its offline counterpart,
by means of the number of iterations needed for convergence of
the cost function, it has been chosen to be the favorable estima-
tion method. Furthermore, the number of iterations being needed
for convergence can significantly be reduced by incorporating a
priori knowledge about the characteristics of the filter as well as
the oscillators while initialization of the weighting coefficients.
Nethertheless, even random initialization gives comparable results
apart from the number of iterations needed. The results presented
here are selected in terms of the minimum cross-validation error
for all applied parameterizations.

For visualization of the prototypes we use the level sequence
L

sigma = {−30,−27.5, . . . ,−2.5, 0} to generate the respective
partial envelopes within our source models, whereas for the sustain
to release oscillator model, the sequence is resolved in reversed
order. Each single level value therefore reflects a partial envelope,
indicated as a single dotted line within the oscillator models. In
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Figure 4: Prototype of a clarinet using 5 B-Spline segments for
the oscillators and a segment size of 1

24 octave for the B-Spline
modeling of the filter. All B-Spline orders are set to 3.

figures 4, 5 and 6 prototypes for the clarinet, the grand piano as
well as the violin are shown. At the top of each figure, the par-
tial envelopes generated by the oscillators are shown for all values
of L

σ with respect to the partial index k. Only the first 16 par-
tials are presented as they carry most of the signals charcteristics.
The filter is band limited to low frequencies by the lowest pos-
sible fundamental of each instrument and to high frequencies by
half of the sampling rate. As can be seen in all three figures, vari-
ous f0 independent resonances and formants have been estimated
by the filter as well as f0 correlated features have been estimated
by the oscillator models. Moreover, the time-varying spectral en-
velope has also been reflected by the varying partial envelopes of
the oscillator models. The variance measures used to quantify the
model’s prediction performance is shown in table 2. As can be
seen, the variance values are quite close to each other, beside the
value for the grand piano’s prototype which has an much lower
value. All values indicate a low average variance for the addi-
tive noise introduced by our model and therefore spectral envelope
predictions close actual measured ones. This can also bee seen
in the synthesis examples. Fig. 7 shows the measured partial
amplitude trajectories A[k, n] for a clarinet playing an Bb4 on the

1 3 5 7 9 11 13 15

−60

−40

−20

0

Attack O(k,Lσ)
A

k

d
B

 

 

Lσ

 Lσ={−30:+2.5:0}

1 3 5 7 9 11 13 15

−60

−40

−20

0

Release O(k,Lσ)
R

k

 

 

Lσ

 Lσ={0:−2.5:−30}

50 100 200 400 600 1k 2k 4k 6k 10k 20k

−40

−20

0

f / Hz

Filter F(f)

d
B

−40

−20

0

Figure 5: Prototype of a grand piano using 5 B-Spline segments
for the oscillators and a segment size of 1

24 octave for the B-Spline
modeling of the filter. All B-Spline orders are set to 3.

Instrument σ
2
dB

Trumpet : -25.5

Alto Saxophone : -26.5

Clarinet : -26

Oboe : -24

Piano : -34.5

Violin : -26

Violin Cello : -29

Table 2: Variance values in dB for the selected 7 instrument proto-
types
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Figure 6: Prototype of a violin using 5 B-Spline segments for the
oscillators and a segment size of 1

24 octave for the B-Spline mod-
eling of the filter. All B-Spline orders are set to 3.
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Figure 7: Original (top) and predicted (bottom) amplitude trajec-
tories for the first 4 partials of a clarinet playing Bb4

top and the corresponding predicted partial’s amplitude trajectory
Â(k, L[n], f0) of our prototype of a clarinet on the bottom. Fig.
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Figure 8: Original (top) and predicted (bottom) amplitude trajec-
tories for the first 4 partials of a grand piano playing F3

8 presents the respective trajectories for a violin playing Db5 and
fig. 9 shows the partial’s amplitudes of a piano playing an E1. As
can bee seen in the three figures, the prototypes predict the partial’s
amplitude trajectories with high accuracy.

6. CONCLUSION

In this paper we have shown a new approach for representing quasi-
harmonic instruments by a linear source-filter model with the pos-
sibility to predict the time-varying spectral characteristics of an
instrument with respect to the fundamental frequency and the rel-
ative level of the signal. We have further given the mathematical
basis to estimate the model parameters using a trainings database
and to estimate the variance of such a prototype. As shown by
our results, the selected prototypes have estimated f0 correlated
as well as f0 independent features. Even though, we believe our
results are promising, we will improve the learning algorithm by
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Figure 9: Original (top) and predicted (bottom) amplitude trajec-
tories for the first 4 partials of a violin playing Ab3

utilizing a conjugate gradient method to increase the models per-
formance regarding its statistical variance and in future research
we will apply our model to music information retrieval and source
separation algorithms.
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