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1 INTRODUCTION

The use of synthesizers and computers sometimes de-
prives musicians of the experience of playing. One
of the goals of physical models' is to provide mu-
sicians with virtual instruments. These new instru-
ments should react to the musician’s control, either
by a slight or a dramatic change, as natural instru-
ments would; phrasing, articulation qualities and ex-
pressivity should also be reproduced automatically, as
a response to musician’s gestures.

Potential applications include computer assis-
tance for instrument makers, creation of imaginary in-
struments, extraction of skilled musician gestures de-
duced from a sound and pedagogical use, etc... The
achievement of virtual instruments requires multiple
fields of research including mechanics, numerical sim-
ulation, man-machine interaction, analysis of dynam-
ics and oscillating patterns and inversion of dynamical
systems.

In the first part of this article, fundamental as-
pects commonly found in physical modeling of self-
sustained instruments are considered: from exper-
imental observations (§2.1) and building of models
(§2.2) to their behavioral (§2.3) and gestural (§3) anal-
ysis, each proceeding is illustrated through several ex-
amples (bowed-string instruments, wind instruments,
and more particularly trumpet-like instruments 2).

Then, it is shown that modeling, behavioural
and gestural analysis (in regards to the experimental
validations) as a global problem, have direct conse-
quences on the types of expressions used for modeling.
Then, we discuss, for excitors (§4.1) and for resonators
(84.2), such expressions which are looked for so that
they are well-adapted to the manipulations required
by the numerical simulation of the model and by the
gestural analysis process.

IThe laws of mechanics and acoustics are used to describe
the natural phenomena accountable for the instrument sound
production.

?mainly taken from a previous study made by the authors
on trumpet-like instruments [1].

t Instrumental Acoustics Team.

2 MODELS OF MUSICAL
INSTRUMENTS: STATE OF THE ART

2.1 Experiment

The functioning of a given instrument may be studied
experimentally,

e by characterizing the instrument behaviors, i.e.
the different oscillating patterns when control pa-
rameters 3 G, representing the musician’s ges-
tures in the broad sense, are varied (transitions
between two patterns correspond to bifurcations
of the instrument),

e then more precisely, by analyzing the temporal
waveform of dynamic variables* for a given os-
cillating pattern, these variables representing the
internal state S of the instrument.

For such experiments and studies, artificial and
controlled playing conditions must be re-created: bow-
ing machine for bowed-strings instruments [2], artifi-
cial mouth for simple-reed instruments [3], artificial
lips for brass instruments (see Fig. (1)) [4], [5].

Syringes

Transparent Mouthpiece

Meta Mouth

N

Micrometri¢™ i
Rail i

Rotating E = = -
h m

Sliding Caliper Gauge

Figure 1: Photograph of an artificial mouth device with
water-filled latex lips (from [5]).

3bow velocity and pressure, blowing pressure, lips stiff-
ness, ...
4positions, speeds, pressures, ...



tions Let P C R4™G be the control parameter
space. The different oscillating patterns (periodic, n-
periodic, quasi-periodic, chaotic, intermittent, etc...)
are located® in the regions R¢. The set C of these
regions R¢ is a partition of P the cartography. From
the studies of such cartographies, experimentally es-
tablished for various instruments, it can be concluded
that:

a) any instrument offers a great (liversity and rich-
g
ness of behaviors;

(b) for instruments of a given class, their cartogra-
phies C all display the same topographic struc-
ture. These structures, characteristic of each
class have been studied in [6] (bowed strings), [7]
(clarinet) and [8] (brass).

Timbre - Ease of play - Instrument qual-
ity However, the observed invariance (b) does not
mean that

(c) the waveforms of the state S in a given region R,

(d) or that the localizations (form, size, position) of
the region R in a given cartography C,

are unchanged by instrument-making adjustments® or
conditioning of the instrument” .

In additition, it is well-known from instrument
makers and musicians that such modifications directly
affect the quality of the instrument:

e the timbre and the potential expressivity depend
on the diversity of the waveforms of S (for timbre)
and and of its amplitudes (for nuances), found in
a given region R;

e the ease of play depends on the size of the regions
of C, but also on the agreement of the ranges of
G with the player’s physiological capacities .

Some apparantly weak changes may even induce dra-
matic effects. For instance, the inner surface of certain
african flutes has to be covered with a thin layer of wa-
ter so that the flute can play [10]. Another example
concerns good brass players who can feel the ageing
of their instrument: this could be due to the damage
of the polish inside the instrument, which alters visco-
thermal interactions between the air column and the
inner surface [11].

To sum up, the sound quality of any instru-
ment can depend on the most subtle physical factors,
even if behavioural analyses show that within a class
of instrument, the cartographies C for different instru-
ments have all the same topographic structure.

5These properties are studied for constant parameters (in
time).

Ssuch as material or shape choices (ex: dimensions of the
mouth and the chamfers for the recorder [9], etc...).

Thygroscopy for the reeds, type and quantity of rosin for
bows, etc...
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Figure 2: Common functional structure for self-sustained
musical instruments.
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Figure 4: Example of a sequence of bifurcations of a brass
model [14] when the blowing pressure is progressively in-
creased from zero and other parameters are fixed.

2.2 Physical modeling

Since Helmholtz [12], it is well established that sus-
tained instruments functioning relies on the general
structure displayed in figure 2: a feedback loop sys-
tem made of an exciter and resonators. The input is
made of the control parameters G and the only output
is the sound s.

The resonators are usually modeled at first ap-
proximation by linear systems which introduce delays
due to wave propagation. The ezciter is usually a me-
chanical® system which is coupled to resonators. The
relations modeling the exciter and the coupling may
be written as non-linear differential equations® since
a stable auto-oscillation can only be generated by a
dynamical system which is non-linear.

2.3 Behavioural study of a model

Recent studies have shown that physical models
present oscillating patterns comparable (see Fig. (3))
with the experimentally observed ones (§2.1): a pe-
riod doubling scenario for a clarinet model [7], periodic
and non periodic oscillating patterns for both a violin
model [13] and a trumpet model [14] (see Fig. (4)).
Moreover, most of the dynamical behaviours

8fluid or solid.

9Note that even if the wave propagation inside a resonator is
non-linear (case of brass instruments for strong pressures), this
effect is not responsible for the oscillation, but mainly for the
brightness of the sound due to the transfer of energy from low
to higher harmonics.



Figure 3: Various simulated oscillating patterns (from left to right: periodic, quasi-periodic and chaotic) for a brass model
when the blowing pressure parameter is increased (from [14]). z, y and z axis are respectively air pressure and volume flow

between the lips, and lips opening.

have proved to be perceptively relevant ([15], [16], [17],
[18]): they are immediately associated to the corre-
sponding instrument class by a listener.

If simplified models are used!?, cartographies C
still keep similar topographic structures and the repre-
sented instruments are still recognized despite notable
sonic differences. This strenghtens the argument that
these cartographies and their “invariant complexity”
are representative of the instrument classes. But, at
the same time, this complexity makes the control of
a virtual instrument as difficult as the one of a real
instrument.

3 INVERSION OF A PHYSICAL MODEL

In this section, we study the identification process of
the control trajectories which make the model produce
a target sound.

3.1 Definitions and technical approach

The inversion of the dynamical system modeling the
behavior of an instrument answers the question: “how
should I control my instrument to obtain a target
sound?”. Then, writting the relations of the model'!

M(G,s,t) =0 (1)

the inversion consists in determining the inputs G(t)
of the system when its output s(t) (the sound) is
known.

There are two main approaches to deal with
this problem: to determine the reciprocal application
of the model starting from the equations of this model
(this step is called inversion), or to use the so-called
“black box” techniques such as model training ap-
proaches.

In addition to the choice of the sound fea-
tures used for the training, the reliability of this last

0provided the “shape of the non-linearities” is similar.

1 Note that these relations are quite general (M may contain
differential operators, delays, etc...) but have a strong par-
ticularity: the internal state S does not appear! Indeed, this
form, which can be usually obtained for models of self-sustained
instrument models by eliminating the states variables (see for
ex. [19]), is very useful in the inversion process.

method requires browsing the various model behav-
iors as widely as possible. On the contrary, the first
approach exploits, in an a priori and exhaustive way,
all the knowledge brought by the model (including
behaviours, transients, multiphonics, etc...). This is
why, the first approach is detailed in the next section.

3.2 Inversion of physical models of self-
sustained instruments: an ill-posed prob-
lem

It has been shown in a physical models of brass in-
struments [20] that for each sound a non countable
set of solutions G exists. As an example (Fig. (5)),
the damping factor d(t) and the contraction factor ¢(t)
of the model of the lips evolve on a surface which is a
function of the sound s(t).

In fact, this property is common to all the self-
sustained models: if the vector of the gestural pa-
rameters G(t) has a dimension n, the inversion leads
to an wunder-defined system which simply imposes
Vt, G(t) € M; where M; is usually a hypersurface
of dimension n—1. This means that changing a ges-
tural parameter does not change the sound produced
if the other parameters are consequently modified.
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Figure 5: Example of a solution set of gestures (d,c) for
a brass model

But practically, these solutions are not all phys-
ically meaningful. Indeed, most of them have unreal-
istic magnitude orders, are oscillating too fast, or sim-
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musician’s ablllty has not yet been taken into account
in the inversion process !

3.3 Selection of the musician’s gestures

As defining and using a physical model of musician is
a complicated task, the prefered choice is to make a
hypothesis on the “right gestures” to be selected

- by looking for the best gesture, i.e. the one which
minimizes a given criterion F (G, t) during all the
playing time,

- or by imposing a parametric shape of gestures
GP(t) on consecutive time intervals of small du-
ration 4.

Then, the resolution of the inverse problem can be
respectively obtained by:

e minimizing F(G,t) under the constraint that
G (t) makes the model produce the target sound

G*(t) = arg min /t2 [f(G,t) +

G G,A
A(t)M(G,s,t)] at (2)

where A(t) is the Lagrangian multipli-
cator. An interesting cost function is
Fw (G, t) = |[WG'(t)||* where W is a weighting
matrix, and for which the optimal gestures are
the lower ones.

e looking for the best parameters p* such that!'?

T+46
p* = arg min / ||./\/l(Gp,s,t)||2 dt  (3)
p T

where simple examples of gestural evolution are
the constant gestures : G?(t) = a 4)
the affine gestures : G2P(t) =at+b (5)

A first study concerning a model for the lips of a trum-
pet player (with gestural evolution Eq. (4)) showed
that a single solution was obtained. Moreover, for
tests on synthetic sounds, the method is efficient even
for transients and multiphonic sounds [20].

3.4 Conclusion

In addition to the obvious applications of gestural
control, benefits of inversion are also important for
modeling improvements: usually, the validation of a
model is done by comparing the proximity of the out-
puts sexp(t) and saq(t) produced by calibrated con-
trols G(¢), for respectively, the real instrument and
the modelled/simulated one. However, the closeness
of two non-linear systems may be difficult to measure
since for a given G(t), outputs may be very different!3.

12Note that GP(t) does not exactly generate s(t), unlike the
first method.

13such a difference could correspond for example to a slight
shift between basins of attraction of the model and of the in-
strument.
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for a glven sound s(t), the experlmental and the re-
constructed gesture.

Therefore, inversion plays a role in the vir-
tual instrument research as an important as modeling,
behaviour analysis in regards to experimental valida-
tions.

4 CONSEQUENCES ON MODELING

Now, we focus on the investigation of the best means
for modeling the exciter and resonators: these models
should be as concise and physically realistic as possi-
ble, and above all, well-adapted to the manipulations
required by the model simulation and the inversion
process. Moreover, strategies to cope with unavoid-
able properties which are ill-adapted for these manip-
ulations are proposed.

4.1 Exciter and coupling

Even if some simplifications encountered in the litera-
ture that work for certain instruments '# lead to non-
differential instantaneous relations, these types of ex-
pressions are exceptional. Brass instruments for which
inertia of the lips cannot be neglected, is an obvious
counter-example. This justifies why, as seen in §2.2,
the simplest formulation used for modeling an exci-
tor and the coupling is a non-linear ordinary time-
differential equation (or a system of such equations).

However, for many instruments, some relations
included in Eq. (1) may be degenerated on small time
intervals. Moreover, differential systems are not the
best suited formulation for modeling certain phenom-
ena such as “noisy” sounds (e.g. breath for the wind
instruments or friction for the violin). These both dif-
ficulties are adressed below.

Local degeneration of some relations.
For many instruments, some of the n relations given
by Eq. (1) can become degenerated (ie 0 = 0) on small
time intervals Z. This occurs, for example, when the
lips (brass) or the reed and the mouthpiece (clarinet)
are in a closed configuration. In such cases, a well-
adapted method for realizing the inversion consists of
locally removing the p degenerated relations and using
the n—p remaining relations. In the constrained crite-
rion methods (Eq. (3)), the langrangian multiplicator
dimension dim A (t) is then n—p (V¢ € 7).

Practically, the time intervals Z may be identi-
fied from a wrong conditionning calculus in the com-
putation of the inversion process. Then, the resolution
is done for the n — p relations modeling the instrument
onZ.

“Noisy” sound components. Even if
“noisy” components may be produced in real in-
truments by deterministic mechanisms (turbulences,
chaos), to use a stochastic processes N(¢) in physical

1ex: neglecting the mass of the reed for the clarinet and

saxophones, or inertia of the bow for the violin, etc...
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usually lead to complex models whereas a statistical
approach can lead to simpler phenomenological mod-
els. Moreover, to use a stochastic non-linear time dif-
ferential system does not complicate simulation. How-
ever, the criteria used in Eq. (3) and Eq. (3) are not
adapted any more. A solution consists in respectively
modifying them in the following way:

G0 =ag min [ “[F@0 + PaN +
G G,N,A t1
A(t)M(G,s,t)]dt (6)

T+46
p* = arg min [PG(N,t) +
p p,NAJT

A(t)M(Gp,s,t)] at (7

where the cost function Pa(N,t) which penalizes F
may be chosen as the entropic disorder measure of
the noise N(t) defined by —In fg(N(t)), where fg
the probability density.

4.2 Resonator and radiation

Radiation and resonators are the place of propagation
phenomena. Their precise modeling is complex since
they require the resolution of partial differential equa-
tions (P.D.E. ) for arbitrary geometries and boundary
conditions, which include non-linearities for large am-
plitude waves.

Because of this complexity, various approaches
are commonly found in the literature:

1 acoustic measurements on the resonators
(impedance [21] & [22], reflectometry [23],
measurements in an anechoic room) allows
one to compute numerical acoustical transfer
functions (e.g. impulse response or reflection
function in the time domain);

ii appropriate simplifications (simple geometries, non
dissipative medium, linearisation, etc...), allow
one to solve the resulting P.D.E. :

ii; analytically, leading to a continuous delayed
system (D.S.),

iy numerically, leading to a discrete distributed
D.S.,

(ii) and (iiz) giving parametrical models.

For the global problem (simulation, inversion
and model validation), a parametric model (ii) is more
appropriate than a non parametric one (i). Indeed, it
may easily encompass all the configurations of a res-
onator (e.g. fingerings and intermediate states dur-
ing a change of fingerings, sophisticated playing tech-
niques using for example half pressed keys or valves)
whereas (i) would require a large table of sampled
functions. Moreover, the unavoidably truncated func-
tions may under-estimate or ignore low frequency and

Mt & B A
bustness problems for inversion since the compensa-
tion of these under-represented phenomena may drive
the process to wrong trajectories, and then percepti-
bly disturb it.

Hence, using a parametric model increases the
quality of both the model simulation and the inver-
sion process if long memory effects and transitions are
modelled. Moreover, this allows us to envisage an
adaptative inversion process which would adjust the
instrument making parameter values'®. The simplest
hoped D.S. modeling propagation is a pure delayed
plus a linear ordinary time-differential equation. This
formulation which becomes more complex as soon as
realistic geometries for resonators are considered keep
usually its linear property.

However, nonlinear propagation phenomena
and degeneretion of relations may occur and cause
some difficulties.

e ™ B

Nonlinearity: as seen in section 2.2, this property
naturally arises for several instruments at high sound
levels. It does not hinder the use of Eq. (3) or Eq. (3)
but makes their numerical resolution more compli-
cated. In particular, the nonlinear character of the
resonator is likely to increase the number of possi-
ble solutions. Therefore global nonlinear optimisation
techniques [24] should be used to select the final solu-
tion.

Structural degeneration: structural degeneration
in models of resonators are observed when an equation
disappears (or a new equation appears) in the system
of equations modeling the resonator. In practice, this
corresponds to the closure/opening of a hole, the pres-
sure of a finger down on a string, a change of valve
position ... Two differents strategies are proposed:

o Considering in parallel as many models as needed.
The selection of which model to invert is done ac-
cording to model breakdown criteria. This solu-
tion is quite simple but computationally expen-
sive.

e Using a refined physical model of the resonator
which encompasses all the configurations (as sug-
gested above). Then, the pursuit of the transition
parameters (e.g. positions of fingers) allows one
to follow these configurations. Numerical resolu-
tion becomes again more complicated but tran-
sients during different notes can be inverted as
well as the above-mentioned sophisticated play-
ing techniques.

15Working in the Fourier’s transform space does not gener-
ally suppress these problems which are converted into a “bin
resolution” one.

16 A method consists for example in including these param-
eters in G and in increasing their associated weighting in the
matrix W (Eq. (3)).
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After a first description of the state of the art for phys-
ical modeling of self-sustained musical instruments,
the inversion process naturally appeared as a useful
tool for good control of such models. In additition
to this benefit, this tool also gives new possibilities for
checking the validy of the models and improving them
(see Fig. (6)).
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Figure 6: Links between modeling, behavioural analysis
and inversion.

Then, modeling, behavioural analysis and inver-
sion (in regards to the experimental validations) may
be gathered in a global problem. With this in mind,
the study of virtual musical instruments leads us to
prefer parametric expressions to numerical descrip-
tions: practically, it is better to match experimental
measures on a model and to use this model than, for
example, to numerically calculate transfer functions
from these measures and to use them as the model.
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