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ABSTRACT

In this paper, a study on the simulation of damp-
ing phenomena in the equation of bars is presented.
First, the deflection waves model in a bar for ideal
boundary conditions (free bar) is described, and the
damping models (fluid damping, stuctural damping)
are introduced. Then, a modal analysis allows to dis-
cuss the effects of the various parameters of damping
and to write the analytical solution of the problem.
Finally, numerical simulations are made with the aim
of illustrating the various theoretical effects by rele-
vant sound synthesis: physical orders of magnitude
are given and a qualitative sound study is made.
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1 INTRODUCTION

This work is devoted to the sound synthesis of bar-
like instruments and refers to [1]; the point of view
lies between pure physical modeling (writing down
all the governing equations, namely Partial Differen-
tial Equations) and signal modeling (typically a Prony
model of damped sinusoids). The physical model of a
conservative bar (Euler-Bernoulli PDE!) is modified
by a damping model which introduces extra parame-
ters that do not come from physics. Nevertheless, the
damping model is not totally free but pre-structured:
it preserves the modal structure of the conservative
system, and it is energetically consistent in so far as
the hybrid model is now dissipative.

The paper is organized as follows: in § 2 the
hybrid model is presented with an emphasis on con-
sistency of the damping model; it is then closely anal-
ysed. The role of the two parameters of fluid damping
and structural damping respectively is investigated,

!Timoshenko PDE could also be preferred, see [2].

especially in the spectral domain. Finally, the time-
domain signals are presented. In § 3, the parameters
are assigned orders of magnitude that are physically
consistent; this gives rise to interesting numerical ex-
amples followed by a qualitative sound study.

2 PRESENTATION OF THE MODEL

2.1 Equations

In this work, we restrict ourselves to the modeling of
the deflection waves of a bar of length L and constant
rectangular section S = w.h where w is the width and
h the height.

Bars model Let us consider the displace-

ment U(t,z) = u(t,z).
For an undamped bar, the governing equation of the

Yy X

,,,,,,

Figure 1: bar model

deflection waves being propagated along (Ozx) is writ-
ten, according to Euler-Bernoulli’s theory [3]: for 0 <
z <L,

1

T Diu(t,z) + Otu(t,z) = 0 (1)
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p : density of the material
Y :  Young’s modulus of the material
I= “’1—’53 1 geometrical momentum of the bar

The energy of this bar is given by [4]

1 T
£t =5 / [YI(02u)? + pS(8u)?] de )
0
Moreover, if the bar ends are free and a force
of excitation fercit(t) = —YI f(t) is applied at = 0,
Eq. (9) by the four boundary conditions are expressed
by (see [3]):

e no momentum at the ends

O2u(t,0) = 0 (3)
dpu(t,L) = 0 (4)

e 1o force at x = L and force fezcit(t) at 2 =0

Ju(t,0) = f(t) (5)
Ou(t,L) = 0 (6)

Damping models Consider an  N-
dimensional oscillator of the form M % + Kz = 0
with mass matrix M = M7 > 0 and stiffness matrix
K = KT > 0; it is conservative for the associated
mechanical energy £(t) = 1iTMi + 127Kz, ie.
E(t) = 0. Diagonalizing the system in RV leads
to the so-called modal decomposition; the scalar
dynamics of the n-th component z,(t) simply reads
My, Zn + kn 2n, = 0 and introduces the natural angular
frequencies wy, = \/kn/my.

Such a system is naturally undamped. A
straightforward way to introduce damping is to add a
term involving & in the original system: M & + C'& +
K x = 0; computing £(t) = —2TC, & gives a sufficient
condition on C for the new system to be dissipative,
namely that Cy, the symmetric part of C, be a positive
matrix. But if C is not more structured, the modes
will be totally changed and the geometry (if not the
physics) of the initial problem will be lost. That is
the reason why in many applications in vibration, the
damping matrix C' is a priori structured in the follow-
ing way:

C=aM+bK (7)

This choice has the advantage of preserving the ini-
tial modal structure, and of reducing the number of
parameters describing the damping from N(N +1)/2
down to 2 only. Now, each mode z,, is governed by the
damped dynamics m.,, Z,+(amp,+bky) 2, +kn 2, =0,
or Z, + (a +bw?) 2, + w2 2z, = 0, which proves to be

Et)=—ai™ Mz -biTK i <0.

This quite simple idea will now be applied to
our infinite-dimensional model. Notice that matrices
now become operators: the mass operator is M =1
and the stiffness operator is K = 9% . Hence, the
following damping operator can be proposed for the
Euler-Bernoulli bar:

(a+b0; )0, (8)

It will preserve the initial modal structure of the
conservative system and introduce some dissipativity,
though in a rather structured way.

Complete model Thus, the damped bar
models are gathered (for various values of the param-
eters a and b) in the single expression:

0%6,5211(15, z) + [a+b0; ] Owu(t,z) + ju(t,z) =0 (9)

Hence, Eq. (9) and Eq. (3) to Eq. (6) give
the exhaustive description of our system, where f(¢)
is considered as its input, and wu(z,t) its output
parametrised by position z.

Positivity constraint Now, the conditions
on a and b for which the system is damped (i.e. such
as, in free vibrations (f(t) = 0), % < 0) are looked

for. Computing % from Eq. (2) and then substituting
02w using Eq. (9) leads to:

aé b e a2 2
il YI [ [002udiu—a(du)?] da
0

L
-YI / Oyu [Oyu + b0, 05u] dx (10)
0

Then, a double integration by parts on the second
term leads to

1 d€ '
Vi = O0u0)[f(t)+bf )

L L
—a/ (atu)zdm—b/ (0;0%u)?dz  (11)
0 0

v v

>0 >0

Hence, in free vibrations, the system is damped when
a and b are positive.

2.2 Modal analysis

Resolution of the system in the Laplace
domain Let U(s,z) 2 [Fu(t,z)e*tdt =
TL[u](s,z). Then, Eq. (9) reads (see [3])

d*U
Fa,b(s) U(57$) + w(sﬂt) =0 (12)
s+ abts

04(bs + 1) (13)

where Top(s) =
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nary differential equation whose characteristic equa-
tion is

k* + Tup(s) = 0 (14)
Then, let ks be the real positive solution of the four

solutions {ks, —ks,iks, —iks}. Then, the solution of
Eq. (12) takes the form

U(S,.Z') = Aseksz +Bsefk3z+cseiksz +D567ik3w(1

5)
Deriving the expressions of 82U (s,z) and 02U(s,x)
from Eq. (15), the four boundary conditions (Eq. (3)
to Eq. (6)) can be written M. (A4,, Bs,Cs, D,)t =
F(s)k; 3 (1,0,0,0)t where F(s) = TL[f](s) and

1 —1 —3 7
1 1 -1 -1

Ms = | kel _ kil _jgikil ik (16)
ohel  g—ksl  _gikal _jo—iksL

Finally, A,;, B;, Cs and D, are determined, and a
filtering relation parametrised by x is obtained:

U(s,z) = H(s,z).F(s) (17)
the transfer function of which is

N(s,z)
2k2 [1— cosh(ksL) cos(ksL)]

H(s,z) = (18)

where N(s,z) = sinh(ksz) — sin(ksx)
+ cosh(ksL) sin (ks(z—L))

— cos(ksL) sinh (ks(x—1L))

(ks(z—L))

(ks(z—1L))

+ sinh(ksL) cos (ks(z

— sin(ksL) cosh

s

s (T (19)

Resolution of the system in the time do-
main From Eq. (17), we find the solution u(t, x)

u(t,z) = [h(,z) * f(.)] () (20)
where h(t,z) is the inverse Laplace transform of
H(s,z).

H(s,x) is a meromorphic function with an infi-
nite countable set of poles P. When both a, b > 0, this
set is located in the left-half complex plane. This will
be closely analysed further. For ¢ > sup,cp {Re(s)},

1 c+io0
h(t,z) = — H(s,z) e ds (21)
2im c—1300

Finally, using the residue theorem on Eq. (21)

leads to the normal-mode expansion

h(t,z) = Z res {H(s,z)}.e*"* (22)

snep T 0m

in the sense of distributions.

_______________ F e

sequences In order to determine the set of poles,
the set K of the real positive modes (kj)nen such
that k2 (1— cosh(knL) cos(knL)) = 0 is first seeked
(cf. Fig. (2)):

4.7300 7.8532 10.9956 14.1372
K= {07 . . L ) L 7}(23)

with kg = 0 and &, = W for n large enough.
Then, using Eq. (13) and Eq. (14) gives the two poles
associated to each mode.
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Figure 2: Determination of the modes

Thus, the mode ko = 0 is associated to the pole
0 which corresponds to the rigid-body motion term,
and so = —“794 (evanescent wave) which will not be
taken into account for sound synthesis purposes. Each

mode k> is associated to:
Sin = —Qinp fiw, (n>1) (24)

with 254, = —6* [a + bk,*] £+ 04,5 and where 0,2 =
08[a+bk, "> — 46*k," with the convention Sm (o, ) >
0. a,, represents the damping coefficient, and w,, the
angular frequency.

Two separate cases appear :

1. When ab#* > 1, all modes are
evanescent: wp = 0 and oy, =

61/2 [a + bk, T \/ (a + bk,*)2 — 4(k, /6)*|.

2. When abf* < 1, both evanescent and oscillating
modes can appear.

For this second case, let K_ and K, be
the positive numbers defined by K.?> = (1 +
V1 — abf*)/(b6?). Then, the modes k, are classified
as follows:

fn ]| O K_ K.  +o

type || evanescent damped evanescent

oscillating

Now, the locations of the poles for different kind of
damping configurations are detailed (note that the or-
ders of magnitude are not physically representative for
this theoretical study).
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=0 and Ky = +00).

wn = 02k,2.

This corresponds to an everlasting sound for

AN -~
We find ay, = 0

and

R STy Yoy — Ty N -n
4/(0ky)* — b2 (non-uniformly-damped
and inharmonic oscillating modes). The damping

increases with n.
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which high modes are quasi-harmonic (w,? o (2n+

1)?),

imaginary part

bar with fluid damping only In this case (a > 0,

Cf. Fig. (3).
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Figure 3: poles for a bar without damping

e for kn > K—i—a O4n =
(Okn)*/2 [b;«/b2—4/(0kn)4] and w, = 0

(fastly evanescent).
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Figure 5: poles for a bar with structural damping only

b=0), K_=0+/a/2 and K = 4+00). The first lower
modes (a finite number) are evanescent and higher

modes are eventually damped oscillating (Cf. Fig. (4)):

for k, < K_, wp
6*/2 [aq: a2—4(kn/0)4] (evanescent).

for k, > K_, a4n

61/2 \/4(k,/0)* — a® (damped oscillating).

0 and a4,

af*/2 and w, =

bar with both dampings In this general case
(@ > 0,b > 0 and abf? < 1), only medium modes
are damped oscillating;:

k, < K- ky,
61/2 [a + bk, T \/ (a + bk,*)? — 4(k, /6)*

wn, = 0 (evanescent).

e for or > K, a4y

The inharmonicity is increased for the first os-

cillating modes and all of them are uniformly

damped since o, does not depend on n.

o for K_ < k, < Ky, ax, = 0*(a + bk,"*)/2 and
wy, = 6*/2 \/4(kn/6)4 — (a + bkn,")? (oscillating,
inharmonic and non uniformly damped).

x 10
. From a qualitative point of view, the effects of the fluid
ir : damping and of the structural damping appear sepa-
— os : rately for the first lower modes and the higher modes.
g x
£ -0.5 § SO o
. 5 )
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real part « 4 § oL - . . o
Figure 4: poles for a bar with fluid damping only = N
s e

bar with structural damping only In this case

(a=0b>0), K =0and K, = }/2

4 b

-1.5 -1

real part
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The
first lower modes (n # 0) are damped oscillating and

Figure 6: poles for a bar with both dampings

higher modes are eventually evanescent (Cf. Fig. (5)):



sponses of the bar displacement and of the ac-
celeration For n € Z*, the residues of the simple
poles s, and s_, are computed, and the evanescent
component associated to sg = —“794 is neglected. This
enables to give the expression of the impulse response
for the displacement h(t,z), and the the impulse re-

sponse for the acceleration g(t,z) = 87h(z,t) propor-

Frequency (in H

8000
tional to the force (and hence to the local pressure;
a more elaborated model should include a radiation 6000
unit, see [5]): 4000 i
2000
h(t,z) = by b (z) et 25 e
) né* Pnl) = % o0z o04 o066 08 1 12 14
Time (in s)
g(t,z) = D $n’hn dn(x) e (26)
nezZ* Figure 7: Spectrogram of g(t,L) for a = 1le — 2 and
with hy = — (20%(bsn + 1)) ] (bsn? + 250 + a8, b = 5e — 7 (sounds like a wooden bar).
on(x) = Ay (sin(kpzx) + sinh(k,2x)) + cos(k,z) +

cosh(knz) and A, = (cot(k,L) — coth(k,L))™".
According to Shannon-Nyquist criterion, only
the modes for which the frequency does not go beyond

the half sampling frequency are kept in the sum for 16000
numerical simulations. 14000F
12000F
3 NUMERICAL EXAMPLES fgiloooo,
In order to build realistic sound examples, sensible g 8000
physical values are needed to describe the bar. Let’s 2 6000
consider: 4000
bar length L = 0.5 m 2000
bar width Tw = 0.05 m 0
bar height :h = 00117 m R =
Young’s modulus Y = 2.1310° Pa
purple wood density : p = 1015 kg.m™3 Figure 8: Spectrogram of g(t,L) for a = 2e — 2 and

b=>5e—8 ds like lass bar).
This gives the modes k,. For the synthesis, ¢ (sounds like a glass bar)

only the first twelve bar modes (# 0) are taken
into account. They are approximatively given by
{9.46, 15.71, 21.99, 28.27, 34.56, 40.84, 47.12, 53.41,
59.69, 65.97, 72.26, 78.54}. When no damping is

present, the first and last modes correspond to 16000
fi = wi/2r) = 220Hz and fi» = 15190Hz 14000
respectively.
As the damping coefficients are unknown, sev- ;'?12000
eral physical orders of magnitude are presented: prac- < 100007
tically, a ~ 1072 and b ~ 107% seem to be ac- £ 8000}
ceptable. Three sounds are synthetised and their ;'feooo—
respective spectrograms are presented in Fig. (7), =
Fig. (8) and Fig. (9). Qualitatively, these examples 4000
show that b is representative of wooden bar sounds 2000
(marimba), whereas a is more representative of metal- 0 : : : ‘
. 0] 0.2 0.4 0.6 0.8 1 1.2 1.4
lic bar sounds (xylophone). Time (in's)
It can be heard that both dampings give rise
to different audible behaviours and provide a large Figure 9: Spectrogram of g(t,L) for a = 4e — 2 and
set of sounds close to percussive bar sounds. These b = 3e — 9 (sounds like a metallic bar).

sounds can be downloaded at the following URL:
http://www.ircam.fr/anasyn/helie/barres/sons/
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In this paper, a wide variety of damping models of
bar-like instruments has been proposed, closely anal-
ysed and numercially simulated; they are energetically
consistent and preserve the modal structure of the sys-
tem; moreover, with the appropriate choice of only two
parameters, an infinite number of poles are assigned
in the frequency domain, which enables wooden bars,
glass-like bars and metallic bars to be synthesized eas-
ily, thus proving the usefulness of such hybrid models.

As a straightforward extension, an analogous
treatment can be performed on a wave equation, on
physical models which are non-uniform in space, and
also on even more realistic physical models in 2 or 3
dimensions. Moreover, instead of using the first time
derivative as the leading damping term, some non-
standard and quite tricky damping models can also be
used, which involve fractional derivatives or integrals,
and more generally so-called “diffusive representations
of pseudo-differential operators” that are dissipative
(see [6]); the modal structure is still preserved, but the
dynamics of the modes can display some anomalous
long-memory behaviour.

REFERENCES

[1] T. Hélie and O. Fidaire. Synthese sonore et sim-
ulation d’amortissements dans ’équation des bar-
res. Master’s thesis, Ecole Nationale Supérieure
des Télécommunication, Paris, France, june 1997.

[2] A. Chaigne and V. Doutaut. Numerical simulation
of xylophones. I. Time-domain modeling of the vi-
brating bars. Journal of the Acoustical Society of
America, 101:539-557, 1997.

[3] K. F. Graff. Wave motion in elastic solids. Dover
publication, New York, 1973.

[4] M. Gérardin and D. Rixen. Théorie des vibrations.
Masson, Paris, 1993.

[5] V. Doutaut, D. Matignon, and A. Chaigne. Nu-
merical simulation of xylophones. II. Time-domain
modeling of the resonator and of the radiated pres-
sure. Journal of the Acoustical Society of America,
104(3):1633-1647, September 1998.

[6] D. Matignon, J. Audounet, and G. Montseny. En-
ergy decay for wave equations with damping of
fractional order. In Proc. Fourth international
conference on mathematical and numerical aspects
of wave propagation phenomena, pages 638—640,
Golden, Colorado, June 1998. Inria-Siam.



