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Abstract

This paper introduces the modeling of the radiation of a sphere, part of which, Sy,
is pulsating with an uniform velocity while the other remains motionless. Velocity
and pressure can be expressed analytically in the space outside the sphere using
spherical harmonic decomposition. The radiation impedance can then be deduced,
providing a model approximating the radiation of horns, accounting for the curvature
of the wavefront. The angular dependence of the radiation impedance is eliminated
by averaging on Sp to remain compatible with most of simplified models of horns
whose equations depend on a unique space variable. This averaging provides an
analytical expression representing the optimal approximation, minimizing the mean
square error. Three simple parametric models, which are inexpensive to simulate
and approximate this model of impedance with various precisions, are proposed.
They are well adapted to real-time applications, such as the simulation of wind
instruments. Their parameters are given according to the geometrical characteristics
of Sp and the stability is checked. The error introduced by these models is negligible

compared to the original due to averaging on Sp.

PACS numbers: 43-20, 43-75.
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1 Introduction

The shape of a horn has a strong influence on the acoustic wave propagation. This is
one of the reasons why the acoustic modeling of pipes with varying cross-sections has
been extensively investigated, witnessed by the large bibliography compiled by Eisner [1]
on the “Webster’s equation”. The ongoing interest in this equation, derived in the 18th
century by Bernoulli [2] and Lagrange [3], follows from the fact that this model has a
one-dimensional space dependence. The space dimensionality goes hand in hand with
algorithmic complexity, as can be observed in the higher cost modal decomposition used
by Cho [4] versus the lower cost one used by Berners [5]. The eigenfunctions used by
Cho to give the rigorous solution of hyperbolic horns have a two dimensional dependence,
whereas the ones used by Berners to solve the Sturm-Liouville problem related to the
Webster’s equation have only one.

The Webster’s model contains an ambiguity, however. It can be computed from dif-
ferent and non-equivalent assumptions about the wavefront geometry, and has been often
computed assuming planar waves. Authors such as Lambert [6] or Weibel [7] reported
the inadequacy of this planar wave assumption, and postulated spherical one. The quasi-
sphericity of wavefronts was experimentally established in the low frequency range and
carefully studied by Benade and Jansson [8, 9.

The same ambiguity effects the radiation impedances used in modelings of pipes based
on one-dimensional propagation equations. The most widely used impedances are those
of a baffled planar piston [10], an unflanged circular pipe [11], an unbaffled planar pis-
ton [12], and a flanged circular pipe [13], for which planar waves are assumed as a good
approximation.

As a matter of fact, these models are extensively used in modelings of musical instru-
ments: the Rayleigh’s model for an oboe [14], the Levine’s model for a brass [15], etc...
The difference between piston and pipe models is the awareness of evanescent modes.

Caussé, Kergomard, and Lurton [15] have introduced a correction for the case of spherical
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waves, normalizing the impedance by the ratio A,/A; where A, and A, are respectively
the planar and spherical areas. This result was later used by Scavone [16]. However, this
constant ratio does not account for effects due to the curvature of the wavefront, such as
modifications of resonance features or phase. Thus, when the angle 6, of the tangent cone
at the horn output (see Fig. 1) is not small, the curvature is important and these effects
should be taken into account.

In order to obtain a more adequate geometric model for which rigorous analytical

expressions can be derived, we propose to (see Fig. 1):

(i) assimilate the true wave velocity with the velocity of a pulsating portion Sy of a

sphere § inscribed in the tangent cone at the horn output,

(ii) assimilate the rigid walls of the pipe with the other portion of the sphere S — &

which is assumed to be motionless.

|[Fig. 1 about here]

The assumption (i) makes possible a correct approximation of the shape of the wave-
front. The assumption (ii) proposes a geometry rather distant from that of the horn, but
allows the rigorous derivation of analytical equations. It preserves the concept of the in-
side and the outside of the pipe, and keeps a realistic spatial filling. More importantly, the
model derived by Levine [11] is validated “throughout the wavelength range of dominant
mode (planar wave) propagation”, and as a result this model is valid over a comparable
range. Because of the geometric error induced by (ii), this range corresponds to large
wavelengths with regards to the radius of §, noted ry. This approximation remains valid
near the axis of symmetry for small wavelengths with regards to ro. This can be qual-
itatively justified because the effect of diffraction is weak and the phenomenon of the
acoustic shadow dominant. Additional model simplifications are often needed to be well
adapted to time-domain simulation. For example, Doutaut, Matignon, and Chaigne [17]

have chosen to approximate Rayleigh’s impedance as well as Levine’s because of such
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practical considerations. They approach both impedances with second order linear dif-
ferential systems. In this paper, similar approximated models are designed in the class of
linear differential systems with delay.

The structure of the paper is the following: section 2 establishes exact analytical

expressions, and studies the impedance function with respect to
the dependence on physical constants (py and ¢g) and on the radius 7o,
the asymptotic behaviour versus frequency,
the influence of the angle 6.

The asymptotic study shows that at first approximation the impedance is comparable to a
first order high-pass transfer function as commonly observed for the radiation of pipes. In
Sec. 3, the analytical expression of the average of the impedance on the portion of a sphere
So is derived. The averaging approximation comparable to that of Rayleigh or Levine is
justified and errors are estimated. It leads to the angular independent quantity which
minimizes the mean square error. Sec. 4 defines three simplified models which approach
more and more closely the average impedance. As mentioned above, these models are
sought in the class of differential systems with delay, adapted to time-domain simulation.
Their parameters are estimated in order to obtain the best approximation of the average
impedance, and are given according to 7, 6y, po, and cg. Additonal errors are quantified.
A comparative study is then summarized in a diagram outlining the traddeoffs between
precision and complexity in the three models. Finally, the dynamical systems associated

with both impedance and admittance models are given and their stability is checked.
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2 Radiation of a portion of a sphere

2.1 Basis of decomposition and analytical expressions

Let S be a sphere the surface of which is animated by a radial velocity expressed in
Fourier’s domain by vs(6, f) 2™/t e.. The amplitude of this velocity can be decomposed

on the basis of Legendre polynomials

+o0o

vs(0, ) =) Va(f) B(cosb) (1)
where
Vi(f) = 2"; ! /0 "us(0, f) P (cos 0) sin 8 df. (2)

Under the assumption of linear dissipationless acoustics, the pressure radiated in external

space (r>r) takes the form [10, 18]

()

p(r,8, f) et = —ZZ m Va(f) B (cos ) e/, (3)

co

h, represent the outgouing spherical Hankel functions. Z, = pgcq is the characteristic
specific impedance.
These results make possible the calculation of the radiated pressure for the problem

determined by (i) and (ii). The coefficients V,,(f,6y) are deduced from Eq. (2) taking

vs(0, f) = vo(f) Lo,g0) (0) by Vn € N,
Va (0o, f) = vo(f) 1n(60) (4)

where

o B (cos0) — B (cos o)

: (5)

,U/n(eo)

with the convention P (X) = 1, and where 114, (§) = 1if 6 € [0, 6] and 1jg 9, (f) = O if

not.
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The transfer function Hg, (7,0, f) = p(r,0, f)/ve(f) between the velocity of Sy and the

pressure in a point of the external space is given by

Halfor0) = ~i2, - (W)uw) P (cos ). (6)
o\J ot h (271_0‘);7‘0) n\Y0

The specific impedance on &y is

ZSo(fa 9) £ HSo(fa Tan)' (7)

2.2 Dependence of the impedance on pgy, ¢y and r,

Considering the non-dimensional variables A = r/ry and v 2 ryf/co, and normalizing
Hg, by the characteristic specific impedance Z, leads to the definition of the normalized

transfer function
Hao, (v, A, 0) —ZZ pn (60) B (cos 0) — L
from which Hg,(f,r,6) is straighforwardly deduced by
ro . T
HSo(fara 0) = Zc Hé’o <_0f7_70> . (9)
Co To

The normalized wavenumber 27v which appears in Eq. (8) is kry where £ is the acoustic
wavenumber.

For A = 1, the normalized specific impedance on Sy is obtained

Z,(v,0) £ =i > pin(60) B,(cos 0) v (27v) (10)
where
ule) 2 252 (1)

In the following sections, these quantities are used because of their independence from

physical constants and the radius rg.
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2.3 Asymptotic study of the normalized impedance versus fre-
quency

From [19] (see equations (10.1.17) and (10.1.24)), it follows that

—1z

ha(2) :"+le ZC'“ (2iz)7F (12)
and

o' (2) = ~ha(2) = haa (2) (13)

where C¥ are the binomial coefficients. -, takes the simpler form

n+1 -1

Z 222
n

’Yn(z) = ; . (14)
Z c* +%(2iz)_’“

The asymptotic expansion of v, for z — 0 is written as follows

-1

Cn—|—1
+2
T(z) = [n 20” z+0(z)
4(n+1

This result shows that at low frequencies and for each mode n, Zy, has the behaviour of
a first order derivation operator. Under the assumption of the convergence of the series,

the expansion takes the form for 6 € [0, 6]

1) pn
Zy, (v, 0) 81%1/247117;-1——571(003) P (cosf) + o(v). (16)

0

The same expansion for — 07 is written

T (1) [ Z:+:Cg+}+°(1);i+°(1)' (17)
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Thus, at high frequencies and for each mode n, 2y, has the behaviour of a multiplicative
gain. Under the assumption of the convergence of the series, the expansion takes the form

for 6 € [0, 6],

Zgy(1,0) = 1p () +0(1). (18)

u_l—)0+

2.4 Dependence of the impedance on 6 and 6

An exact study of the dependence of Hy, on (6,6,) is difficult. The study is therefore
restricted here to the numerical study of Zy, (v, 6). The results presented below are ob-
tained for 6y € {30°;70°}, 6 € [0°,100°] and v € [0, 10], and the calculations are made for
a finite number of modes n € [0, N]y with N = 300.

The effect of the truncation of the n modes on velocity vs is highlighted by Fig. 2 (a) (b)
which represents Y- 11, (6o) P(cos 8) ~ ().

In Fig. 2 (¢) (d), the modulus of the adimensional quantity ps(8,v)/(Z.vo(v)) is
represented for the same angles 6y. Note that Vv €R and VO €10, 6], ps(8,v)/(Z:vo(v)) =
2y, (v,0). Figures 2 (c) (d), show the strong attenuation of p on §—3&,, the asymptotic

behaviour at low frequencies, and the dependence on 6.

[Figure 2 about here]

3 Impedance averaged on the portion Sy of the sphere

S

In many simplified contexts, models of pipes present a space dependence on one vari-
able only, most often the X-coordinate along the axis of the pipe. This is the case for
waveguide modeling [16] or for any other one-dimensional modeling such as the Webster’s
equation [5].

To connect a radiation impedance to the end of such a model, it is necessary that this

10
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impedance does not depend on other space variables. In the present paper, the normalized
specific impedance Zy, (v, #) must be approximated by a quantity independent of the angle

6. It is proposed here to average the impedance on Sy.

3.1 Average operator

The average operator on Sy is defined as follows

£ (f), = " £(6) sinfdg

0 1 — cos b,

(19)

A remarkable property is that (f). is the 6-independent quantity F' which minimizes the
0

mean square error {|f — F|?) . This result comes from the fact that (£¢)lf — g/?)

So So

is a scalar product on the space of the functions continuous in 8 € [0, 6], and that ( f>50 is

the orthogonal projection of f on the subspace of the functions independent of 6.

3.2 Analytical expression

The application of the linear operator <')so on Eq. (8) gives, after evaluation for A =1,

(Zao)s () = =i ) tn(60)(B(cos0)), 7a(270). (20)

According to Eq. (2) and Eq. (4),

2 Nn(ao)
) 21
1—cosfy 2n+1 (21)

(B (cos ), =

Finally, the following analytical expression is obtained by

“+o00

() = o> R o) (22)

n=

and the result of its computation (still for N = 300) is presented in Fig. 3 (a) (b).

<ZSO>SO( f) is easily obtained by

Zs) () = 2. <zeo>50(@f) | (23)

Co

|Figure 3 about here|

11
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3.3 Quantification of errors

The mean square error made on Zy, is

Eo(0, v) 2 <‘z(,0 (24, 2>S(y). (24)

0

This error (computed for the first modes 0<n<N) is represented on Fig. 3 (c). It is
decreasing with the angle 6y, and is less than 10~! for all » when 6, > 50°. This is
still the case for the relative error &(fy, v)/ <|Zgo\2>8§1/) so that <Zao>5§V) is a satisfactory
approximation of Zy (v, #) over the complete frequency range, for large angles 6, > 50°.
The normalized frequency for which this square error is maximum is graphically es-

timated to v* = , Where ), is in radians. For example, acoustic measurements on a

0.58
o

Blessing trumpet [20] show that the bore behaves as a resonator at frequencies f < 1600Hz
corresponding to v < 0.3 whereas v* =~ 0.6. Therefore, the internal resonance frequencies

are not in the vicinity of the maximal error zone, so the averaged specific impedance

model can be used to represent and study the internal behaviour of the instrument.

4 Simplified models of impedance

The analytical expression Eq. (22) is adapted to the modeling of resonators depending
on a unique space variable, but remains too complicated for time-domain simulation:
the functions =, correspond to complicated time operators costly to implement. Three
parametrized models M,(CP(GO))(V) (k = 1,2,3)which approximate (Zgo)so(u) are now pre-
sented. According to the initial goal, they all belong to the class of the differential systems
with delay |[21].

The parameters p(fp) are estimated by minimizing the criterion defined by the average

on v € [0, +0o0] of the mean square error on Sy

(6o, v) = <‘ 25 — MPO)

> ) (25)

0

12
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or equivalently, of the mean cumulated error

AE(8o,v) 2 Ex(Bo, ) — Eolbo, ) = |(Za,). (v) = MPC ()] (26)

So

These two quantities lead to exactly the same optimum but the second one does not
require the application of ()S for each minimization.
0

In practice, the criterion built on A&, is numerically approximated by

. N 2

-2 ,U‘n(‘%)z

1—cos 6, 2n+1
n=0

Cu(p(t0) = 15> n(2n) = MP®) (1) (27)

for N =300, v, = Umin+16, VI € [0,L—1]y, 6, = YmasFmin p .0 = 1073, Ve = 10, and
L = 400. Usually, this choice largely covers the range of audio frequencies. For the same
Blessing trumpet [20], with ¢y = 340m.s™!, the range goes from 5Hz to 52kHz.

In the following, the results are given for , increasing from 10° to 90° with a step of

2°.

4.1 First order high-pass model

The simplest model presented here reproduces the asymptotic behaviour of (Zg,) (v),
0
i.e. the one of a first order high-pass transfer function, with a unitary limit gain at high

frequencies

(ve) A il//l/c

(28)
Parameter v, represents the cut-off frequency, and must be estimated for each 6.

The estimation of v, could be carried out on the asymptote of <290)so(”) at low fre-
quencies using Eq. (16). However, it is preferable to minimize C;(v.) which ensures the
required optimization. This minimization is computed using the MaTLABO function
fminbnd [22, 23| . The convergence of the algorithm leads successfully to the optimal

parameters Ve, (o), represented on Fig. 4.

[Figure 4 about here]
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The model Mg”c(a‘)))(l/) obtained for these values (see Fig. 5 (a) (b)) gives a good
approximation for large angles #y. This can be observed on the Fig. 5 (c¢) which represents
the quadratic error A& (fy, v). Remember that A&, is added to the averaging error &, to
give the total error &;. Figures 3 (c) and 5 (¢) show that Vv, 6y, A& <K &.

|Figure 5 about here|

A polynomial has been found
P(X) = —0,4343X"4+2,321 X~ 5,251 X2 +7,182X +2,914 1073 (29)
which gives an approximate value of the optimum for 6, € [10°,90°]
Veapproz(0o) =1/ P(m 05/180) (30)

with a relative error less than 1072, Furthermore, the relative error introduced on M; by

("Copt)i ("capproa:)
M My <1073

this approximation of v, is Vf,, v, loord)
Ml copt

4.2 Second order high-pass model
For small angles 6, a second order high-pass model gives a better represention of (Zgo)so

since it can exhibit a resonance. Because of the unitary limit gain of (Z,) (v) at high
0

frequencies, this model has again a particular form

2
ait — ()

MGE) (1) & - (31)
1+ 2i€ % — (—)

The optimization of the parameter values (o, &, v.) is obtained by minimizing the

criterion Cy(a, &, v,) with the MaTLABO function fminsearch [24, 25] which performs

the local minimization of a function of several variables. The goodness of the global

optimum is conditioned by the quality of initialization. Initialization is thus carefully

selected. For the smallest angle 6, = 10°, the initialization parameters are analytically

derived so that the asymptotic behaviour of My at low frequencies, and its resonance

parameters (frequency, modulus, and phase) are identical to those of (Z5,) (see Fig. 6).
0

14
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For the following optimizations, the continuity of both Mg‘*’é’”c) (v) and (2, >50 in 6 is taken
advantage of. This is done for successively larger 6, values by initializing the parameters
a, &, and v, with the optimal values from the previous step in the optimization algorithm.

[Figure 6 about here]

The convergence of the algorithm leads to the satisfactory optimal parametric values
represented on Fig. 7.

[Figure 7 about here]

The improvement obtained with M, (see Fig. 8 (a) (b)) over M, is significant since
almost an order of magnitude is gained from A& to A&, (see Fig. 8 (c)).

[Figure 8 about here]

The optimal parameter values can be approached with a relative error less than 103

for By € [10°,90°] by

a(fo) = 1/Pa(m0/180) (32)
£(0o) = P:(m6/180) (33)
V() = 1/Py(m0,/180) (34)

where P, (X), P:(X) and P, (X) are low order polynomials, the coefficients of which are
given in Appendix A. The relative error introduced on M, by these approximations of «,
€ and v, is less than 1073.

This second order model is satisfactory for large angles (6, >60°) but the resonances
associated with <Z”’0>so are still poorly represented for smaller angles. To cope with this
problem, rather than continuing to increase the model order, a model with a delay is
prefered. This choice keeps a low cost for time-domain simulation and is well adapted to

(Z4,), which has nearly harmonic resonances.
0

15
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4.3 Model with a delay

Since the average shape of <Z@0>S may be represented by M, an attractive improvement
0
which seems adequate is to multiply it by a factor close to unity and representing weak

resonances. These resonances must be nearly harmonic and with an amplitude decreasing

72i7rﬁ
with v. Such a factor is given by 1+ %_ The third model then takes the following
’L_
Vg
form
(1)
atL — (L —2im -
MP () 2 /A /51e - (35)
1+2ig L — (—) ti,

where p = (o, &, v, B, Vr, 1g).-

The function fminsearch is again used to optimize Cs(«, &, ve, B, vy, vq). As before,
the initialization of the parameters for the lowest angle 6, = 10° must be carefully chosen.
This is made by taking the optimal parameters o, £ and v, obtained for M,. v, is
determined by the harmonic periodicity of <Z€0>so' [ and v, are determined by using trials
until obtaining a very accurate result after convergence. For larger angles, the continuity
of M3 in 6, is used again. The convergence of the algorithm leads to the satisfactory
optimal parameter values p represented on Fig. 9 (a) (b).

[Figure 9 about here]

The results obtained with M3 are definitely better than with My and so close to
(Zg())SO that only the error A&; is represented on Fig. 10.

[Figure 10 about here]

The complete set of parameter values is given in Appendix B. The round-off of these
values introduces a relative error on M3 lower than 1073, This last model gives a good

approximation of (Zy, >so even for the small angles 6.

4.4 Discussion on the modeling errors and comparisons

For non-dissipative fluids, the conservation of the radiated energy and of the mass permits

a rigorous evaluation of the real part of the radiation impedance at the low frequency limit.

16
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The calculation leads to

1 — cos b,

Re(Zg, ), ()

sor /=
0

(27v)% + o(v?). (36)

This result was used by Caussé, Kergomard, and Lurton [15] to give a correction ratio
on the Levine’s impedance taking into account the spherical wave assumption. This
theoretical result is used here to compare the validity of all models in the low frequency

range, computing the coefficients of the second order series expansion:

M) =0+ i v + P2 + o(1?). (37)

0

These coefficients are given in table I and are represented on Fig. 11.

[Fig. 11 about here]

The coefficient ¢, computed for <Z90>so (still with N = 300) matches exactly with the
theory. For M, the relative errors on ¢; and ¢, are very large for low aperture angles.
On the contrary, for Ms, they are much smaller for low aperture angles than for large
ones. This can be explained because no frequency range is favored by the optimization.
For M3, the size of the errors observed on ¢; and ¢ validate the approximation of <ZgO)SO
by Mjs. Moreover, although the improvements made on M3 were put into the middle
and high frequencies, this model gives very good results for low frequencies as well.

To discuss and validate the choice of the criterion Cx(p(6y)) given by Eq.( 27), a second
optimization has been computed for this criterion under the constraints that cgk) = cfza())‘g‘)
and cgk) = ci*°. Because of the number of parameters, both constraints can be imposed
only for My and Mj3. The associated errors A&, and A& are given in Fig. 12 for the
apertures 6, where the relative errors on ¢; and ¢y are maximal.

These results show that the constraints make the error decrease in the very low fre-

quency range but make this error increase much more in the middle frequency range,

particularly for large apertures 6. Since the additive errors A&, are much smaller in the

17
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low than in the middle frequency range, the choice is made to preserve the parameters
obtained for the unconstrained optimization.

Consequently, the optimum <ZQO>SO is approximated by the models /\/l,(f’:)m,3 for the
parameters optimized without constraints. These models can be used in the following

way:

1. For an angle 6, given in degrees, the model Mg’) is selected according to the ap-

proximation accepted on (Z,,) by means of the diagram in Fig. 13 and Fig. 14.

So

2. The optimal parameters p(fy) of the model are given by Eq. (30) for M, Eq. (34)

and table III for M5, and table IV for Ms.

3. The radiation specific impedance is then approximated by

Zs,(f) ~ Z Mé"(@f) . (38)

Co

[Figure 13 about here]

[Figure 14 about here]

4.5 Dynamical systems

The three models expressed above in the frequency domain correspond all to differential
linear systems with delay. These low cost systems, well adapted to time-domain simula-

tion, can be written in the unified form

3 3

dkp(t dlo(t 2 d"v(t—71
34, ot _ 5 ] t(l) +;CH¥ (39)

k n
k=0 dt =1 d d

where coefficients Ay, B; and C,, are given in table IT with w, = 2wcov,/ro, wa = 27cova/ o,
T =r0/(Vr¢p)-

[Table IT about here]

In the following, the BIBO (Bounded Input, Bounded Output) stability of the various
dynamical systems is studied. The dynamical systems of specific impedance (i.e. con-

trolled by v(t)) are all unconditionally stable. Poles of their Laplace transform L(s) are

18
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respectively given for the three models by

P = {—w.}
P = {w(-¢+iyI-90+9)}

P3 = PQU{—wd}

with w, > 0, wg > 0 and 0 < £ < 1. Their real part are all strictly negative.
The dynamical systems of specific admittance (i.e. controlled by p(t)) are all limit-

stable since zeros of Ly (s) are given by

Z = {0}
2, = {0,—ow.}

Zg = {0, —awc} U 63

with & C] — 00, 0[xiR (see Appendix C). The root 0, responsible for the limit of stability,
thus requires the system to be controlled by a pressure of zero average.

In addition, in time simulation, the decomposition of the velocity and the pressure
into outgoing (+) and incoming (—) waves is often used, as well as the reflexion functions
on the outlet side of the guide. For example, for a spherical wave travelling in a cone, the
specific impedances of outgoing and incoming waves are given by Z= = Z,./(&1 + Z?‘f)_ow)

The coefficient of reflection at the end of the cone (r=rg) is then determined by

p (f) = Re(f) (),
Ri(f) = (1 - 2i7fgof) M, (Z—gf) - 1.
(v a) i (1)

The poles and zeros can be given analytically for Ry and Rs by

Pr, = {—(we+m0/co)/2}

Z'Rl = {}
PRQ = {Tla TQ}

o+ Wwerg/c
ZRz = { 0/ °

1+ (26 — a)row:/co
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with 71 + 72 = —(row.(2§ + a)/co + 1)/2 < 0, riry = rowe/co(a + rowe/co)/2 > 0, and
26 — a > 0 (see Fig. 7).
Thus, all the poles and zeros have a strictly negative real part. As a result, the
dynamical systems associated with Rq, Ro, 1/R; and 1/R, are unconditionally stable.
The study of the stability of R3 and 1/R3 could not have been carried out analytically.
In spite of the mathematical difficulties, stability can be numerically checked by computing

the pole values.

5 Conclusion

Considering the radiation of a horn as a pulsating portion of a sphere allows one to
derive analytical models of radiation which account for the curvature of wavefronts. The
theoretical models developed in this article show that effects due to this curvature are not
negligible for large apertures . In particular, averaging the specific radiation impedance
models leads to simplified analytical expressions with one-dimensional space dependence
which can be compared to Rayleigh or Levine impedances. For small apertures, the
averaged models exhibit similar behaviours (including resonances). For large apertures
where a planar wave hypothesis no longer holds, significant differences break out and
resonances vanish. The absence of local maxima is observed for 6, > 0" = 74° even if
inflexion points remain. This study shows the relevance of this modeling by looking at
the importance of curvature.

Furthermore, the calculation of the error introduced by the averaging on the portion
of the sphere shows that the quality of averaged models is better for large apertures than
for small ones. Such models are a good approximation of the radiation on the complete
frequency range, especially for flaring horns. In this sense, they give an interesting alter-
native to the normalization of the Levine formula proposed by Caussé, Kergomard, and

Lurton [15].
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From a practical point of view, the second simplification presented in Sec. 4 leading
to the three models Mj_ 23, can be considered as the main result of this work. These
last models provide stable, time-continous, dynamical linear systems, composed of time-
differential and delay operators. The added errors are negligible compared to those due to
averaging. Starting from them, a low-cost discrete time-domain simulation can be derived
using finite difference methods.

Finally, although this work was dedicated to the modeling of radiation impedance,
it is also useful for the simulation of the acoustic pressure in a given point of external
space. This can be done by exciting the transfer function Hg, studied in Sec. 2 2.2 with
the wave velocity vy computed for the internal dynamics. Given geometric parameters of
the portion of the sphere and the coordinates of the listening point, the transfer function
depends only on the frequency. Models similar to My—; 23 could then be used, and their

parameters estimated, to approximate this last transfer function.
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APPENDIX A: Polynomial coefficients associated with

the optimal parameters of M,

[Table III about here]

APPENDIX B: Values of the optimal parameters of Mj

[Table IV about here|

APPENDIX C: Proof of the stability of the specific ad-

mittance associated with Ms;

The zeros induced by the delay and whose solution whole previously definite is £3 are

s = Xc¢y/ro such that
X + 2108 (14 BeX7) =0 (C1)

By posing X = z + 1y, the real part of the equality C1 is written

f(z) = cos(y/vr) (C2)
where
T ex/vr
@2 (2 +1) 5 (©3)

The study of f, continuous on R, shows that it is strictly decreasing for z €]z*, +o0[ on
10, f*], reached its minimum for z = z* at f*, and is strictly increasing for = €]z*, +00|
on |f*,4+o0o[, with z* = —(27v¢ + v;) < 0 and f* = —v,. /B exp(1 + 270 /v;) < 0.

[Table V about here|

Thus, there is a unique z; such as f(x;) = 1. Moreover, f(0) = 1/8 and 1/ > 1 (see
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Fig. 7). Consequently, z* < z; < 0 and Vz > zq, |f(z)| > 1.

The function |cos| being raised by 1, it can be concluded that
r € |—o0,z1] C ]—o00,0] (C4)

and thus that the real part of the solutions of Eq. (C1) are all strictly negative.

23



"Radiation of a portion of a sphere", Acta Acustica, last revised: 05 December 2002 T. Hélie

Acknowledgements

The authors would like to thank Jean Kergomard and Michel Bruneau for interesting

discussions about this work, as well as David Ralley for proofreading.

24



"Radiation of a portion of a sphere", Acta Acustica, last revised: 05 December 2002 T. Hélie

References

[1] E. Eisner. Complete solutions of the “Webster” horn equation. J. Acoust. Soc. Amer-.,

41:1126-1146, 1967.

[2] D. Bernoulli. Physical, mechanical and analytical researches on sound and on the
tones of differently constructed organ pipes. Mém. Acad. Sci. (Paris), 1762. (in

French).

[3] J. L. Lagrange. New researches on the nature and propagation of sound. Misc.

Taurinensia (Mélanges Phil. Math., Soc. Roy. Turin), 1760-1761. (in French).

[4] Y. C. Cho. Rigorous solutions for sound radiation from circular ducts with hyperbolic

horns or infinite baffle. Journal of Sound and Vibration, 69:405-425, 1980.

[5] D. P. Berners. Acoustics and signal processing techniques for physical modeling of

brass instruments. PhD thesis, Standford University, 1999.

[6] R. F. Lambert. Acoustical studies of the tractrix horn. I. J. Acoust. Soc. Amer.,

26:1024-1028, 1954.
[7] E.S. Weibel. On Webster’s horn equation. J. Acoust. Soc. Amer., 27:726-727, 1955.

[8] A.H. Benade and E.V. Jansson. On plane and spherical waves in horns with nonuni-
form flare. I. Theory of radiation, resonance frequencies, and mode conversion. Acus-

tica, 31:79-98, 1974.

[9] A.H. Benade and E.V. Jansson. On plane and spherical waves in horns with nonuni-
form flare. II. Prediction and measurements of resonance frequencies and radiation

losses. Acustica, 31:185-202, 1974.

[10] P. M. Morse and K. U. Ingard. Theoretical acoustics. McGraw-Hill, New York, 1968.

25



"Radiation of a portion of a sphere", Acta Acustica, last revised: 05 December 2002 T. Hélie

[11] H. Levine and J. Schwinger. On the radiation of sound from an unflanged circular

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

pipe. Physical Review, 73:383—-406, 1948.

T. Nimura and Y. Watanabé. Effect of a finite circular baffle board on acoustic

radiation. J. Acoust. Soc. Amer., 25:76-80, 1953.

A. N. Norris and I.C. Sheng. Radiation of sound from a circular pipe with an infinite

flange. J. Sound Vibration, 135:85-93, 1989.

G.R. Plitnik and W.J. Strong. Numerical method for calculating input impedances

of the oboe. J. Acoust. Soc. Amer., 65:816-825, 1979.

R. Caussé, J. Kergomard, and X. Lurton. Input impedance of brass musical in-

struments - comparison between experiment and numerical models. J. Acoust. Soc.

Amer., 75:241-254, 1984.

G. P. Scavone. An acoustic analysis of single-reed woodwind instruments with an em-
phasis on design and performance issues and digital waveguide modeling techniques.

PhD thesis, Stanford University, 1997.

V. Doutaut, D. Matignon, and A. Chaigne. Numerical simulations of xylophones.
I1. time-domain modeling of the resonator and of the radiated sound pressure. J.

Acoust. Soc. Amer., 104:1633-1647, 1998.

Michel Bruneau. Manuel d’acoustique fondamentale. études en mécanique des matéri-
aux et des structures. Hermés, Editions HERMES, 8 quai du Marché-Neuf, 75004

Paris, FRANCE, 1998. p.245.

Milton Abramowitz and Irene A. Stegun, editors. Handbook of mathematical func-

tions. Dover publications, inc., New York, 1970.

26



"Radiation of a portion of a sphere", Acta Acustica, last revised: 05 December 2002 T. Hélie

[20] R. Caussé. Geometrical data and acoustical measurements of a blessing trumpet.
internal data, 1999. Equipe acoustique instrumentale, Ircam - centre Georges Pom-

pidou, 1 pl. Igor Stravinsky, 75004 Paris, France.

[21] J. K. Hale. Dynamics and Delays. in Delay Differential Equations and Dynamical
Systems, Proc., 1990, S. Busenberg & M. Martelli (Eds.). Springer Verlag, 1991.

Lecture Notes in Mathematics 1475.

[22] Matlab function fminbnd. Original coding by Duane Hanselman, University of Maine.

copyright (c) 1984-98 by The MathWorks, Inc., 1998. Revision: 1.6.

[23] Forsythe, Malcolm, and Moler. Computer Methods for Mathematical Computations.

Prentice-Hall, 1976.
[24] Matlab function fminsearch. Copyright (c) 1984-98 by the mathworks, inc., 1998.

[25] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright. Con-
vergence properties of the nelder-mead simplex method in low dimensions. Society for
Industrial and Applied Mathematics, 9:112-147, 1998. http://epubs.siam.org/sam-

bin/dbq/article/30347.

27



"Radiation of a portion of a sphere", Acta Acustica, last revised: 05 December 2002 T. Hélie

S-8

Figure 1: The radiation of the horn is approximated by that of the sphere S, part of
which, &y, is pulsating with an uniform velocity while the other remains motionless. The

radius of § is noted ry, and the angle of the tangent cone at the horn output is noted 6,.

28



"Radiation of a portion of a sphere", Acta Acustica, last revised: 05 December 2002 T. Hélie
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Figure 2: Approximation of the normalized velocity Vs/vy and the modulus of the
normalized pressure in the frequency domain ps/(Z.vq), both computed for the first modes
(N = 300). (a) Normalized velocity calulated with 6, = 30°. (b) Normalized velocity
calulated with # = 70°. (c¢) Normalized pressure calulated with # = 30°. (d) Normalized

pressure calulated with 8 = 70°.
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(b) 8 ’10 90 Bo

Figure 3: Computation of the averaged normalized specific impedance <Z90>so in the

frequency domain for the first modes (/N =300) and for 10° < 6, < 90° and 0 < v < 10.

(a) Modulus of <Z90>so' (b) Phase of (Zgo)so. (c) Mean square error & due to the averaging.
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10 30 50 70 920

Figure 4: Optimal parameter values v.(fy) obtained for M.
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(b) 8 410 90 to

Figure 5: Comparative layouts of Mﬁ”c) (=) and (Zy,). (...) for: (a) the modulus, (b)

So

the phase. (c) Square error A&; due to the approximation of (Zgo)so by M)
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0 n " " L
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Figure 6: Local optimization of the parameter values of My for §; = 10°: modulus of

M, obtained for initialization parameters (- -), modulus of My obtained for optimized

parameters (—), and reference |<Zgo)so| (...).
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Figure 7: Optimal parameter values a(fy), £(6y), and v.(6y), obtained for M.
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(b) 8 410 90 to

Figure 8: Comparative layouts of Mg"f’“c) (—) and (Zy,). (...) for: (a) the modulus,

So

(b) the phase. (c) Square error A€, due to the approximation of (Zy,). by M),

So
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Figure 9: Optimal parameter values obtained for Ms. (a): «(6y), £(6o), B(6).
(b): ve(0o), v-(6p) and v4(6o).
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Figure 10: Square error A€;3 due to the approximation of <Z90>so by Mg )
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(a)o 30 50 70 90

theoretical . . -

Figure 11: Coefficients ¢; (a) and ¢, (b) of the series expansion of (290)50(1/) and

My—1,23(v) defined in Eq. (37).
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Figure 12: Error A&—2 3 measured on Mj_, 3 for optimal parameters with constraints
(- -), and without constraints (-). (a) Errors for £ = 2, 6, = 10° on the complete frequency
range. (b) Errors for k£ = 2, §, = 10° in the low frequency range (zoom). (c) Errors for
k =2, 6, = 90° on the complete frequency range. (d) Errors for £ = 2, 6y = 90° in the
low frequency range (zoom). (e) Errors for k£ = 3, 6, = 10° on the complete frequency

range. (f) Errors for k£ = 3, 8, = 10° in the low frequency range (zoom).
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Figure 13: Comparison of the error &, introduced by the averaging operator ()SO with
the v-maximal added errors A&;_; 23 due to the approximation of <Z‘90>so by Mg=123.
Results are given for the optimal paramters with constraints (- -) and without constraints
(- -). E* and E™ are defined by

E'2{(80,6)/ max (E(00,v)) > €> mean (Eo(6o,v)) }, and

v v

E 24 (6,6)/ mean (€0 (00,») > ¢ > min (€00 v)) }

v v
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Figure 14: Comparison of the error & introduced by the averaging operator (.)_ with
0
the v-averaged added errors A€—; 23 due to the approximation of (Zgo>s by Mg=123.
0

Results are given for the optimal paramters with constraints (- -) and without constraints

)
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(4] Co

1 1
M, o =

a 2a€—1
M, o e

My | A+8)g | (L+8)%5

2 (i)

Table I: Coefficients of the series expansion of Mj—; 3.
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M | M, Ms
Ay || 1 1 1
Ay || Twe | 28/we | 26/we+ 1/wa
Ay || 0 1| 1w + 26/ (wewa)
As || 0 0 1/(we*wa)
B | 1w | a/w, ofwe
By || 0 1| 1w+ af(wwa)
By| 0 0 1/(we*wa)
Ci| 0 0 af[we
Cy || 0 0 B/we

Table II: Coefficients of the dynamical systems associated with Mj_; 2.
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Monomials X5 X* X3 X2 X! X0
P, || 0.1113 | -0.6360 | 1.162 -1.242 1.083 | 0.8788
Pe 0 0.0207 | -0.144 0.221 0.0799 | 0.720
P, || -0.1980 | 0.2607 | -0.4240 | -0.07946 | 4.704 | -0.0220

44

These parameters are functions of 6y and used in M.

Table IIT: Coefficients of the polynomials used to model the parameters «, &, and v..
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bo o 3 Ve B vy V4

10° || 5.108 10~ | 6.619 10~* | 8.776 10~* | 4.191 10~! 2.959 4.377 1071
12° || 5.348 107 | 6.809 10! | 7.503 10 ' | 3.592 10! 2.455 3.903 101
14° || 5.54910° " | 6.98010 " | 6.585 10" | 3.119 10! 2.095 3.546 10!
16° || 5.671 107" | 7.140 10~* | 5.864 10~* | 2.775 10! 1.827 3.22310°!
18° || 577710~ | 7.289 10~* | 5.300 10~* | 2.493 10~! 1.619 2.950 10~!
20° || 5.88510°! | 7.42710°"' | 4.85410 ' | 2.24310°! 1.453 2.73110°!
22° || 5.964 10! | 7.559 10~ | 4.48110~" | 2.035 107! 1.318 2.538 10!
24° || 6.026 1071 | 7.68510°! | 4.165 10! | 1.858 10! 1.205 2.364 101
26° || 6.09310°' | 7.804 107" | 3.902 107" | 1.699 10! 1.111 2.21510°!
28° || 6.152 10~ | 7.91710~" | 3.67510~" | 1.556 10" 1.030 2.085 10!
30° || 6.199 107! | 8.026 107" | 3.476 10~ | 1.431 10" | 9.594 10! | 1.966 10!
32° || 6.246 10~ | 8.130 10! | 3.30210~! | 1.318 10~' | 8.98210~! | 1.860 10!
34° || 6.29310°' | 8.228 10~ | 3.15110~" | 1.21410~" | 8.44210~! | 1.765 107!
36° || 6.33310°' | 8.32410°' | 3.01510~" | 1.11910 " | 7.963 10! | 1.680 10!
38° || 6.37110° ' | 8415107 | 2.893 107" | 1.03410* | 7.536 10! | 1.601 10!
40° || 6.41010* | 8.502 10! | 2.785 10! | 9.561 1072 | 7.15210! | 1.528 10!
42° | 6.44710°' | 8.586 10! | 2.687 10! | 8.84910°2 | 6.80510 ! | 1.461 10!
44° | 6.482 10! | 8.666 10! | 2.598 10~ | 8.208 10~2 | 6.490 10~* | 1.396 10!
46° || 6.517 10! | 8.74310~! | 2.51710~" | 7.630 10~2 | 6.203 10~" | 1.334 10~!
48° || 6.55410°" | 8.816 10! | 2.44410° ' | 7.11510°2 | 5.94110 ' | 1.271 10!
50° || 6.590 10! | 8.887 107! | 2.377 107! | 6.666 10~2 | 5.701 10! | 1.207 10!
52° || 6.627 10! | 8.954 10~ | 2.316 10~ | 6.279102 | 5.47910~! | 1.141 107!
54° || 6.668 1071 | 9.018 10~ | 2.260 10! | 5.957 1072 | 5.275 1071 | 1.072 107!
56° || 6.71110°' | 9.078 10~ | 2.210 107! | 5.70510 2 | 5.087 10! | 9.975 102
58° || 6.75710"1 | 9.13510~' | 2.164 10~" | 5.51310~2 | 4.91210~' | 9.215 102
60° || 6.809 1071 | 9.189 10! | 2.124 107! | 5.367 1072 | 4.748 10~! | 8.461 10~2
62° || 6.865 1071 | 9.238 10~ | 2.087 10~! | 5.263 10~2 | 4.596 10~ | 7.732 102
64° || 6.924 10! | 9.285 10~ | 2.054 10~ | 5.17510~2 | 4.452 10" | 7.078 10~2
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bo o 3 Ve B vy V4

66° || 6.988 10! | 9.328 10~ | 2.024 10~ | 5.07410~2 | 4.316 10~! | 6.530 10~2
68° || 7.056 10! | 9.367 10~ | 1.998 10~ | 4.960 102 | 4.186 10! | 6.081 102
70° || 7.128 10! | 9.403 10~ | 1.97510" | 4.823 1072 | 4.063 107! | 5.734 1072
72° || 7.204 10~ | 9.437 10~ | 1.955 10~ | 4.651 10~2 | 3.945 10~ | 5.501 102
74° || 7.288 10~ | 9.467 10~ | 1.937 10~! | 4.44310~2 | 3.830 10~ | 5.377 102
76° || 7.378 101 | 9.494 1071 | 1.923 10! | 4209102 | 3.720 10! | 5.356 102
78° || 7.476 10" | 9.518 10~ | 1.912 10" | 3.951 102 | 3.615 10~ | 5.448 102
80° || 7.5831071 | 9.539 10! | 1.904 10~ ! | 3.664 10~2 | 3.51310* | 5.680 102
82° || 7.700 10! | 9.558 10~ | 1.899 10~ | 3.350 102 | 3.41410 ! | 6.082 102
84° || 7.82910~' | 9.57410~" | 1.898 10~ | 3.018 10~2 | 3.321 10! | 6.690 10~2
86° || 7.967 10! | 9.588 107 | 1.899 107! | 2.68510 2 | 3.236 10! | 7.524 102
88° || 8.115107! | 9.601 10! | 1.904 10~! | 2.388 1072 | 3.171 10! | 8.473 102
90° || 8.27410°' | 9.61310~' | 1.91110~" | 2.189102 | 3.141 10" | 9.101 10~2

Table IV: Optimal parameters values «, &, v., 5, v,, and vy.

functions of Ay and used in M3.
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T —00 x* +0o0

f(z) 0 N ff /S +oo

Table V: Variational study of the function z +— f(z) defined by Eq. (C3)
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LIST OF LEGENDS

Figure 1 The radiation of the horn is approximated by that of the sphere S, part of
which, Sy, 1s pulsating with an uniform velocity while the other remains motionless. The

radius of S is noted ro, and the angle of the tangent cone at the horn output is noted 0.

Figure 2 Approzimation of the normalized velocity Vs/vy and the modulus of the nor-
malized pressure in the frequency domain ps/(Z.vy), both computed for the first modes
(N =300). (a) Normalized velocity calulated with 6, = 30°. (b) Normalized velocity
calulated with = 70°. (c) Normalized pressure calulated with § = 30°. (d) Normalized

pressure calulated with 6 = 70°.

Figure 3 Computation of the averaged normalized specific impedance <Z"0>so in the fre-
quency domain for the first modes (N =300) and for 10° < 0y < 90° and 0 < v < 10. (a)

Modulus of (Zgo>50. (b) Phase of (Zgo)so. (c) Mean square error & due to the averaging.
Figure 4 Optimal parameter values v.(0y) obtained for M.

Figure 5 Comparative layouts of Mg”c) (—) and (Zy,). (...) for: (a) the modulus, (b)

So

the phase. (c¢) Square error A&, due to the approzimation of <Z‘90>50 by Mg”c).

Figure 6 Local optimization of the parameter values of My for 8y = 10°: modulus of
My obtained for initialization parameters (- -), modulus of My obtained for optimized

parameters (—), and reference |(Zgo)80| (...).
Figure 7 Optimal parameter values a(6y), £(6o), and v.(6y), obtained for M.

Figure 8 Comparative layouts of Mg‘“’f’”c) (—) and <Z"0>so (...) for: (a) the modulus, (b)

the phase. (c) Square error A&,y due to the approzimation of <Z"0>so by M),

Figure 9 Optimal parameter wvalues obtained for Ms.  (a): «a(by), &(6), B(6p).

(b): v(6y), v-(6p) and v4(by)-
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Figure 10 Square error AE3 due to the approrimation of <Z"0)so by Mg‘)"f’”“ﬂ"’“”d).

Figure 11 Coefficients ¢1 (a) and co (b) of the series expansion of (Zy,).(v) and

So

My=1,23(v) defined in Eq. (37).

Figure 12 Error A&_s 3 measured on My_y 3 for optimal parameters with constraints (-
-), and without constraints (-). (a) Errors for k =2, 0, = 10° on the complete frequency
range. (b) Errors for k = 2, 6y = 10° in the low frequency range (zoom). (c) Errors for
k=2, 0y =90° on the complete frequency range. (d) Errors for k = 2, 8y = 90° in the
low frequency range (zoom). (e) Errors for k = 3, 6y = 10° on the complete frequency

range. (f) Errors for k =3, 6y = 10° in the low frequency range (zoom).

Figure 13 Comparison of the error & introduced by the averaging operator ()SO with the
v-mazimal added errors AEy—123 due to the approrimation of (Zgo)so by My—123. Results

are given for the optimal paramters with constraints (- -) and without constraints (- -).

Et and E- are defined by

E+é{(90a€)/ maz (Eo(0o, 7)) > € > mean (Eo(bo,v)) }: and

v

E é{ (00,€) / mean (&0 (Bo,v)) > €> min (Eo(bo,v)) }

v v

Figure 14 Comparison of the error & introduced by the averaging operator ()SO with the
v-averaged added errors AEx_1 23 due to the approrimation of (290)50 by My—123. Results

are given for the optimal paramters with constraints (- -) and without constraints (- -).
Table I Coefficients of the series expansion of My=123.
Table IT Coefficients of the dynamical systems associated with My—; 23.

Table III Coefficients of the polynomials used to model the parameters o, &, and v,.

These parameters are functions of 6y and used in M.
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Table IV Optimal parameters values o, &, v., B, v;, and vy4. These parameters are

functions of 0y and used in Msi.

Table V Variational study of the function x — f(x) defined by Eq. (C3)
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