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Abstract

This paper presents a rigorous modelling of the linear acoustic propagation in
axisymmetric waveguides, the pressure depending on a single space variable.
The approach consists of writing the wave equation and the boundary condi-
tions for a coordinate system rectifying the isobaric map at each time. The
2D-dependence of the problem is thus transferred from the pressure to the co-
efficients of the wave equation. From this result, an exclusively geometrical
necessary condition is deduced for the admissibility of isobaric maps. How-
ever, the knowledge of the waveguide geometry is not sufficient to separate the
pressure and the isobaric map solutions. In order to develop a unidimensional
wave equation, a geometrical hypothesis is discussed. For lossless and motion-
less rigid waveguides, the deduced equation leads to exact results for tubes and
cones. It may be interpreted as a Webster equation for a particular coordinate
system so that the particular profiles for which analytical solutions of the pres-
sure exist are redefined. The wave equation is also established for large pipes
with visco-thermal losses and, more generally, for mobile walls having a small
admittance. The compatibility of the geometrical hypothesis with the exact

model is specified for this general case.

PACS numbers: 43.20.Mv, 43.20.Bi
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INTRODUCTION

This work deals with the derivation of models accounting for the acoustic propagation
in axisymmetric waveguides and which depend on a single spatial variable. The first estab-
lishment of such 1D-models is due to Bernoulli' and Lagrange?, even if the corresponding

3. This equation has been ex-

equation is commonly mentioned as the Webster equation
tensively investigated, witnessed by the bibliography compiled by Eisner*, and the various
geometrical hypotheses used for its derivation have been periodically discussed. Thus, planar
wavefronts were contested by Lambert® and Weibel® who postulated spherical ones. They
reported the inadequacy of the first assumption, exhibiting the fact that wavefronts may be
orthogonal to any curved rigid wall. The quasi-sphericity was experimentally confirmed for
a horn profile in the low frequency range by Benade and Janson’. Later, Putland® looked
for necessary and sufficient conditions for a propagative acoustic mode to be spatially de-
pendent on a single parameter. He pointed out that one-parameter acoustic fields obey a
Webster equation and exhibited parallel planes, coaxial cylinders, and concentric spheres as
the only possible corresponding potential surfaces. Nevertheless, even if finding a general
1D-modelling is hopeless and incites on other approaches®!?, the simplicity of the Webster
equation still stimulates the search for more accurate 1D-models. Thus, Agulld, Barjau,
and Keefe!! recently assumed the time-invariance of equipotential surfaces and developed
1D-modellings for both spherical surfaces and oblate ellipsoidal ones.

In this paper, a local geometrical hypothesis is proposed, namely, the quasi-sphericity of
isobars near the wall. This hypothesis agrees with Benade and Janson’s experiment’ but
does not require the wavefronts to be fixed. The general method relies on a time-domain wave
equation established for a coordinate system locally rectifying the isobaric map at each time.
The rectification ensures that the pressure is reduced to a 1D-function, but, concurrently, it
transfers the 2D-dependence of the pressure to the coefficients of the isobaric wave equation.
Establishing 1D-models requires making an assumption. The quasi-sphericity hypothesis is
chosen as a natural extension of the property satisfied by plane and spherical waves travelling
in cylinders and cones, respectively. Moreover, it does not resort to integral equations or
averaging operators as usual, and makes the rectification method able to treat the case of
rigid immobile walls as well as that of moving walls with a small admittance.

The structure of the paper is as follows: Sec. I presents the problem statement. Sec. II
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establishes all the exact derivations. General geometrical definitions are presented. The wave
equation is expressed in a coordinate system which locally rectifies the isobaric map at each
time. An admissibility condition necessarily satisfied by any isobaric map is then deduced.
The case of globally time-invariant isobaric maps is investigated. Sec. III develops a 1D-
model for rigid motionless walls. The geometrical hypothesis is first detailed. The derived
1D-model is proven to be equivalent to the Webster equation for which the longitudinal
coordinate measures the arc length of the wall. The validity of both the hypothesis and the
model is discussed. The particular profiles for which analytical solutions of the pressure exist
are then redefined. Finally, Sec. IV extends the 1D-modelling to the cases of mobile walls
having small admittances. The model is first derived, the compatibility of the geometrical
hypothesis with this generalization is detailed, and the particular cases of mobile rigid walls

and of visco-thermal boundary layers are investigated.

. PROBLEM STATEMENT

Throughout this paper, the problem considered is the linear acoustic propagation in
guides that are symmetrical with respect to the longitudinal axis (Oz). Only axisymmetric

excitations are considered so that the whole problem is axisymmetric.

A. Basic equations

For adiabatic lossless media, the equation of mass conservation'?
poc® div(v) = —0;p, (1)
and the equation of momentum conservation

po Oyv = —grad(p), (2)
yield the wave equation
1
(a-za)r=0 )
where p denotes the acoustic pressure, v is the particle acoustic velocity, po is the density of

the air, and c is the speed of the sound in the air. The boundary conditions will be specified

in the following, for each particular case studied.
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Because of the symmetry of the problem considered, p and v only depend on the longitu-
dinal and the transverse coordinates, noted z and r respectively. For this 2D-problem, the

spatial operators are reduced to'2

div(v) = 0,(v.u,) + % + 0p(vauy), (4)
grad(p) = 0,pu, + O,pu,, (5)
and
2 1 2
Ap=0;p+ —0p + 0;p, (6)

where u, and u, are the normal unitary vectors respectively associated with the coordinates

z and r, and “.” denotes the scalar product.

B. Perspective goals and description of the problem

Simulating the acoustic propagation in an axisymmetric waveguide requires solving the
2D-problem Eq. (3) with Eq. (6) for the boundary conditions on the wall as well as at
the input and the output of the guide. For instance, target applications may require wall
conditions such as motionless rigid walls (possibly with visco-thermal boundary layers) for
models of wind instruments, or controlled moving and vibrating walls for vocal tract models.
The purpose of this paper is to propose a method to derive models of such waveguides, which
do not require a resolution in the 2D-inside space, allowing low-cost simulations (e.g. real-
time applications). The idea developed in the following consists of reducing the 2D-problem
to a 1D-complexity such as the Webster equation does, making assumptions as weak as
possible.

The first step of the method is to separate the geometrical information carried by the
time-varying isobaric maps from that of the propagation of the pressure travelling on it. This
is done considering a change of coordinates (z,7) = (f(s,u,t),9(s,u,t)) where s is chosen
indexing isobars at each time (Sec. IIB), defining f and ¢ in an implicit way (Eq. (15)).

Thus, z and r become (like the pressure) dependent variables of the partial differential
equation modelling the wave equation, and describe the isobaric map with respect to the
independent variables (s,u,t). Writing that s indexes isobars (Eq. (15)) enables the deriva-
tion of the gradient of the pressure (Eq. (19)) and the wave equation (Eq. (20)) for (s, u,t).

This last equation exactly models the coupling of the propagation of the pressure with the

5
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isobaric map geometry, maps for which a necessary condition is straightforwardly deduced
(Eq. (24)) and time-invariant specimens may be exhibited (Sec. IID).

As the pressure does not depend on u, having explicit expressions of the coefficients of the
wave equation for a given u suffice to furnish 1D-models. Choosing to describe the wall for
a constant u = w leads to an explicit parameterization f|,, g|, of the wall (Eq. (31)). But
this knowledge remains insufficient to isolate the propagation and the geometrical problems
(Sec. IIT A) because of involved partial derivatives of f and g with respect to u, requiring a
hypothesis.

The hypothesis of quasi-sphericity of isobars near the wall (Eq. (40)) makes the isola-
tion of these problems possible. For lossless and motionless rigid walls, the deduced 1D-
model (Eq. (42)) may be written for a z-description of the wall (Eq. (45)) or a ¢-description
(Eq. (46)) which leads to a Webster equation, £ measuring the arc length of the wall. For
more general wall conditions, the 1D-model (Eq. (58)) requires that isobars are nearly or-
thogonal to the wall (Sec. IV B) to preserve the linearity of the propagation with respect
to the pressure. This is fulfilled for mobile walls in many practical cases and for motionless
rigid walls which induce visco-thermal losses, leading to the respective models Eq. (67) and

Eq. (71).

II. DERIVATION OF EXACT EQUATIONS

This section establishes the wave equation in any coordinate system rectifying the isobaric
map for axisymmetric problems. The calculations are exact as soon as isobaric maps may
be locally described by a C?-regular diffeomorphism. Although topological aspects are not
discussed here, a necessary geometrical condition is given for the map’s admissibility. Before
the method is described, various involved geometrical quantities are precisely defined for an
arbitrary change of coordinates. The definitions and the notations of this preliminary part

constitute the reference list of the geometrical quantities used in this paper.

A. Geometrical definitions

Let O and B’ = (ug, uy) be respectively the origin located on the axis of symmetry and

the oriented canonical basis of the reference 2D-frame (O, z, ). Let ® be an arbitrary regular
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diffeomorphism defining a spatio-temporal change of coordinates (s, u,t) = ®(z,r,t) which

does not distort time. Then, the functions f and g defined by

z = f(s,u,t), (7a)
r = g(s,u,t), (7b)

exist and have the same regularity as ®. Such coordinates s and u are commonly called
curvilinear because the variation of one of them does not make the corresponding point
describe a straight line in the original space. The associated curves are noted, for each time

t,
e 7, if s varies and u remains constant,
o 7., if u varies and s remains constant.

If ® has a C' regularity, a spatial local basis B; for the (s, u)-coordinate system may be defined
for each time ¢ by the vectors 0, fu, + ds;gu, and 0, fu, + 0,9u,. Then are defined their
respective norms oy and o,, their associated unitary vectors us and u,, the characteristic
oriented angles = (u,, us) and ¢ = (u,, u,). These geometrical quantities represented in

Fig. 1 are given by the following expressions:

O = \/(asf)2 + (859)25 (83‘)
Oy = \/(auf)Q + (aug)2a (Sb)
cos = 0sf /o, (9a)
sin = 0sg /05, (9b)
s = Oug /Uua (9C)
sing = —0,f /Uua (9d)

us = cosfu, +sinfu,, (10a)
u, = —sin¢u, + cos ¢ u,. (10b)
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For convenience, the vectors us and u, rotated from the angle +7 are also introduced,

namely:

ws = —sinfu, + cosfu,, (11a)

Wy = —cos¢u, — sinf u,. (11b)

[Figure 1 about here]

Then, the default of orthogonality of B; can be exhibited by the angular deviation § =

(Ws, u,) and more generally by its tangent € given by
b = ¢—0, (12a)
e = tan(J). (12b)
Indeed, a local basis B; is orthogonal if and only if € = 0. This is equivalent to the useful

relation

Os fOLf + 0590, g9 = 0. (13)

Finally, the Mach numbers &, = %V.uS and &, = %V.wS respectively associated with the

tangential and the normal components of the velocity V of a geometrical point (not that of
the particle) located at (s,u) are introduced. These dynamic quantities are given by

& = %[atf cos 0 + 0yg sinb)], (14a)
&n = %[—@f sin @ + Oyg cos6)]. (14b)
Note that a coordinate system compatible with the axial symmetry is such that
f(s,un,t) = f(s,u,1),
g(s,u*,t) = —g(s,u,t).

This implies in particular that for each time, there exists uy such that 7,,, is the axis
of symmetry. Generally, given an axisymmetric map {Zs;, 7,+}, a natural choice for its

description consists of using f and g which have respectively an even and an odd u-parity.
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B. Rectification of the isobaric map

A change of coordinates ® which rectifies the isobaric map is such that one ordinate
indexes isobars while the other is not colinear to the first one to preserve ® as a bijection.
Confering the indexation of isobars to s signifies that, for each time ¢, the curves Z ; represent

the isobars while the curves 7,; are nowhere tangent to Z; (see Fig. 2).
[Figure 2 about here]

Thus, for any given s, the pressure does not depend on u, so the local rectification on a

domain (2 is obtained for the condition

dp / V(s,u,t) €Q, p(f(s,u,t),g(s,u,t),t) =p(s,t). (15)

Assuming the C? regularity for f, g, and p, this implicit relation on f and g makes the
derivation of the wave equation which governs p possible on . The method consists
of signifying the link between the partial derivatives of p(z,r,t) evaluated in (z,7,t) =
(f(s,u,t), g(s,u,t),t) and the partial derivatives of p(s,t), as described below.

Applying the differential operators 0s, 0,, and 0; on Eq. (15) until the second order leads
to the system

D(s,u,t) = M(s,u,t) D(f(s,u,t),g(s,u,t),t). (16)

The corresponding explicit formulation is developped in Eq. (17), omitting to write the

variables of evaluation for sake of compactness.



T. Hélie, “1D waveguide modelling”, last revised: 30th October 2002, JASA

0sp 0sf 0sg 0 0 0 0 0 0 0 0,p
OuD Ouf Oug O 0 0 0 0 0 0 Oyp
9:p O2f 0% 0 (8,f)® (0s9)* O 20,fd,9g 0O 0 a2p
02p 02f 029 0 (8uf)’ (0ug)® 0 20uf0ug O O o2p
8,52}5 at2f atZQ 0 (atf)2 (atg)2 1 20,f0g 20.f 209 atZP

_ 05 f Oug
050,p 050y f 05049 0 Osf Ouf 05909 0 0 0 0,0,p

+0.f 09

~ asf atg
asatp asatf asatg 0 asf atf asg atg O asf asg azatp

+atf asg

_ Ouf Osg
auatp 8uatf auatg 0 auf atf aug atg 0 auf aug aratp

i | | +0¢f Ouyg |
5 M >

Then, D is formally obtained from Eq. (16) by computing M~'D and remarking that

5T = [asﬁ: 0: atﬁ: a?ﬁ, 0, a?ﬁ: 0: asatﬁa O]a

(18)

since 0,p(s,t) = 0. Expressions signified with the mono-space dependent pressure p(s,t)

are straightforwardly deduced for the gradient from Eq. (5) and for the wave equation from

Eq. (3) and Eq. (6) evaluated in (z,7,t) = (f(s,u,t),9(s,u,t),t). After simplification and

using the notations defined in IT A, these relations may be written

and

grad(p) = —

Osp

[us + e wg],

S

- - ~ 1 o
As,safp + Asas‘p + As,tasatp - ga?p = 07

10

(19)

(20)
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where the coefficients given by

14 € — (& +€&,)°

A s = p , (21a)
. )
A = sin @ + ecos § n 1 25"{83(62)
gas as
+(1+ €2 ( 950u9 + €0,0 — O,1n 05> }
0y COS 0
_1 §52 + 26§s§n - 67% - gsgna €
27" o? o2 °
1
+ Eat<755+€§”> + 5, (21b)
Ay = 28t (210)
co,

are expressions of f and g exclusively and depend on (s,u,t). Although the tedious calcu-
lations are not detailed, note that this process cannot be reduced to writing the Laplacian
operator for the change of coordinates ®, as for usual static coordinates. Thus, the Mach
numbers &, and &, involved in Egs. (21) are precisely the contribution of the term §?p in
Eq. (3). They are the expression of the dynamic of the isobaric map.

Note that choosing u such that 7, ; represent the field lines leads without loss of generality
to simpler expressions for which € = 0 because of the orthogonality of Z,; and 7, at each
point. This concise formulation is exploited in Sec. IID to exhibit time-invariant isobaric
maps, and in Sec. III to derive a mono-space dependent wave equation for motionless rigid
walls. Whereas, the study dealing with mobile walls having small admittances presented in
Sec. IV requires being driven with non orthogonal coordinates so that Eq. (20) is established
in this more general context.

A remarkable property of these equations is that they are not modified by any bijective
regular change of variables such that s = «(3,%), v = 3(3,4,1), and ¢t = t: taking 3, 4, ,
F(5,0,1) = f(a(3,1), B(3,8,8),1), §(5, 8 ) = g((5,0), B3, 8, 8), and (3, ) = pla(s, ), 1),
in place of s, u, t, f, g, and p keeps the formula identical. Moreover, the axial symmetry
is also naturally supported by the isobaric wave equation. Indeed, for f and g having
respectively an even and an odd u-parity, applying v — —u on Eq. (20) leaves this equation

invariant.

11
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C. Regular isobaric maps and admissibility

A necessary condition, An admissibility condition for isobaric maps, which is independent
of the pressure, may be deduced from Eq. (20) on (f,g). This criterion of admissibility
furnishes a property inherent to the set of regular isobaric maps. It proves in particular that
any arbitrary regular map does not always match with a wave propagation phenomenon.

The derivation of this condition relies on the u-independence of p. The method
consists of applying operators 0F on Eq. (20). As the factors represented by P =

0?p 0,p 0,0,p 8?1’5]T, do not depend on u, they may be eliminated by making linear
combinations of four distinct relations proceeding from four distinct integers k. In fact, only
three of these relations suffice as the proof below describes it.

As soon as the C? functions f and ¢ have in addition a C°-regularity for the variable u,

the operators 0F (k = 0,1,2,3) applied on Eq. (20) yields to the system
AP =0, (22)

where

auqu,s auAs auAs,t 0

024, 02A, 02A,; O

DA O3A; 03A,; O

For a propagative phenomenon P # 0. P is then an eigenvector of A associated with the

eigenvalue 0. This proves that det(A) = 0. By developing the determinant with respect to

the last column, a simpler equivalent formulation is obtained for
OuAss OuAs OyAsy
det | 07A,s 034, 054 | = 0. (24)
83145’3 8’3148 81?;As,t

This necessary condition only involves the equations derived for k = 1,2,3. Equation (24)
closes the proof since A, ,, A,, and A,; only depend on f and g, and thus, on the dynamic
geometry.

The criterion Eq. (24) can be straighforwardly computed for any given maps to check their

admissibility. But, practically, exhibiting analytical descriptions of admissible isobaric maps

12
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from it becomes unreachable as soon as the requisite dynamic and geometrical properties

are not trivial.

D. Globally time-invariant isobaric maps

This section presents an investigation on the restricted case of globally time-invariant
maps on which propagative waves may travel. In order to exhibit only the physical propaga-
tive solutions, the pressure is assumed to be such that the functions 82p, d;p, and 9?p are
non zero and real. The investigation is run directly from the isobaric wave equation rather
than the admissibility criterion which only gives a necessary condition.

A globally time-invariant map may be described by time-independent functions f(s, u)
and g(s,u). Choosing 7, as the field lines yields the constraint ¢ = 0. Thus, the solution
maps may be represented without loss of generality by (f, g) satisfying Eq. (13) and

2
O+ 0.L 0F ~ 73 D=0, (25)
calculated from Eq. (20) multiplied by o2. £ is given by

L=1In gﬁ

Os

remarking that Eq. (13) implies 9,¢/ cos® § = 8,0 = 0,0,/0,. Then, two cases appear.

1. oy does notdependon u

In this case, d;L does not depend on u either (see Eq. (25)). Parallel planes orthogonal
to (Oz) and coaxial cylinders are obtained for d;g = 0 and 9,9 = 0 respectively. Except for
these pathological cases, Eq. (13) ensures that 0, f, 0, f, 059, and 9,¢g are non zero.

Then, Eq. (13) makes the elimination of d,f possible in 9,(c?) = 0 calculated from the
definition Eq. (8a). The result 0;1n|0,9| = 0s1n|0,f| equivalent to Js1n|tan¢| = 0 (see
Eq. (9¢) and Eq. (9d)) proves that ¢ only depends on u. As € = tan(¢ — 6) is zero, 0 is an

exclusive function of u as well. Equations (9a) and (9b) show that

f(s,u) = R(s)cosb(u) + F(u), (27a)
g(s,u) = R(s)sinf(u) + G(u), (27Db)

where R' = 0,, and F and G are arbitrary.

13
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Now, from Eq. (9¢), 0, = 0yg/cos¢ so that 0,0,L = 0 can be written 9,0;In |g0,g| = 0
which, with Eq. (27b), leads to
G(u) = Rysinf(u),

R, being an arbitrary constant. Finally, the calculation of Eq. (13) using Eqgs. (27) with this
function G yields
F(u) = Rycosf(u) + Fy,

where Fj is arbitrary. The corresponding isobars are concentric spheres. This conclusion
completes the proof that parallel planes, coaxial cylinders, and concentric spheres are the

only regular globally time-invariant isobaric maps for which o, does not depend on w.

2. og;dependsonu

In this case, 0;L also depends on u. Applying 9, to Eq. (25) leads to
Oy (‘73)

0.0,L 0, — =72 5 =0,

Since 9,0, and 9,p are assumed non zero, this relation proves that 9?p/9,p does not depend
on t. Then, Eq. (25) proves that 92p/9;p = 9, In |p| does not depend on ¢ either, so that a
general solution is p(s,t) = A(s) b(t) + C(t) where A, b, and C are real functions. Writing
Eq. (25) for this solution and applying the operator X +— 0;(X/b(t)) on it show that both
b (t)/b(t) = u? and C"(t)/b(t) = ¢y are real constants so that C(t) = cob(t) + 1t + ¢ with
(c1, o) € R2. Defining a(s) = A(s) + o, this proves that the general solution is

p(s,t) = a(s)b(t) + e1t + o,

with
b(t) = ble“t + bge_“t.

where by, by are complex arbitrary constants such that b(¢) is real. Although it does not
affect the following, note that physical cases requires that ¢; = ¢y = 0 since p is the acoustic
pressure.

Using Eq. (26), Eq. (25) may be then reduced to

!

a !

a
—goy
Os

12

c2’

O In

52
US
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Moreover, if the spatial dependence a for the mode p is locally bijective, posing § = a(s),
and then defining f(8,u,t) = f(s,u,t) and §(3,u,t) = g(s,u, t) yields
1

62

S

g0;

Oy

c2

This equation shows that if a time-invariant isobaric map for which o, depends on u exists,
this map necessarily depends on a mode u corresponding to a pure frequency (u imaginary)
or a pure exponential (u real). More precisely, once given the geometry of the wall param-
eterized with s, u and expressing the boundary conditions, Eq. (28) gives the isobaric map
associated with the mode pu.

Finally, parallel planes, coaxial cylinders, and concentric spheres are the general time-
invariant isobaric maps. This corroborates the Putland’s results which exhibited them as
those making the separation of variables possible. However, other singular maps for which
the coefficients of the isobaric wave equation depend on both s and u may exist. They are
necessarly associated with a mode u. This last case would correspond to have the wronskian

defined by Putland® being zero (see Egs. (19),(20) in his paper).

[ll.  MONO-SPACE DEPENDENT WAVE EQUATION FOR LOSSLESS AND
MOTIONLESS RIGID WALLS

A rigorous derivation of a mono-space model of a waveguide proves to be unworkable
for arbitrary geometries. Even if the exact equation (20) governs a mono-space dependent
pressure, signifying A, A, and A, as well as possible from the shape of the waveguide

does not succeed in such a 1D-model, as described below.

A. Problem posed by the derivation of a 1D-model

Let ® be now a particular local change of coordinates such that the wall noted W, is

simply described for a fixed u noted w so that
Tt = W (29)

This can be achieved as soon as W, is not tangent to isobars, what is discussed below.

Adopting the notation
ql,(s:t) = q(s,w,1), (30)

15
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to indicate that a quantity q(s, u,t) is evaluated on the wall W, the profile of W, is param-
eterized by

& = f|w(5’t)’ (31a)
r = gly(s,9) (31b)

Then, once given a wall parameterization ( f|,, g,), signifying the coefficients from the
wall geometry simply consists of evaluating them on W,, namely imposing v = w. But,
as conceivable, this process makes a difficulty stand out which clarifies why decoupling the
propagation problem and the geometry of isobars is generally impossible.

This section exhibits the problem for walls assumed ideally rigid, lossless, and motionless:
Twi = Wy = W so that f|, and g|, can be chosen time-independent and &, = &,|, = 0
(see Eq. (14)). In this case, the corresponding boundary condition is that the particle
velocity v, and so from Eq. (2), the gradient of the pressure grad(p), have no component
normal to the wall. For locally non-degenerated cases (grad(p) # 0), isobars are necessarily
orthogonal to the wall W. Considering a domain €2 on which this condition is satisfied, this
proves that VW belongs to the field lines so that €|, = 0 (see Eq. (12b)). Note that if the
gradient is zero on a set of isolated points, local solutions of the same 1D-model can be
concatenated to form a maximal solution under the C2-regularity assumption. If this set has
a non zero measure, the pressure computed from a mono-space partial differential equation
of finite order is necessarily locally constant for both the time and the space variables. On
this set, the partial derivatives of the pressure are zero and will make the 1D-linear model
locally trivial (0 = 0), independently of the involved coefficients. Practically, these properties
makes it possible to proceed considering the only case €|, = 0, without loss of generality.

Now, €|, = 0 and &, = &/, = 0 yields, for v = w, the simplified coefficients A, ; =
1/02, Agy =0, and using Eq. (9b), A; = 95 1n(g/0s)/02 + 0u¢/ (050, cOS6).

As f|, and g|, may be derived with respect to s, they make the evaluation of o5 and
0s1n(g/os) for u = w possible, using Eq. (8a). On the contrary, they cannot give information
on 0, f|, and 0,9/, and Eq. (13) yields only a relation beween them and | cos 6| = 1. because
of their evaluation for v = w. Finally, the quantity 9,¢/(oy cosd) included in A, cannot be
evaluated for v = w from f|,, gl,, and using €|, = 0.

To cope with this difficulty, a local geometrical hypothesis is presented, which gives a

natural extension of the exact models of propagation in tubes and cones.
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B. Geometrical hypothesis

Let M(s) be a point of W indexed by s. Let S; be the sphere tangent to Z,; in M(s)
and centered in O; € (0Oz) (see Fig. 3). Then are defined the z-ordinate zp,(s) of Oy, the

radius R(s) of the sphere S;, and for any point N(s,u,t), the distance rz(s,u,t) between
O, and N.

[Figure 3 about here]

By definition, the radius OgM is orthogonal to the sphere S; and so to u, in M(s).

Writing that the scalar product of OsM and u, is zero, zp,(s) is proven to be such that

g‘w = tan ¢‘w (f|w - Zos) . (32)

The positive radii Ry(s) and rz(s, u,t) are given by

2 2
g g
R} = = 33
sin?|,  sin’o), (33a)
ri?2 = ¢+ (f — 20,)% (33b)
The relative divergence ¢(s, u,t) is then introduced by
rT
=—=——1. 34
‘=R (34)

¢ may be interpreted as an indicator of the deformation engendering 7 ; from S,. Note that
if the wall W is locally parallel to (Oz), ¢ may keep a meaning by continuation, although
R, becomes infinite. In particular, the study below proves that |, is zero at the first order
at least.

By definition, rz(s,w,t) = Rs(s) so that
g, =0. (35)
Now, 0,5 = 8, (r7%) / (2rzR;). From Eq. (33b), Eq. (9¢), and Eq. (9d)
%au (7'12) =oylgcosd — (f — z0,)]- (36)
The definition of zp, shows that Eq. (36) is zero for u = w so that

(0us)l,, = 0. (37)
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Note that, in fact, this last equation is related to the tangency of S and Z,,; in M(s).

Finally,
o~ ) @)
v 2rrR, 2rr2R,

so that the second term is zero in v = w (see Eq. (36)), and

532 (r2%) = B [cos 6 — (F — 70,) sin 6] +
—0u0u [g sin ¢ + (f - ZOS) COS ¢] ) (38)

for which the first term is zero in u = w. Then, (9|, is given by

| ou 90,
@)l = [R_ ("“ - sinqb)]

The geometrical hypothesis proposed in this section consists of assuming that near the

(39)

w

wall W, isobars Z;; deviate from S, “slower than a parabola”, namely:

(929)],, = 0. (40)
As 0,/R,> # 0, this hypothesis yields
Ou 0 sin ¢
L , (a1)
U ls,w,t g s,w,t

which will make the evaluation of Ay| , and so of Eq. (20) on W, possibly signified with

w?

f|w a‘nd g|w

C. Mono-space wave equation

As €|, =0, sin¢/cosd =sinf = 0,9/, for u = w. The geometrical hypothesis and this
last equation make the evaluation of A;|, possible. Finally, recalling that &, = &/, =0,

this leads to the significantly simplified equation

~ ~ 1 5.
As,s 62]7 + As‘wasp - C_Zafp = Oa (42)

w- S

where A | and A,|, are given by

1

AS;S w = 0__3 ) (433)
2051ng

Asl, = p . (43b)
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Furthermore, because €|, = 0, Eq. (19) leads to

grad(p) = 2P, (44)
g

s
on W.

The obtained 1D-model is available for any choice made for s, all the deduced models
being equivalent. This modelling is now established for two particular and natural param-
eterizations. The first one consists of choosing s = z so that g|,(s) = R(s) represents the

radius R(z) of the section of the waveguide located by the z-ordinate z = f| (s) = s. In

this case, 0s(z, w,t) = /1 + R'(z)? leading to

0%p(z, 1) + 2}; ((ZZ)) 0,5(2,t) —

1+R’( )?

0p(z,t) = 0. (45)

Note that this equation does not model the propagation of the lowest mode since it differs
from that established by Pagneux!? (Eq. (45)) when higher-orders modes are ignored.

The second choice is to take s = £ where /¢ represents the arc length of the curve C, C W
starting from a reference point M (0) and stopping at the considered point M(s). This
ordinate ¢ is such that o,|, = 1. Noting R(¢) the radius of the section of the waveguide
located by ¢, the obtained wave equation is that of Webster:

o R (6)

OB(E1) + 275

- 1 5
SO ) — —ORF(L 1) = 0. (46)

This result makes it possible to attribute all the known properties of this equation to the
general model Eq. (42), such as the conservation of the acoustical energy, or the existence
of analytical solutions for particular profiles. For this reason, this equation is the one which

is used in the following rather than Eq. (42) or Eq. (45).

D. Observations and discussion

As a first result, the hypothesis of quasi-sphericity Eq. (41) makes the arc length £ appear
as the natural longitudinal ordinate for the 1D-model. This exactly coincides with the
ordinate for which Putland establishes the Webster equation. However, the coefficients
ahead of O;p are distinct for both models. That of Putland is 0,S(¢,t)/S(¢,t) where S
denotes the area of the isobaric (or the “/-is0”) surfaces® versus 2R'/R for Eq. (46) which is
time-invariant. Considering 2R’/R as a ratio S'(£)/S(£), where S would represent the plane
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section of the waveguide drawn for Z but not z, yields a similar formulation but remains
physically distinct.

Moreover, this model holds various remarkable properties. First of all, it gives exact
results for both straight and conical pipes. Thus, for a straight pipe defined by R(z) = Ry,
and a conical pipe defined by R(z) = z tanfy or R(£) = £ sinf (see Eq. (52)) with 6y €
10, 7 /2], the 1D-modelling leads to, respectively,

- 1 oo
02p(z,t) — gafp(z, t) =0, (47a)

~ 2. . |
o5p(L,t) + Zagp(ﬁ, t) — 0—28t2p(€, t) = 0. (47Db)

As expected, Eq. (47a) and Eq. (47b) yield the exact models for plane waves and spherical
waves.

Compared to the Webster equations established assuming plane, spherical, or oblate
spheroidal wavefronts, sensible improvements of the presented model may be highlighted.
The orthogonality between isobars and the wall is not only respected, but the unavoidable
mobility of isobars (see Sec. II D) is respected too. As a matter of fact, this is a consequence
of the locality as well as the minimal order of the hypothesis which only requires d2¢|, = 0
while ¢|,, and 0,¢|, are both naturally zero.

Unfortunately, most of the limitations known for the Webster equation remain. The
validity of the geometrical hypothesis and, therefore, of the model is restricted to a low
frequency range and smooth geometries so that high mode coupling may not occur'®. Walls
may have a small curvature as well as isobars.

In particular, the model does not make the control of the geometry of isobars possible
either at the input or at the output of the pipe: spheres appear as the best appropriate shapes
for the quasi-sphericity hypothesis. Rigorously, these input-ouput geometries should be
exhibited by solving Eq. (20) for (f, g) and knowing ( f|,, gl,), once the pressure p(s,t) has
been computed for the 1D-model and for the 1D-boundary conditions. Note that, practically,
the geometrical resolution could be driven with numerical methods and for the simplifying
assumption € = (, leading to a description of the isobaric maps by time varying orthogonal
coordinate systems. But since 1D-models are generally not exact, the pressure established
for any of them should be linked to “aberrant maps” (unsolvable or not axisymmetric).
The prospect of deriving a 1D-modelling from Eq. (20) for new more relaxed geometrical

hypotheses and making a control possible on the boundary isobars will be opened up in the
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conclusion.

E. Particular profiles

Analytical solutions of the Webster equation are known for particular shapes defined by

(for strictly positive Ry and 4;)

(i) R(£) = Ryexp(af) (exponential),
(ii) R(¢) = Ry cosh(af) (catenoidal),
(iii) R(¢) = Rysin(af) (sinusoidal),
(iv) R(¢) = Ryl (Bessel).

Indeed, noting (¢, w) the Fourier transform of R(¢) p(¢,t) where w denotes the time pulsa-
tion, the wave equation corresponding to the cases (i-iii) is obtained for

w2

vt - (T-5 ) vew) =0 ()
where T = R"(£)/R(¢) is constant. The solutions in the Fourier domain are then
Y(E,w) = do(w) e + ¢y (w) e, (49)

where 7(w) is a square root of T — (w/c)? and 1, ¥, are arbitrary. When T > 0, a cut-
off pulsation w, = ¢+v/T may be defined: r(w) is imaginary and the corresponding wave is
propagative only for w > w,.. Note that although this equation is usually written in this form,
Berners'® has shown that the travelling modes which constitutes the Fourier basis set do
not furnish a complete set for convex profiles (T < 0). In this case, the set of eigenfunctions
of the associated Sturm-Liouville problem may include the so-called “trapped modes”. This
requires to consider Eq. (48) in the Laplace domain rather than that of Fourier.

For the Bessel horns (iv), noting P(¢,w) the Fourier transform of p(¢, ¢), the correspond-

ing wave equation is

) 20 w?
0, P(¢,w) + 784P(€, w) + C—QP(E, w) =0, (50)
so that solutions take the form
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where .J, and Y,, are the Bessel functions of, respectively, the first kind and the second kind!*
(chapter 9), and P,, P; are arbitrary.

Nevertheless, such profiles are known when the Webster equation is written for the vari-
able z rather than /. Thus, although analytical results are unchanged for the pressure
resolution, that is not the case for the real physical shapes. In particular, the new computed
profiles have an unusual characteristic: their radius or their length may be required to be

bounded.

1. Properties of physical shapes

Let z — L(z) be the positive length of the wall W from zy to z > 2;. Then, dL =
v/1+ R'(2)?dz. Deriving the expression R(z) = R(L(z)) gives
RI
RIL()) = —2&)
1+ R'(2)?

This implies that |R'| < 1, the limit case |R'| = 1 corresponding to an infinite slope for

(52)

the physical shape. Except for the sinusoidal profile when |aRy| < 1, the formula R(¢)
remains physically meaningful only on lower or upper bounded intervals so that a maximum
or minimum radius R* associated with a length £* may be defined (see Table (II)).

Note that if a C'-regular profile ends with a slope R’ = 1 at £ = ¢*, prolonging the profile
by the cone such that V¢ > ¢* R'(£) = 1 corresponds to model the pipe baffled. This profile
still satisfies the C'-regularity. In this case, Eq. (46) proves that, for £ > ¢*  the pressure

propagates as spherical waves.

2. Computation of physical shapes

The computation of R(z) from R(¢) can be achieved in an implicit way if there exists

F such that R' = F(R). In this case, Eq. (52) yields —~2_ = F(R(L(z))) = F(R(z))

1+R'(2)?
which is proven equivalent to
F(R
B pry =1 (53)
1 - F(R(2))?
If z+— F(R(z))/+/1— F(R(z))? is bijective, the integration of Eq. (53) from zy to z may
be written )
z F
/ idr:z—zo, (54)
R(zo) \/1— F(r)?
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which solves z as a function of the radius. The functions F' associated with the shapes (i-iv)
are specified in Table (II). The geometrical differences between these profiles drawn for
both z and ¢ may be assessed in Fig. 4. Note that this figure exhibits the maximum and

minimum radii.

[Figure 4 about here]

IV. GENERALIZATION FOR SMALL WALL ADMITTANCES AND MOBILE WALLS

When the wall W, is mobile or is not ideally rigid and lossless, the normal component
of the acoustic velocity is no longer zero. Nevertheless, the wall WW; may still be described
by 7w, for a constant © = w, and the general notations Eq. (29) to Egs. (31) remain valid.
The only differencies are that f|, and g|, may be time-varying and that €[, # 0 since the
wall condition (V.ws|,, # 0) prevents isobars from being orthogonal to W; In this case, the
boundary conditions on W, may be described by a relation linking p and v.wy|,. Such a
relation is usually specified in the Fourier domain using a wall admittance Y.

As an example, if a quasi-planar wall is vibrating, a standard boundary condition may

be described for = uw by'® (page 47)
~ W ~ Y
Ow,D + ?Y(w) P = —iwpyV.wg, (55)

where Oy, = wg.grad is the derivative in the direction wg, @ +— @ gives the Fourier
transform defined for the time-pulsation w, and V is the local velocity of W,. Y =
PoC [WS.(?—V)] ‘ /D is the specific admittance of the material constituting the wall. Note
that Y is ordinaqruily given such that wg is outwardly directed, so that a particular attention
must be paid to the conventions used. Note that this direction is achieved choosing g|w >0
and f| such that the inside of the guide is at the right side of us.

This section establishes a mono-space wave equation in this general context for cases
such that €|, < 1, making €?| and €|, negligible. Note that this restriction encompasses
yet many physical cases for which the wall admittance and so Ow,_p|, are small, as clarified

below by Eq. (56). The reason for this restriction is also detailed.
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A. Derivation of the 1D-model

Establishing a 1D-model from Eq. (20) requires coping with two problems. The first one
consists of making the boundary condition usable, exhibiting a relation between |, and
Ow.p- This stage stands in for the simplification run in Sec. III considering that ¢ = 0.
Projecting Eq. (19) on wy leads to this requisite identification given by

6Ws],5’
o .
* Osp

(56)

The persisting main problem is the evaluation of 9,¢/(o, cosd) on W;. Once again, the
local quasi-sphericity of isobars near the wall makes the solution of the propagation problem
separate from that the geometry of isobars. Actually, this hypothesis is obtained as in
Sec. ITI B. The only noteworthy differences are that a point M (s, t) of W; indexed by s may
be animated, and that €|, is not required to be zero. Nevertheless, all the definitions and
the calculations (Eq. (32) to Eq. (41)) remain exact, adapting the notations as illustrated in

Fig. 5, and considering O,;, zo,,, I%s; in place of Oy, zp,, and R, in the previous formula.
[Figure 5 about here]

Then, recalling that 6 = ¢ — 0, Eq. (41) yields

Ou® _ cosf + esinf ' (57)

0, €080 |, g w

Using Eq. (56) and neglecting €? and €® in A; ; and A, the hypothesis of quasi-sphericity
Eq. (57) leads after calculations to

~ ~ ~ 1 o
Bs,sagp + Bsasp + Bs,tasatp - gatzp

+Bwsaws§+ Bws,sasawsﬁ+ Bws,tatawsﬁ = 0, (58)
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where
B;ss = (1-— 2)/035 (59a)
2
B, = 2= 5"(9 lng—lTnaslnas
O-S O-S
2 -8 &s
285 ( po + 8t o) (59b)
B, = 2 (59)
S, CO'S’
2  o¢2
By, = — cosH-i— 25"80
g Og
55 22 0s&n + 6t5n, (59d)
Bws,s = _255577,/0-57 (598)
By.: = 2§n/c, (59f)

are all evaluated for v = w. Finally, Eq. (58) and boundary conditions such as Eq. (55)
furnish a 1D-model of the waveguide. As analysed in Sec. III D, the validity of this 1D-
model is still limited to walls having a small curvature. This assumption holds only if 0,6|,,

is negligible. Practically, By, may be well approximated by

B,,. = 952 cosf — éa En + 8,55" (60)

Particular derivations for visco-thermal losses on the wall or for mobile walls are described

below. Beforehand, the requirement €|, < 1 is clarified.

B. Geometrical hypothesis and compatibility with the problem

Let P describe the problem associated with the propagation in a given waveguide for
which the wall conditions are linear with respect to the pressure. The linearity of the wave
equation Eq. (3) and of the wall conditions ensures that of the acoustic propagation in the
guide. Consequently, for such conditions, the exactness of the establishment of Eq. (20)
and Eq. (56) guarantees the preservation of this property. However, if p; and p, are two
solutions of these equations, p = p; + Apy does not appear as an evident solution. Only Ap;
or A\ps appears evident when the motion of W, is imposed. These peculiar properties are

now described and investigated.
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Under the linearity assumption of the wall conditions, the operator p +— Ap keeps €
invariant (see Eq. (56)). Then, it acts on the first member of Eq. (20) as a multiplication by
A (first order homogeneity) for imposed &; and &,,. This proves that, for any solution p of a
problem P, Ap is also a solution. On the contrary, making the operator (p;,p2) — p1 + AD2
act on Eq. (20) and Eq. (56) does not lead to such remarkable relations. This is not a paradox
but is simply due to the writing of P in the isobaric coordinate system. This indicates that
the inherent linearity of P involves explicitly the coupling between the propagation and the
geometry of isobars: multiplying a solution pressure by A does not change the isobaric map,
but another change of solution does. More precisely, it gives information about d,¢/c,, for
which the compatibility with the quasi-sphericity hypothesis requires study.

Starting from Eq. (20) and Eq. (56), the exact wave equation for the problem P may
be written as the nullity of the sum of three terms T.[p], Tw(p], and T[p] defined below.
Tre[p] corresponds to the term of Eq. (20) which is non evaluable for © = w from the single

geometry of the wall. It corresponds to

Tne[ﬁ] = (1 - gi)

~ 2 ~
14 (0'58w5p> ] aud) asp (61)

0,p 0,C080 05
for which it is recalled that 0,¢/0, is the only quantity non evaluable on W;, and where
cos 0 is not developed using Ow,p and 0y p to keep the formula compact. T,;[p] contains all

other terms which are non linear in €, and is given by

~\ 2
Tulp] = (1 —&2) [(aaws;) (05050 Ow,p + Oslnoy O,p

Ow, P
Osp

—02p) + 2 8sawsﬁ]. (62)

The remaining term 7;[p] is only constituted of linear terms evaluable for u = w: all the
first order terms such as —2&,£,€9%p /02 in A, or 2&,€0:0,p/ (cos) in Agy, vanish with
those of A; when signifying e. T;[p] would exactly correspond to the first member of Eq. (58)
omitting the contribution in B, and By, of T, after using the quasi-sphericity hypothesis.

Defining T[p] = Ty.[p] + Tw[p] + T1[p], the wave equation is obtained writing T[p] = 0.

The condition of linearity is then obtained writing
T[p1 + Apa] = T[p1] + AT'po], (63)

for all p; and ps solutions, and for all \. When &, and &, are unchanged for distinct solutions

(for instance, rigid but controlled mobile walls), 7; is linear so that this condition is reduced
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to Eq. (63) taking T[p] = (Tr.e[p] + TulP])/(1 — &2). Equation (63) exhibits the non linear
relation between the three geometrical coefficients (0,¢/0,)p associated with the problem
P for the pressures p = p1, p2, p1 + Ap2, and these three pressures.

The quasi-sphericity hypothesis does not mostly satisfy this condition since it makes
(Ou9/0y)|,, depend only on the wall geometry but not on the pressure. As a consequence,
the linearity of the 1D-modelling for this hypothesis requires €|, < 1 so that the induced

nonlinear terms may be neglected, leading to Eq. (58).

C. Influence of mobile walls

Equation (58) can be straightforwardly used to establish a 1D-modelling for a controlled
mobile wall.

From Eq. (10a) and Eq. (11a), the time derivatives of us and wy are obtained for

oug = 0,0 wy, (64a)
atWS = —8t0 Us.- (64b)

Since from Eqs. (14) V/c = £, u, + &, ws, the acceleration 8,V is such that
o (Y) = 06 - a0+ @6+ £00)w. (63
As O, = We.grad(5), Eq. (2) and Eq. (65) yields
Ow,P = —poc(0i&n + £:0,0). (66)

Equation (66), evaluated on the wall, and Eq. (58) furnish the 1D-model.
When & < 1 and &, < 1, the quantities 1 — &2 and 2 — &2 appearing in B, B;, and
By, may be approximated by 1 and 2. Describing W, with R(¢,t) = g|,(¢,t), ¢ being the

curvilinear ordinate such that o/, (¢,t) = 1, the model takes the simpler form

- OR 0 - & _ 1 .
0;p + (2% + tc + az(fr% — 552)) Op + 2;8155227 - C_gafp
2 0 0&, n
= poc [( ‘;‘f 4 % _ gsaefn) —26,6,00+ 25—@]
C C
(01&n + £5010), (67)

where the geometrical quantities are still evaluated for v = w and the second member may

be interpreted as sources induced by the motion of W,.
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Note that for many practical cases, the controlled motion or the vibrations of the wall are
sufficiently small to consider much stronger approximations. Under such adapted conditions,

Eq. (67) may be reduced to its first order approximation

R 1 o~ 2cosf

2 = _
0;p + QT@p —gatp =Pt

(0ién + £50,0), (68)

for u = w. For vibrating walls, this last acoustic equation may be coupled with the model

of the wall vibrations.

D. Influence of visco-thermal losses

Equation (58) also enables treating the case of large pipes with visco-thermal losses due
to the wall, now assumed motionless.

Let significant parameters specifying the properties and the nature of the fluid at rest be
defined: the coefficient of shear viscosity p, the coefficient of thermal conductivity A, the
heat coefficients at constant pressure and constant volume per unit of mass Cp and Cly,
the specific heat ratio v = Cp/Cy, and finally the characteristic lengths I', = p/(poc) and
Inh = A (pocCp). The effect of the visco-thermal losses on the acoustics may be described
for travelling waves by an equivalent specific wall admittance Y given by'® (pages 112-115)

Y (w,5) = (”ﬁ)é (VT + (= DV, (69)

Cc

where « is linked to the angle of incidence of the wavefronts on W; as described below. Note
that to be physically meaningful, Y may have an hermitian symmetry so that the complex
(iw)'/? needs to be specified: this quantity may be understood as \/m exp(im/4) for w > 0,
and the conjugate \/|w| exp(—im/4) for w < 0. More precisely, this definition makes it
correspond to the time operator 8; /2 for causal functions's.

The validity of Eq. (69) relies on the fact that the thickness of the boundary layer may be
very small with regard to both the radius and the radius of curvature of W. For a pulsation
w, the thickness is given by \/W for the viscous effects, and \/m for the thermal
effects. For usual conditions, I/ and [, are about 4 10®*m and 6 10™®m so that the thermal

1/2 and

effects are the most restrictive. The thickness decreases with the frequency f as f~
is about 2.5 mm at f = 1 Hz for the thermal effects. This condition is then fulfilled for many

practical cases.
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Now, (s) corresponds to the square of the sine of the angle'® (page 155) (us, grad(p)),
or identically, to cos?6 = 1/(1 — €?). As €? is neglected above, x may be approximated by
1. Then, if wg is outwardly directed, the boundary condition Eq. (55) (for V = 0) may be

written in the time domain by

0w T + VU, + (v— 1)ﬁ83/2ﬁ: 0, (70)

s 3
2

Cc

where for usual conditions v’y + (v — 1)v/I, is about 3 10#mz. This order of magnitude
confirms that the effect due to the boundary layer is small so that the assumption € < 1 is
well founded in this case, and the quasi-sphericity hypothesis compatible with the problem.

Finally, the dominating requirement is the slowness of the variation of the cross-section
of the pipe. The 1D-model obtained for these pipes from Eq. (58) and Eq. (70) with &, =

&nl, = 0 is given for u = w by

1 o~ 20ng,_. 1 _,_ 2cosf I' 2_
a—gasp + 0_2 85]7 - C—Zatp - p c—g 8t2p = 0, (71)

where I' = \/I', + (Y —1)V/Is. For the ordinate £ for which o,|,, = 1, this equation appears as

3
a Webster equation perturbed by the low fractional differential term 200501“ 07 p. Note that
c2g

for the profile g|,(s) = Ry, this equation exactly yields the well-known equation of plane

waves guided in large cylindric tubes with visco-thermal losses!® (page 145).

V. CONCLUSION

A rigorous derivation of the linear acoustic wave equation in any local isobaric coordinate
system has been presented for axisymmetric problems. As the main theoretical result of
this work, it exhibits formally the exact coupling between the geometry of the wavefronts
and the propagation of the pressure. Straightforward derivations have shown that any
regular isobaric map may satisfy a purely geometrical criterion of admissibility. The general
time-invariant isobaric maps have been proven to be parallel planes, coaxial cylinders, and
concentric spheres. Other immobile invariant maps exist but, in this case, only a pure
sinusoid or a pure exponential can travel on each of them. Furthermore, the isobaric wave
equation shows that separating the resolution of the isobaric map from that of the 1D-
pressure is usually impossible. Assuming the quasi-sphericity near the wall for a minimal

order is proven to be sufficient to dispose of this problem. The 1D-models derived for
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motionless rigid walls or mobile ones with small admittances constitute the second main
results of this work. They make the arc length of the wall appear as the natural distance
travelled by a wave with the speed c.

Even if the geometrical hypothesis does not require fixed wavefronts as usual, the limita-
tions mostly remain those of the classical Webster equation, namely, low curved and smooth
walls, and sufficiently large wavelengths ensuring that transverse modes are not excited. To
quantify the quality of the 1D-models, a numerical validation must be run, comparing the
pressure deduced for them to that computed near the wall thanks to finite element methods

or using the discrete model of Pagneux!?.

In particular, the horns presented in Sec. IITE
could be tested for an excitation p(0,¢) at the input s = 0 and for a given load admittance
at the output s = L such as that of divergent spherical waves. For the 2D-algorithms, the
same boundary conditions may be taken on the spheres orthogonal to the wall in s = 0 and
s = L, the quasi-sphericity hypothesis being appropriate to this geometry. Other meaningful
comparisons with 2D-models may be done for boundary conditions which are compatible
with the quasi-sphericity hypothesis and adaptable to 1D-models (e.g. radiating portion of
a sphere'® (page 246)).

Nevertheless, whatever the success of a numerical validation, this work can expanded to
other models having a mono-spatial dependence, which would exceed the above-mentioned
limitations. Indeed, starting from the general rigorous equation Eq. (20), geometrical hy-
potheses more relaxed than that of the quasi-sphericity could be used. Mainly, choosing
hypotheses of higher orders is an interesting prospect. A particularly interesting one is an
order of regularity and of flexibility imposed on the wavefront geometry by Ol{i qﬁ‘w =0
(with Oy, = iau) for a given K > 2 (K = 0 would impose the wrong angle ¢|, = 0, and
K =1 would impose quasi-planar wavefronts near the wall rather than the more appropri-
ate quasi-spherical ones). But such alternatives involve an extensive investigation. Indeed,
establishing the associated 1D-models requires solving the system of equations obtained by
applying X — 6ﬁuX|w on Eq. (20) for £ = 0,1,..., K — 1, the hypothesis being used in
the last equation. A careful study of fundamental properties such as the linearity or the
compatibility with the symmetry of the problem must be performed since they are not guar-
anteed a priori. In addition to the relaxation of the above mentioned constraints induced
by the quasi-sphericity hypothesis, the main interest of this extension is potentially having

control of the input-output isobar geometry through the K — 1 integrating constants linked
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to the 8ﬁu¢|w. In this case, the corresponding 1D-models account for the propagation of the

pressure as well as that of the geometrical information represented.
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Table I: List of symbols

density of air

speed of sound in air

time-varying change of spatial coordinates

acoustic pressure located at (z,r,t) and (s, u,t) respectively

particle acoustic velocity located at (z,r,t)

isobars indexed by s at the time ¢

axisymmetric surfaces indexed by u at the time ¢

wall of the guide at the time ¢

unitary vectors associated with the longitudinal (z) and the transverse (r)

coordinates of the cylindric basis

us(s,u,t), uu(s,u,t) field of unitary vectors tangent to Z,; and 7, respectively

WS(S’ /u” t)’ wu(s’ /u” t)

0-5(8711’7 t)’ O’u(sﬁu’ t)

gs(s’u’ t)’ £n(8,u, t)

0(8’u7 t)’ ¢(S7Iu” t)’

and 4(s,u,t)
o;
grad

div

Ow, = Wg.grad

A

vectors us(s,u,t) and uy(s,u,t) rotated from +/2

norms of the vectors of the basis induced by the change (f,g) for the
coordinates s and wu respectively

Mach numbers of a point located at (s,u) for the orthogonal directions

ug and wg

oriented angles (ugz,us), (ur, uy), and (wg, uy) respectively
partial derivative with respect to z of order k

gradient operator

divergence operator

partial derivative in the direction wg

Laplacian operator
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case F(R) R*

(i) aR a”!
a>0

(ii) ||aVR? — Ry?|v/Ro®+ a2
a>0

(i) ||ev/Ro? — R2|V/Ry? — a2
a>0 if [aRg| > 1
(iv)
a#£0|| aRya R*& Rﬁ@ﬁ
a#l

Table II: This table sums up for the cases (i-iv) the expression of F' used to compute R’
from R, and the minimum (iii,iv 0 < o < 1)) or maximum (i,ii,iv « ¢ [0, 1]) radius R*

for which an infinite slope is reached on the physical shape.
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Figure 1: Definition of the geometrical quantities related to the local basis B;. Note that
although all represented vectors and angles coexist in every point located at (s, u), various
quantities are described in several distinct points to improve the clarity and the legibility

of the figure.
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Figure 2: This figure gives an example of a change of coordinates which rectifies the
isobaric maps at a given time ¢, and for which v indexes the field lines. For the coordinate
system (s, u), the pressure does not vary with u. In this illustration, the simple topology of

isobars (Z,;) makes the definition of the diffeomorphism ® possible over all the map.

When more complex topologies appear (closed curves, singular points, splitting curve,
etc...), several changes of coordinates should be considered on local domains. The study of

a global resolution for such topologies is not discussed here.
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Figure 3: O4(s) € (Oz) and Rs(s) are the center and the radius of the sphere S, tangent to
Ts: in M(s) € W. rz(s,u,t) is the distance between O, and the point N € Z,; located at
(s,u,t). It is assumed that Z,; and S, are close at the second order in M(s). Namely, for
each (s,t), u — rz(s,u,t) may be approximated by the constant R(s) at the second order

for u in the vicinity of w.
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Figure 4: The profiles corresponding to the cases (i-iv) are drawn for both the f-ordinate
(-), and the z-ordinate (a). Parameters are computed so that R* is reached, Ry, = 1 unit,
and Ry., = 8units: (a) Ry =1, a=1/8, (b) Ry =1, a = 1/v63, (c) Ry ~ 8.6e—3,
a=-10, (d) Ry~ 0.381, o ~ 0.743 (computed to have the same length for (d) and (f)),
(e) Ry~ 0.745, a = 10, (f) Ry = 8, o = 1//63. Appropriate translations in £ (and a

symmetry for (d)) are used to make the profiles increasing and starting at £ = z = 0.
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Figure 5: When the wall is not rigid, motionless, and lossless, isobars are not necessarily
orthogonal to the wall. The hypothesis of their quasi-sphericity near the wall may be yet
considered in this more general case. Note that the spheres S;; tangent to isobars Z;; now
move with respect to the angle ¢(s, w,t) which is no longer a right angle. Nevertheless, the
formula of definition Eq. (32) to Eq. (41) are not modified: the only differences are that

Os, 2o,, and R; may now depend on the time.
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