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Abstract— This article presents the resolution of
a boundary controlled nonlinear partial differential
equation with Volterra series. The generalized Burg-
ers’equation which is investigated, accounts for the
dominant effects of the acoustic propagation in cylin-
drical ducts involved in brass musical instruments.

I. INTRODUCTION

The Volterra series give a systematic representation
for a wide class of nonlinear systems, including lin-
ear differential systems, memory-less nonlinear func-
tions, and their combinations [1]. Practically, they are
very attractive for weakly nonlinear ordinary differ-
ential equations for which keeping only the low-order
kernels yields good approximations.

In this article, the Volterra series are used in the
more general context of a boundary controlled nonlin-
ear partial differential equation. Their formal frame-
work gives an interesting alternative to the perturba-
tion method usually used. The only difference from
the case of ordinary differential equations concerns
the identification of the kernels: each one is per-
formed by solving a linear differential equation and
not through an algebraic resolution.

The intended application deals with the acous-
tic propagation of planar waves in cylindrical ducts
which induce thermo-viscous losses on the wall. In
such a case, the nonlinearity of the propagation may
lead to a shock-wave after a sufficiently long distance.
For shorter distances, the weaker distortion is still au-
dible for waves with high amplitudes, and is involved
in brass instruments. Indeed, the so-called “brass ef-
fect” exactly denotes the brightness of the sound ob-
tained at fortissimo, due to this distortion.

The practical interest of using Volterra series is that
the obtained input-output system allows the simula-
tion of stationary waves as well as transients : stand-
ing waves or periodic inputs are not required as meth-
ods such as the harmonic balance do [2].

In section II, the investigated Burgers’acoustic
model is presented. The section III installs definitions,
notations, and some properties on the Volterra series.

Then, the section IV establishes the analytical method
used to solve the acoustic partial differential equation
finding all the Volterra kernels. Finally, the section V
presents analytical results in the time domain for sinu-
soidal inputs, and perspectives for a general low-cost
time-realization of the Burgers’system.

II. ACOUSTIC MODEL

Let the massic density, the speed of the sound, the
atmospheric pressure, the specific heat ratio, the kine-
matic viscosity, and the Prandtl number for the air be���������
	 Kg.m � � ,  ��������� m.s ��� , � ������������������� Pa,��� ���!� , " � ���
#���� � � , and �%$ �&�'�)( , respectively.

In [2], the acoustic waves propagating in a cylindri-
cal pipe are shown to be well described via two adi-
mensionnal progressive planar waves *�+ and * � by, massic density:��-/.0����1 * +32 *�� 2547698;:=<?>, longitudinal particle velocity:@A-B.  � 1 *�+DCE* � 254F698 : < >, pressure:G -H. � �I� 1 * +&2 *J� 2547698;:=< >
where 8 denotes the order of magnitude of *�+ , * � ,
and of the Mach number @�-LK  � .PSfrag replacements
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Fig. 1. Progressive waves propagating in a cylindrical pipe

These waves satisfy the generalized Burgers’equations

prqJs * . * q�t * Cvu%w qyxzt *[{ (1)

with
p . 2 � and | .~} C�� K  � for * . *�+ ,

p . C �
and | .�} 2 � K  � for * . *�� , and � . � +A�: � K  � . The

coefficient u%w . :� wX� w with � w .�� �L� � ��� +A� ���?�� � � � �L+ �?� �
	[�
������� � � accounts the visco-thermal losses for a pipe

with the radius � � . The operator
q xzt is the fractional



derivative of order �=K�	 for causal functions associated
to the Laplace symbol � xz on

�
with a cut on � � .

The system defined by FIG. 1 and Eq. (1) is weakly
nonlinear if * q�t * is not greatly solicited. This occurs
for small amplitudes and low frequencies, but also
if this nonlinearity is integrated over a short length,
i.e. for small � . For brass instruments, these features
make the nonlinearity weak but usually not negligible,
so that Volterra series may have a practical interest.

III. VOLTERRA SERIES : DEFINITIONS AND

PROPERTIES

A. Definitions and notations

A system (S) is described by a Volterra series of
kernels �����	�
������ for inputs � @ 6 } < ��� � if and only if
the output � 6 } < is given by the multi-convolutions����������� �!"$#�% & . . .

&('*)+ ),�- �/.
021 . . .
1�.43��657�/� - .
08� . . .

57�/� - .439�6:;.
0 . . .
:�.4<=1 (2)

where � is the convergence radius of > +@?��A �CB ��� B �ED � ,

with B ��� B � .GF
. . .
FIHEJK J � ��� 6ML x { . . . { L$NW< �PO L x . . . O L$Q . For cau-

sal systems, � � is zero for L
R � � .PSfrag replacements
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Fig. 2. System (S) represented by Volterra kernels.

For causal systems, the mono-lateral [3, (29.1.2)]
Laplace transform of ��� 6ML x { . . . { L N < is noted Z[� 6 � � { . . . {\�=� < .
It is is analytic for � R {\]_^ 6 � R�<a` � .
B. Interconnection laws

PSfrag replacements b�ced�f
b
g�d	fS=T U�W Y T U�W

(a)

PSfrag replacements b�ced	f
b
g�d�fS
TVU�W Y T U�W

(b)

PSfrag replacements

�ehe��� i �(linear)
j=k l�m n k l�m

(c)

Fig. 3. Sum (a), product (b), and cascade (c) of two sys-
tems

The kernels �=Z[��� of the systems (a), (b), and (c)
are given respectively by [4, p. 34,35]

Z[� 6 � � { . . . {\�=� < .po � 6 � � { . . . {\�
� < 2pq � 6 � � { . . . {\�=� < { (3)Z[� 6 � � { . . . {\�=� < . � �L�rs A � o s 6 � � . . . {\� s <tq � � s 6 � s + � { . . . {\�
� < { (4)Z[� 6 � � { . . . {\�=� < .po � 6 � � { . . . {\�
� <�q � 6 � � 2 . . . 2 �
� < � (5)

IV. MODELING OF THE PROPAGATION WITH

VOLTERRA KERNELS

The problems for *X+ and * � are symmetrical for�vuw C � so that it is assumed that * . * + and
p . 2 � ,

in the following,
Note that recursive calculations by the perturbation

method could be adapted without explicitly invoking
Volterra series and yield similar results [5, p.207-209].
However, the Volterra series framework gives a sys-
tematic and straightforward approach which justifies
its extension to the case of partial differential equa-
tions.

A. Deriving the equations satisfied by the kernels

Let the system (S) give the output � � s � 6 | < . * 6 � {U| <
from the input @ 6 | < . * 6 � {U| < where * is governed

by Eq. (1). Let x�� � s �� 6ML x { . . . { L N < �
������ be the � -
parameterized kernels of (S). By definition, this sys-
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Fig. 4. Definition of the Burgers’kernels

tem is the identity for � .0� so thatZ � � �� 6 � � < . � { (6)Z � � �� 6 � � { . . . {\�=� < . � { ����� 	[� (7)

From Eq. (1), it appears that the systems (S1) and
(S2) are equivalent (see FIG. 5).
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Fig. 5. Equivalent systems for a wave � governed by
Eq. (1)

As the linear operator
q's

does not depend on | , the
kernels of (S1) in the Laplace domain are

q�s Z � s �� .

The operators
q[t

and C u w qyxzt are associated to the

linear kernels o � 6 � < . � and q � 6 � < . CAu�w � xz re-
spectively. The interconnection laws Eq. (3-5) yield
straightforwardly the kernels of (S2).



Finally, the equality of the kernels of (S1) and (S2)
is obtained byq�s Z � s �� 6 � � { . . . {\�
� < .� ���rs A � 6 � � 2 . . . 2 � s < Z � s �s 6 � � { . . . {\� s < Z � s �� � s 6 � s + � { . . . {\� � <
C u%w�� � � 2 . . . 2 � � Z � s �� 6 � � { . . . {\� � < { (8)

which gives a linear ordinary differential equation to
solve for each kernel Z � s �� .

B. Explicit solutions of the Volterra Kernels

Equations (6-8) make the resolution of the kernels
possible, as described below.

B.1 Linear kernel

For � . � , Eq. (8) is

q�s Z � s �� 6 � � < . C u w � � � Z � s �� 6 � � < { (9)

so that the solution which satisfies Eq. (6) isZ � s �� 6 � � < . ^ ��� w s � � x { ]a^ 6 � � <_` �'� (10)

B.2 Second order kernel

For � . 	 , Eq. (8) becomes

q�s Z � s �: 6 � � {\� : < . C u w � � � 2 � : Z � s �: 6 � � {\� : <2 � � ^ ��� w � � � x + � � z � s � (11)

The solution which satisfies Eq. (7) is obtainedZ � s �: 6 � � {\� : < . � �u�w ^ ��� w s � � x + � z C�^ ��� w s � � � x + � � z �� � � 2 � � : C � � � 2 � : �
(12)

B.3 Higher order kernels

By recurrence, it may be proven that the kernelsZ � s �� take the form ( ]a^ 6 � s <a` � {�� G ),Z � s �� 6 � � { . . . {\�=� < . r� ��� N � � 6 � � { . . . {\�
� < ^ ��� w s �
	 � x�� . . . � � Q� {
(13)

where 6 � � 6 � � { . . . {\� � <O< � ��� N���� � N are rational functions

of square-roots of sums of 6 � R�< ��� R � � , � � . � � � � ,
and � � . ���d{ 2 � � ��� 6 ��� � 	 < with the conven-
tion � . 6 �d{ 2 { 2 { . . . { 2 {�� <�� � ��� � �V� � { . . . {\� �
! .� � � 2 � : 2 � � � 2 . . . 2 � �=� ��� 2 �
� . In other words,� is an addition under the square root and 2 outside
the square-root.

From Eq. (7) and Eq. (13), it follows that� � N#" $ 6 � � { . . . {\�=� < . C r
� ��� N�%�&�')(PN K x� � 6 � � { . . . {\�
� < { (14)

where �	� � ' denotes the element 6 �d{��d{ . . . {�� < ���� � � ���+*,� � .

Moreover, substituting Z � s �� in Eq. (8) by their ex-
pressions Eq. (13), and identifying the terms for each
exponential ^ ��� w s �-	 � x�� . . . � � Q  with � � � �/. ���v� � ��� ,
the recurrent equation on the rational functions is ob-
tained. This yields, �0� � � �1. ��� � � ��� ,� � 6 � � { . . . {\�=� < .2
354�6�798;:�<

=?>A@AB
. . .

BC>ED�F-GIH JLK?M N O K O�PRQSNT9UWVAX
. . .

X�USY[Z\G]H JLK?M P�^�N_O K O�`aQ�NTaUSY_bWVAX
. . .

X�U5c
Z
u wed � � � 2 . . . 2 �=� C��]�V� � { . . . {\�
� !af { (15)

where g + 6 � < . � G K � s . 2 � and, following the con-
vention adopted for � � , � � �Wh � h �5i 6 � � <kj � � l 6 � � < .~�
(see Eq. (10)).

C. Remarks on the effects of visco-thermal losses

The visco-thermal losses are expressed through u w .
When this effect is missing ( u w w � ), the first ker-

nels becomes Z � s �� 6 � � <nm � and Z � s �: 6 � � {\� : <om �(� � ,
leading to well-known properties :Z � s �� : a traveling planar wave is not scattered by the
linear propagation in a cylindrical pipe,Z � s �: : the wave distortion increases with � , leading to
the formation of the shock-wave with a “waterfall”.

The visco-thermal losses modify the asymptotic
behavior and yield a correction on this last “physi-
cal singularity”. Indeed, pLq?r sWs +@? � Z � s �: 6 � � {\� : < � .� {_� � � {\� : {	]a^ 6 � � < ` � {\]a^ 6 � : < ` � , and more gener-
ally, � � {;�0� � � � {]a^ 6 � � { . . . {\�
� < ` � � pLqLrs�s +@? ^ ��� w s �
	 � xS� . . . � � Q  .0� {
so that the distortion decreases after a sufficiently long
distance.

V. TIME-SIMULATION

A. Case of periodic inputs

For a periodic signal @ 6 | < . > +@?R A � ?  R ^�tvu�w t ,the response of the system takes the particular form� 6 } < . > +@?R A � ?yx R ^ tvuzw t where [4, (3.104)]

x R . +@?r��A � +@?r
{5|E}

. . .

}9{�~ �����{5|��
. . .

��{�~I��{
 R x . . .  R N Z � 69��� ��� { . . . { ��� � � < � (16)

This yields analytical results (which also can be
reached for multi-periodic input signals [4, (3.119)]).
This furnishes an alternative method to the harmonic
balance used in [2].



To avoid intricate expressions, the calculations are
made here for the approximated system �=Z � s �� {EZ � s �: �
and for the simple case where @ 6 | < .�������� 6 � | < (  � . ��� .��'K�	 and  R . � else). This yields an output
which is the sum of a constant, a fundamental ( � ), and
a second harmonic ( 	 � ) components. The constant
term is	�
���������������������� �"!$#&%('&!$#*),+ �-������ �.'/!$#0%1!2#3)24 �65 � (17)

The fundamental component is	�����7 �98 :<; + 	=�>7 8 :<; . �����>� ������ � '/!$#3) 7 �?8 :@; + ���A� ������ �B!2#3) 7 8 :@;
.DC 7 �9EGF �IH J K=L?M�NO #QPR'TS FAUWV # XZY � (18)

The second harmonic component is[I\I]_^ \I]a` b�cBd [(].^ ]a` b�cfe�g.]\>hfikj lAm]�n oRprqts1oRprqvu ^ \G]"` b�cBd*g_] h2iwj l>m]xnyprqtsaprqvu ^ ]a` b�c
z {G|,} ~���v���"�9� } �I�W�r�$��� �A�(� �0�>�I�Z� � ~�� ��� �>� } ~0����I�� ����� � � � | �0�A���Q� � ~�� ���v� � } � ~&� � �I�0�9� (19)

Simulations are represented in FIG. 6.
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Fig. 6. Waveforms for ©«ª¬=® ¯�°&±(²´³µ (155 dB SPL), ¶·ª¸�¹»ºGº ²W¼�½�® ¾ ³�¿ , À�Á6ªÂ²�® º�Ã�¸ ( ÄÆÅ�ª Ã ® ÇIÈwÈ ), for ÉÊª¿.ËvÌÍÏÎÐ Á with ÑÒªÓ² ( Ô ), ÑTªÕ±,È (o), and ÑÒª ¸ È ( Ö ).

B. Non-stationary case: discussion and perspectives
for a low cost time-realization

The main interest of the Volterra approach for the
time-simulation is that the output may also be pro-
cessed for inputs which are neither periodic nor sta-
tionary. Practically, the time-realization of each ker-
nel requires that they be approximated by finite order
systems, which cannot be straightforwardly obtained
here.

Indeed, for the linear kernel, the wave deformation
induced by the visco-thermal losses ( ×&ØÚÙÛÝÜ ) is well-
known. It involves a long memory phenomenon : the
impulse response given by [3, (29.3.82)]ÞWß�à@áâ £2¢9¨ Û ×3Ø�ãä�å æ ¢�ç�è<é/ê Ø�ë�ì�ëí�îðï´ñ�òRó £2¢9¨(ô (20)

is decreasing slower than a damped exponential. This
makes the time-simulation of the system heavy or
coarse even making use of standard approximation
techniques.

Nevertheless, coping with this difficulty is not
hopeless: õ ß�à�áâ may also be identified to a pseudo-
differential operator which admits an extended diffu-
sive representation [6, § 5.2]. This formalism which is
not introduced here, makes the derivation of exact in-
finite time-realizations possible from which accurate
low-cost approximations may be deduced [7].

The higher order kernels also clearly involve long
memory phenomena induced by the square-root of the
Laplace variables. Extending the diffusive representa-
tions to multi-variable kernels appears naturally as an
attractive new approach to investigate.

VI. CONCLUSION

The Volterra series appears as a relevant tool to
solve formally weakly nonlinear partial differential
equations. The kernels make the analytical calculation
of periodic and stationary solutions possible, furnish-
ing an alternative to the harmonic balance method.
But the main interest of this approach is that it is not
reduced to such particular solutions : non-stationary
inputs may be considered as well.

In the case of the investigated Burgers’equation,
the kernels involve long memory phenomena. Pre-
vious works on linear systems which hold this prop-
erty make the diffusive representations and their ap-
proximations appear appropriate for building low-cost
time-realizations. Their extension to the case of multi-
variable kernels could be, with the Volterra series, a
new key tool to derive low-cost time-realizations of
long-memory weakly nonlinear systems.
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