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A method to solve weakly non-linear partial differential equations with Volterra series is presented in the context of
single-input systems. The solution xðz, tÞ is represented as the output of a z-parameterized Volterra system, where z
denotes the space variable, but z could also have a different meaning or be a vector. In place of deriving the kernels from
purely algebraic equations as for the standard case of ordinary differential systems, the problem turns into solving linear
differential equations. This paper introduces the method on an example: a dissipative Burgers’equation which models the
acoustic propagation and accounts for the dominant effects involved in brass musical instruments. The kernels are
computed analytically in the Laplace domain. As a new result, writing the Volterra expansion for periodic inputs
leads to the analytic resolution of the harmonic balance method which is frequently used in acoustics. Furthermore,
the ability of the Volterra system to treat other signals constitutes an improvement for the sound synthesis. It allows the
simulation for any regime, including attacks and transients. Numerical simulations are presented and their validity are
discussed.

1. Introduction

Volterra series give a systematic representation for

a wide class of non-linear systems, including linear

differential systems, memory-less non-linear functions,

and their combinations (Boyd 1985). Practically, they

are very attractive for weakly non-linear ordinary

differential equations for which keeping only the low-

order kernels yields good approximations.

In this paper, the Volterra series are used in the more

general context of a boundary controlled non-linear

partial differential equation. Their formal framework

gives an interesting alternative to the perturbation

method usually used. The only difference with respect

to the case of ordinary differential equations is the

identification of the kernels: each one is performed by

solving a linear differential rather than an algebraic

equation.

The intended application deals with the acoustic

propagation of planar waves in cylindrical ducts which

induce visco-thermal losses on the wall. In such a case,

the non-linearity of the propagation may lead to a

shock-wave after a sufficiently long distance. For

shorter distances, the weaker distortion is still audible

for waves with high amplitudes, which is typical for
brass instruments. Indeed, the so-called ‘brass effect’
exactly denotes the brightness of the sound obtained at
fortissimo, due to this distortion.

The practical interest of using Volterra series is that
the obtained input–output system allows the simulation
of stationary waves as well as transients: standing waves
or periodic inputs are not required as in the case of
methods such as the harmonic balance (Menguy and
Gilbert 2000).

This paper is structured as follows: In } 2, the inves-
tigated Burgers’ acoustic model is presented and the
Volterra series are briefly introduced, setting definitions,
notations and describing useful properties.

Section 3 establishes the method used to solve the
boundary controlled partial differential equation. The
acoustic state is defined as the output of a Volterra
system. The equations satisfied by the Volterra kernels
are first derived. Second, their analytic resolution is
performed, leading to a recursive relation. A clever
decomposition which allows the numerical computation
of the kernels and which can be generalized to the
resolution of other problems is detailed.

In } 4, time simulations are presented for periodic
signals and more generally for non-stationary signals.
In the case of periodic signals, the analytic expres-
sions of the kernels and the derivation of the
Fourier coefficients of the output from those of the
input give an analytic resolution of the harmonic
balance. The validity of the results with respect to
orders of approximation is quantified and physical
interpretations are given.

Finally, before concluding, } 5 sketches limitations
and extensions of the proposed method.
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2. Problem statement

This section presents first the acoustic model of the
propagation of progressive plane waves in a pipe,
namely a dissipative Burgers’ equation. This model is
a non-linear partial differential equation which is valid
for bounded amplitudes and frequencies such that the
non-linearity of the model is weakly activated.

As weakly non-linear systems are well represented
by Volterra series, the main idea of this paper is to
solve the acoustic model thanks to this tool. This tool
is introduced in the second part of this section.

2.1. Model under study

Let the massic density, the speed of the sound, the
atmospheric pressure, the specific heat ratio, the kin-
ematic viscosity, and the Prandtl number for the air be
�0�1:2Kgm�3, c0�344m s�1, P0�1:013� 105 Pa, ��
1:4, ��1:5� 10�5 m2 s�1 and Pr�0:7, respectively.

In Menguy and Gilbert (2000), the acoustic waves
propagating in a cylindrical pipe figure 1 are shown to
be well described via two-dimensional progressive
planar waves qþ and q� by

. massic density

�a ¼ �0 qþ þ q� þOðM2
Þ

� �
ð1Þ

. longitudinal particle velocity

ua ¼ c0 qþ � q� þOðM2
Þ

� �
ð2Þ

. pressure

pa ¼ P0 � qþ þ q� þOðM2
Þ

� �
ð3Þ

where M denotes the order of magnitude of qþ, q� and
of the Mach number ua=c0.

These waves satisfy the generalized Burgers’ equa-
tions

� @‘q ¼ q @�q � �0@
1=2
� q ð4Þ

with � ¼ þ1 and � ¼ t� z=c0 for q ¼ qþ, � ¼ �1 and
� ¼ tþ z=c0 for q ¼ q�, and

‘ ¼
1þ �

2
z=c0:

The coefficient �0 ¼ ð2=R0Þ �0
with

�
0
¼

ffiffiffi
�

p
ð

ffiffiffiffiffi
Pr

p
þ � � 1Þffiffiffiffiffi

Pr

p
ð� þ 1Þ

� 2:39� 10�3 m s�1=2

accounts for the visco-thermal losses for a pipe with
radius R0. The operator @1=2� is the fractional derivative
of order 1=2 for causal functions associated to the
Laplace symbol s1=2 on C with a cut on R

�.
As the models for qþ and q� are symmetrical

for z��z, the problem is reduced without loss of
generality to

@‘q ¼ q @�q � �0@
1=2
� q: ð5Þ

The system defined in figure 1 and by (5) is
weakly non-linear if q @�q is not greatly solicited.
This occurs for small amplitudes and low frequencies,
but also if this non-linearity is integrated over a short
length, i.e. for small ‘. For brass instruments, these
features make the non-linearity weak but usually not
negligible, so that Volterra series have a practical
interest.

2.2. Volterra series

Only the principal definitions on the Volterra series
and the relations used in this paper are recalled below.
For a more detailed presentation see, e.g. Rugh (1981),
Boyd (1985) and Hasler (1999).

2.2.1. Definitions, notations and basic properties. By
definition, a system (S) is described by a Volterra series
of kernels fhngn2N� for inputs juðtÞj < � if the output y(t)
is given by the multi-convolutions

yðtÞ¼
Xþ1
n¼1

ZZ þ1

�1

hnð�1, . . . ,�nÞuðt� �1Þ . . . uðt� �
n
Þd�1 . . . d�n :

ð6Þ

Here, � is the convergence radius of
Pþ1

n¼1 khnk1x
n, with

khnk1 ¼
RR

þ1
�1 jhnð�1, . . . , �nÞjd�1 . . . d�n. For causal

systems, hn is zero for �k < 0.
For causal systems, the mono-lateral Laplace

transform of hnð�1, . . . , �nÞ is denoted Hnðs1, . . . , snÞ
(Abramowitz and Stegun 1970, (29.1.2)). For sk,
ReðskÞ > 0, Hn is analytic.

Figure 1. Progressive waves propagating in a
cylindrical pipe. Figure 2. System (S) represented by Volterra kernels.
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2.3. Interconnection laws

The kernels {Hn} of the systems (a), (b), and (c) in
figure 3 are given respectively by (Hasler 1999, pp. 34, 35)

Hnðs1, . . . , snÞ ¼ Fnðs1, . . . , snÞ þ Gnðs1, . . . , snÞ ð7Þ

Hnðs1, . . . , snÞ ¼
Xn� 1

p¼1

Fpðs1, . . . , spÞGn�pðspþ1, . . . , snÞ ð8Þ

Hnðs1, . . . , snÞ ¼ Fnðs1, . . . , snÞG1ðs1þ � � � þ snÞ: ð9Þ

This paper is devoted to solving the acoustic prob-
lem using the Volterra series representation, and in
particular, the relations (7)–(9) for the kernels. The
method is now detailed.

3. Method and analytic computation of the kernels

This section introduces the method for computing
the Volterra kernels of the system which generates the
output qð‘, �Þ from the input qð0, �Þ. More precisely,
the continuously space-parameterized state qð‘, �Þ is
described as the output of a ‘-parameterized Volterra
system. It is well-known that in the case of ordinary
differential equations, the Volterra kernels are obtained
recursively by solving systems of linear algebraic
equations in the Laplace domain. In the present case of
partial differential equations, the kernels are param-
erized by the spatial variable ‘. It will be shown
that they are obtained recursively by solving a linear
differential equation (with respect to ‘) in the Laplace
domain (with respect to �). The derivation of these
equations is decribed in } 3.1.

Subsequently, the resolution of this equation is
performed in } 3.2. It yields analytic expressions for
the kernels in the form of a recursive formula which
decomposes the solution on a set of exponentials.

Finally, in } 3.3, a more clever decomposition
is obtained, which significantly simplifies the analy-
tic computation of the kernels. This decomposition
allows a straightforward implementation for numerical

computations. Furthermore, it is well-adapted for exten-
sions to other models and non-linearities.

3.1. Deriving the equations satisfied by the kernels

Let the system (S) give the output yð‘Þð�Þ ¼ qð‘, �Þ
from the input uð�Þ ¼ qð0, �Þ where q is governed by
(5). Let

�
hð‘Þn ð�

1
, . . . , �

n
Þgn2N� be the ‘-parameterized

kernels of (S) (figure 4).
By definition, this system is the identity for ‘¼ 0 so

that

H
ð0Þ
1 ðs1Þ ¼ 1 ð10Þ

Hð0Þ
n ðs1, . . . , snÞ ¼ 0, 8n � 2: ð11Þ

Requiring that the Volterra kernels defines a
system such that the outputs satisfy (5) is equivalent
to imposing that the system represented in figure 5 is
zero.

As the linear operator @‘ does not involve �, the
concatenation of the Volterra system with @‘ leads to
the system (S1) defined by the kernels @‘H

ð‘Þ
n ðs1, . . . , snÞ

in the Laplace domain. The operators @� and �0@
1=2
�

are associated to the linear kernels F1ðsÞ ¼ s and
G1ðsÞ ¼ �0s

1=2 respectively. The kernels of the Volterra
system (S2) which generates the output of �0@

1=2
� are

�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ � � � þ sn

p
Hð‘Þ

n ðs1, . . . , snÞ from the interconnec-
tion law (9). Those of (S3) which generates the output
of the non-linear part are �

Pn�1
p¼1ðs1 þ � � � þ spÞ�

Hð‘Þ
p ðs1, . . . , spÞH

ð‘Þ
n�pðspþ1, . . . , snÞ, from (8) and (9).

Finally, writing that the cascade of systems depicted
in figure 5 defines the null system is writing that the

Figure 4. Definition of the Burgers’ kernels.

Figure 5. The output of the looked-for Volterra system
representation are exactly those which make the out-
put of the operator X�Y ¼ @‘X þ �0@

1=2
� X � X@�X

vanish (see (5)).

Figure 3. Sum (a), product (b), and cascade (c) of
two systems.
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sum of the three systems (S1)þ (S2)þ (S3) is zero.
From (9), this leads to

@‘H
ð‘Þ
n ðs1, . . . , snÞ þ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ � � � þ sn

p
Hð‘Þ

n ðs1, . . . , snÞ

¼
Xn�1

p¼1

ðs1 þ � � � þ spÞH
ð‘Þ
p ðs1, . . . , spÞH

ð‘Þ
n�pðspþ1, . . . , snÞ

ð12Þ

which gives a linear ordinary differential equation to
solve for each kernel Hð‘Þ

n .

3.2. Analytic solutions of the Volterra kernels

Equations (10)–(12) make the resolution of the
kernels possible, as described below.

3.2.1. Linear kernel. For n¼ 1, equation (12) is

@‘H
ð‘Þ
1 ðs1Þ þ �0

ffiffiffiffi
s1

p
H

ð‘Þ
1 ðs1Þ ¼ 0 ð13Þ

so that the solution which satisfies (10) is

H
ð‘Þ
1 ðs1Þ ¼ e��0‘

ffiffiffi
s1

p

, Reðs1Þ > 0: ð14Þ

3.2.2. Second order kernel. For n¼ 2, equation (12)
becomes

@‘H
ð‘Þ
2 ðs1, s2Þ þ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p
H

ð‘Þ
2 ðs1, s2Þ

¼ s1e
��0‘ð

ffiffiffi
s1

p
þ

ffiffiffi
s2

p
Þ: ð15Þ

The solution which satisfies (11) is obtained

H
ð‘Þ
2 ðs1, s2Þ ¼

s1
�0

e��0‘
ffiffiffiffiffiffiffiffiffi
s1þs2

p

� e��0‘ð
ffiffiffi
s1

p
þ

ffiffiffi
s2

p
Þffiffiffiffi

s1
p

þ
ffiffiffiffi
s2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p : ð16Þ

3.2.3. Higher order kernels. By recurrence, it is proven
in the next section that the kernels Hð‘Þ

n have the form

Hð‘Þ
n ðs1, . . . , snÞ ¼

X
Piðs1, . . . , sn�1Þ

e��0‘	iðs1,..., snÞ

Aiðs1, . . . , snÞ
ð17Þ

where Pi is a polynomial, 1/Ai is a rational function in
square roots of sums of sj, and 	i is a sum of square
roots of sums of sj.

3.3. Decomposition of the kernels

Theorem: The Volterra kernels are given by

Hð‘Þ
n ðs1, . . . , snÞ ¼

X
�2Kn

P�ðs1, . . . , sn�1Þ f
ð‘Þ
� ðs1, . . . , snÞ ð18Þ

f ð‘Þ� ðs1, . . . , snÞ ¼
X

2L�

e��0‘	
ðs1,...,snÞ

A�,
ðs1,. . . ,snÞ
ð19Þ

where the sets of symbols Kn and L� and the functions P�

	
 and A�, 
 are given by the following recursions:

(a) The set of symbols K1 is composed of a single
element which is arbitrarily denoted by �

K1 ¼ f�g: ð20Þ

The set of symbols Kn is obtained by the recursion

Kn ¼
[n�1

p¼1

Kp �Kn�p

� �
ð21Þ

where ‘�’ is the cartesian product of sets. The
symbols �1 � ð�2 � �3Þ and ð�1 � �2Þ � �3 are con-
sidered to be different.

(b) The polynomial P�ðs1, . . . , sn�1Þ, � 2 Kn is defined,
for n¼ 1, by

P� ¼ 1 ð22Þ

and, for n>1, if � ¼ �1 � �2, with � 2 Kn,
�1 2 Kp, �2 2 Kn�p by

P�ðs1, . . . , sn�1Þ ¼ ðs1 þ � � � þ spÞ

� P�1 ðs1, . . . , sp�1Þ

� P�2 ðspþ1, . . . , sn�1Þ: ð23Þ

(c) The set L�, � 2 Kn is defined recursively, based on
the sequence of arbitrary symbols wi, i ¼ 1, 2, . . .,
as follows. For n¼ 1

L� ¼ fw1g: ð24Þ

For n > 1, and � ¼ �1 � �2

L� ¼ L�1 � L�2

� �
[ fwng: ð25Þ

(d) The function 	
, 
 2 L�, � 2 Kn is defined as
follows. If 
 ¼ wn

	wn
ðs1, . . . , snÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ � � � þ sn

p
ð26Þ

and if 
 ¼ 
1 � 
2, corresponding to � ¼ �1 � �2,
with �1 2 Kp, �2 2 Kn�p

	
ðs1, . . . , snÞ

¼ 	
1ðs1, . . . , spÞ þ 	
2ðspþ1, . . . , snÞ: ð27Þ

(e) The function A�, 
, 
 2 L�, � 2 Kn is defined as
follows. If n¼ 1 and thus � ¼ � and 
 ¼ w1

A�,w1
ðs1Þ ¼ 1: ð28Þ

If n>1, � ¼ �1 � �2, with �1 2 Kp, �2 2 Kn�p,
and correspondingly 
 ¼ 
1 � 
2

A�,
ðs1, . . . , snÞ ¼��0A�1,
2ðs1, . . . , spÞ

�A�1,
2 ðspþ1, . . . , snÞ 	
ðs1, . . . , snÞ½

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ �� �þ sn

p
�: ð29Þ

Finally, if n>1 and 
 ¼ wn

1074 T. Hélie and M. Hasler



1

A�,wn
ðs1, . . . , snÞ

¼ �
X


2L�nfwng

1

A�, 
ðs1, . . . , spÞ
: ð30Þ

Proof (by recurrence): For n¼ 1, K1 ¼ f�g, L� ¼ fw1g,
and thus

H
ð‘Þ
1 ðs1Þ ¼ P�

e��0‘	w1
ðs1Þ

A�,w1
ðs1Þ

¼ e��0‘
ffiffiffi
s1

p

ð31Þ

which coincides with (14).
Now, suppose the theorem is true for orders

1, . . . , n� 1. The nth order Volterra kernel Hð‘Þ
n must

satisfy the linear differential equation (12) in ‘ with
initial condition (11). Its solution is

Hð‘Þ
n ðs1,...,snÞ

¼
Xn�1

p¼1

ðs1þ���þspÞ

Z ‘

0

e��0ð‘�xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p

�HðxÞ
p ðs1,...,spÞH

ðxÞ
n�pðspþ1,...,snÞdx

¼
Xn�1

p¼1

ðs1þ���þspÞ

Z ‘

0

e��0ð‘�xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p

�

" X
�12Kp

X

12L�1

P�1 ðs1,...,sp�1Þ
e��0x	
1

ðs1,...,spÞ

A�1,
1 ðs1,...,spÞ

#

�

" X
�22Kn�p

X

22L�2

P�2 ðspþ1,...,sn�1Þ
e��0x	
2

ðspþ1,...,snÞ

A�2,
2 ðspþ1,...,snÞ

#
dx

¼
Xn�1

p¼1

X
�12Kp

�22Kn�p

ðs1þ���þspÞP�1 ðs1,...,sp�1ÞP�2 ðspþ1,...,sn�1Þ�

�
X

12L�1

22L�2

Z ‘

0

e��0ð‘�xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p
��0xð	
1

ðs1,...,spÞþ	
2
ðspþ1,...,snÞÞdx

A�1,
1 ðs1,...,spÞA�2,
2 ðspþ1,...,snÞ

ð32Þ

¼
Xn�1

p¼1

X
�12Kp

�22Kn�p

P�1��2 ðs1,...,sn�1Þ

�

" X

12L�1

22L�2

�
e��0‘ð	
1

ðs1,...,spÞþ	
2
ðspþ1,...,snÞÞ

�e��0‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p 	.�
��0A�1,
1ðs1,...,spÞA�2,
2ðspþ1,...,snÞ

�

�
	
1ðs1,...,spÞþ	
2ðspþ1,...,snÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p 		#

¼
X
�2Kn

P�ðs1,...,sn�1Þ
X


2L�nfwng

e��0‘	
ðs1,...,snÞ

A�,
ðs1,...,snÞ

"

�e��0‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p X

2L�nfwng

1

A�,
ðs1,...,snÞ

#

¼
X
�2Kn

P�ðs1,...,sn�1Þ
X

2L�

e��0‘	
ðs1,...,snÞ

A�,
ðs1,...,snÞ

" #
ð33Þ

which shows that Hð‘Þ
n has the form as stated in the

theorem and thus concludes the proof. œ

3.4. Computation of the three first kernels

To get some feeling for the form of the various
quantities, the explicit expressions are given for n¼ 2
and n¼ 3. The elements of the sets Kn and L� are
enumerated according to the ordering defined by

�1�ð�2� �3Þ < ð�1� �2Þ� �3 ð34Þ


1�
2 < wn if 
1�
2 2L� and wn 2L� ð35Þ

The number of elements Kn ¼ cardðKn

�
of Kn is

K1 ¼ 1 ð36Þ

Kn ¼
Xn�1

p¼1

Kp Kn�p for n > 1: ð37Þ

The ten first cardinals are K1¼ 1, K2¼ 1, K3¼ 2, K4¼ 5,
K5¼ 14, K6¼ 42, K7¼ 132, K8¼ 429, K9¼ 1430 and
K10 ¼ 4862. The number of elements L� ¼ cardðL�

�
of L� is

L� ¼ 1 ð38Þ

L� ¼ 1þ L�1L�2 for � ¼ �1 � �2: ð39Þ

For n ¼ 1, 2, 3, the corresponding L� are 1, 2, 3. For
n>3, they no longer depend on the order n only, but on
the index �.

3.4.1. Case n¼ 2.
K2 ¼ �� �f g

P���ðs1Þ ¼ s1

L��� ¼ w1 � w1,w2

� �
	w1�w1

¼
ffiffiffiffi
s1

p
þ

ffiffiffiffi
s2

p
ð40Þ

	w2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p

A���,w1�w1
ðs1, s2Þ ¼ ��0ð

ffiffiffiffi
s1

p
þ

ffiffiffiffi
s2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p
Þ

A���,w2
ðs1, s2Þ ¼ þ�0ð

ffiffiffiffi
s1

p
þ

ffiffiffiffi
s2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p
Þ:

3.4.2. Case n¼ 3.
K3 ¼ �� ð�� �Þ, ð�� �Þ � �

� �
P��ð���Þðs1, s2Þ ¼ s1 � s2 ð41Þ

Pð���Þ��ðs1, s2Þ ¼ s1 ðs1 þ s2Þ

L��ð���Þ ¼ w1 � ðw1 � w1Þ,w1 � w2,w3

� �
Lð���Þ�� ¼ ðw1 � w1Þ � w1,w2 � w1,w3

� � ð42Þ

Voltage series for solving differential eqations 1075



	w1�w1�w1
¼

ffiffiffiffi
s1

p
þ

ffiffiffiffi
s2

p
þ

ffiffiffiffi
s3

p

	w1�w2
¼

ffiffiffiffi
s1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ s3

p

	w2�w1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p
þ

ffiffiffiffi
s3

p
ð43Þ

	w3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2 þ s3

p
:

Note that for functions 	
, the symbols ð
1 � 
2Þ � 
3
and 
1 � ð
2 � 
3Þ do not require to be distinguished.
Morevover, the word wk1

� � � � � wkm
can be understood

as follows. The symbol wk indicates that k variables
sp are consecutively added under a square-root, while
� corresponds to a consecutive addition outside the
square root.

A��ð���Þ,w1�ðw1�w1Þ
¼ �2

0

� ffiffiffiffi
s2

p
þ

ffiffiffiffi
s3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þ s3

p �
�
� ffiffiffiffi

s1
p

þ
ffiffiffiffi
s2

p
þ

ffiffiffiffi
s3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ s2þ s3

p �
A��ð���Þ,w1�w2

¼��2
0

� ffiffiffiffi
s2

p
þ

ffiffiffiffi
s3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þ s3

p �
�
� ffiffiffiffi

s1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þ s3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ s2þ s3

p �
A��ð���Þ,w3

¼ �2
0

� ffiffiffiffi
s1

p
þ

ffiffiffiffi
s2

p
þ

ffiffiffiffi
s3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ s2þ s3

p �
�
� ffiffiffiffi

s1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þ s3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ s2þ s3

p �
Að���Þ��,ðw1�w1Þ�w1

¼ �2
0

� ffiffiffiffi
s1

p
þ

ffiffiffiffi
s2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ s2

p �
�
� ffiffiffiffi

s1
p

þ
ffiffiffiffi
s2

p
þ

ffiffiffiffi
s3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ s2þ s3

p �
ð44Þ

Að���Þ��,w2�w1
¼��2

0

� ffiffiffiffi
s1

p
þ

ffiffiffiffi
s2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ s2

p �
�
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

s1þ s2
p

þ
ffiffiffiffi
s3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ s2þ s3

p �
Að���Þ��,w3

¼A��ð���Þ,w3

¼ �2
0

� ffiffiffiffi
s1

p
þ

ffiffiffiffi
s2

p
þ

ffiffiffiffi
s3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ s2þ s3

p �
�
� ffiffiffiffi

s1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þ s3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ s2þ s3

p �
:

3.5. Analytic continuation and singular terms

A priori, the frequency domain kernels are well
defined in the cartesian product of the right half
complex planes, i.e. for the frequency points s¼
ðs1, . . . , snÞ with ReðsiÞ > 0. However, by analytic con-
tinuation, they can be defined for each frequency as
holomorphic functions in the whole complex plane,
excluding the negative real axis ðCnR

�
Þ
n. This can be

seen as follows. For n¼ 1, expression (31) implies
the fact. The higher-order kernels are determined from
the lower-order kernels by the solution of the linear
differential equation (29), given in (33). Thus, from
the analytic continuation of the lower-order kernels,
we obtain the analytic continuation of the higher-order
kernels.

In the decomposition (19) of the kernels, the
denominators A�, 
 vanish at certain combinations of
frequencies and thus the kernels cannot be evaluated
numerically at these frequency vectors by following the
recursive computation described in the theorem, as
it stands. On the other hand, the kernels themselves
have no singularity outside when no frequency is
negative real. Therefore, the singularities of the various
terms must cancel. Indeed, this can be seen explicitly
as follows. Suppose that for some vector sy ¼
ðsy1, . . . , s

y
nÞ, and some 
 ¼ 
1 � 
2 2 L�, � 2 Kn

	
ðs
y

1, . . . , s
y
nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sy1 þ � � � þ syn:

q
ð45Þ

Then, the term

P�ðs1, . . . , sn�1Þ
e��0‘	
ðs1,..., snÞ

A�, 
ðs1 þ � � � þ snÞ

of the kernel Hð‘Þ
n ðs1, . . . , snÞ is singular at sy because

of the factor 	
ðs1, . . . , snÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ � � � þ sn

p
in A�, 


ðs1, . . . , snÞ (cf. (29)). On the other hand, the term

P�ðs1, . . . , sn�1Þ
e��0‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p

A�,wn
ðs1, . . . , snÞ

contains the same factor, and thanks to (30), we can
write

e��0‘	
ðs1,..., snÞ

A�, 
ðs1, . . . , snÞ
�

e��0‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p

A�,wn
ðs1, . . . , snÞ

¼
e��0‘	
ðs1,..., snÞ � e��0‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p

A�, 
ðs1, . . . , snÞ

�
X


02L�nfwn, 
g

e��0‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p

A�, 
0 ðs1 þ � � � þ snÞ

¼
e��0‘	
ðs1,..., snÞ

A�, 
ðs1, . . . , snÞ

1� e��0‘
ffiffiffiffiffiffiffiffiffiffiffi
s1,..., sn

p
� 	
ðs1,..., snÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s1, . . . , sn
p

� 	
ðs1, . . . , snÞ

�
X


02L�nfwn, 
g

e��0‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p

A�, 
0 ðs1, . . . , snÞ
ð46Þ

At s ¼ sy, this expression has the finite value

e��0‘	
ðs1,..., snÞ

A�, 
ðs1, . . . , snÞ
�0‘�

X

02L�nfwn, 
g

e��0‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1þ���þsn

p

A�, 
0 ðs1, . . . , snÞ
: ð47Þ

Accordingly, the recursive determination (29) and
(30) of A�, 
ðs1, . . . , snÞ has to be completed by the

complement:

For those values of ðs1, . . . , snÞ for which

	
ðs1, . . . , snÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ � � � þ sn

p
ð48Þ
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where 
 ¼ 
1 � 
2 2 L�, � 2 Kn, the value of
A�,
ðs1, . . . , snÞ becomes a function of ‘ and is
determined by

A
ð‘Þ
�,
ðs1, . . . , snÞ ¼ �

1

‘
A�1,
1 ðs1, . . . , spÞA�2,
2 ðspþ1, . . . , snÞ

ð49Þ

and A�,wn
ðs1, . . . , snÞ by

1

A�,wn
ðs1, . . . , snÞ

¼ �
X


2L�nfwn, 
1�
2g

1

A�, 
ðs1, . . . , spÞ
: ð50Þ

Note that for a degenerecence of higher order, i.e. when
(48) holds but A�1, 
1 or A�1, 
1 depend on ‘ because of a
previous degenerescence, similar relations can be carried
out, which still make the numerical evaluation of the
corresponding kernels possible. They lead to functions
1=Að‘Þ

�, 
 which are polynomials in ‘.

4. Numerical results and physical interpretations

4.1. Periodic signals

4.1.1. An analytic resolution of the harmonic balance.
The harmonic balance is a method which determines
periodic dynamics of non-linear systems by computing
the Fourier coefficients up to a fixed order of approxi-
mation. This standard method relies on an iterative
algorithm which makes the coefficients converge
towards the solution (see Nakhla and Vlach (1976)
for a full description of the method). Here, the analytic
expressions of the Volterra kernels allow us to build a
non-iterative resolution of this problem. The method
is given by well-known relations: for a periodic signal
uð�Þ ¼

Pþ1

k¼�1 ck e
ik!�, the response of the system takes

the particular form yð�Þ ¼
Pþ1

k¼�1 dk e
ik!� where (Hasler

1999, (3.104))

dk¼
Xþ1

n¼1

Xþ1

k1,..., kn¼�1

k1þ ��� þkn¼k

ck1 . . . cknHnðik1!, . . . , ikn!Þ: ð51Þ

For real input signals and systems, the hermitian
symmetries c�k ¼ ck and d�k ¼ dk yield uð�Þ ¼
2Re

�Pþ1

k¼0 ck e
ik!�

�
and yð�Þ ¼ 2Re

�Pþ1

k¼0 dk e
ik!�

�
.

4.1.2. Example for a sinusoidal input. The analytic com-
putation of dk is detailed for a sinusoidal input signal
and considering the non-linearity up to both the second
and the third order.

The input signal is uð�Þ ¼ a cosð!�Þ (c1 ¼ c�1 ¼ a=2
and ck¼ 0 else) and the pipe is represented by the kernels
fH1,H2g. This yields an output which is the sum of
a constant, a fundamental (!), and a second harmonic
(2!) components. The constant term is

d0¼c�1c1 H
ð‘Þ
2 ði!, � i!ÞþH

ð‘Þ
2 ð�i!, i!Þ

h i
¼ 0: ð52Þ

The fundamental component is

d�1 e
�i!�

þ d1 e
i!�

¼ c�1H
ð‘Þ
1 ð�i!Þ e�i!� þ c1H

ð‘Þ
1 ði!Þ ei!�

¼ a e��0‘
ffiffiffiffiffiffi
!=2

p

cos !� � �0‘

ffiffiffiffi
!

2

r
 �
: ð53Þ

The second harmonic component is

d�2 e
�2i!�

þ d2 e
2i!�

¼ c2�1H
ð‘Þ
2 ð�i!, �i!Þe�2i!�

þ c21H
ð‘Þ
2 ði!, i!Þ e2i!�

¼
a2

ffiffiffiffi
!

p

2�0ð2�
ffiffiffi
2

p
Þ

�
e��0‘

ffiffiffi
!

p

cos 2!� � �0‘
ffiffiffiffi
!

p
þ
�

4

� 	

� e��0 ‘
ffiffiffiffi
2!

p

cos 2!� � �0‘
ffiffiffiffiffiffi
2!

p
þ
�

4

� 	
: ð54Þ

For higher amplitudes, higher-order non-linearities of
the system are activated, requiring to increase the
order of approximations (quantitative estimations are
given below). Considering the Volterra kernels up to
the third order leads to the Fourier coefficients

d0 ¼
a

2

� 	2
H2ði!, �i!Þ þH2ð�i!, i!Þ½ � ¼ 0 ð55Þ

d1 ¼
a

2
H1ði!Þ þ

a

2

� 	3�
H3ði!, i! , �i!Þ þH3ði!, �i!, i!Þ

þH3ð�i!, i!, i!Þ
�

¼
a

2
e��0‘

ffiffiffiffi
i!

p

þ
a

2

� 	3 i!

�2
0ð2�

ffiffiffi
2

p
Þ

�
e��0‘ð2�iÞ

ffiffiffiffi
i!

p

� e��0‘
ffiffiffiffi
i!

p

1� i
�
e��0‘ð

ffiffi
2

p
�iÞ

ffiffiffiffi
i!

p

� e��0‘
ffiffiffiffi
i!

p

ffiffiffi
2

p
� 1� i

" #

ð56Þ

d2 ¼
a

2

� 	2
H2ði!, i!Þ

¼
a

2

� 	2 ffiffiffiffiffi
i!

p

�0ð2�
ffiffiffi
2

p
Þ
e��0‘2

ffiffiffiffi
i!

p

� e��0‘
ffiffiffiffiffi
2i!

ph i
ð57Þ

d3 ¼
a

2

� 	3
H3ði!, i!, i!Þ

¼
a

2

� 	3 3i!

�0
2ð2�

ffiffiffi
2

p
Þ

e��0‘3
ffiffiffiffi
i!

p

� e��0‘
ffiffiffiffiffi
3i!

p

3�
ffiffiffi
3

p

"

�
e��0‘ð1þ

ffiffi
2

p
Þ
ffiffiffiffi
i!

p

� e��0‘
ffiffiffiffiffi
3i!

p

1þ
ffiffiffi
2

p
�

ffiffiffi
3

p

#
ð58Þ

dk¼ 0 for k � 4 and d�k ¼ dk. Then, the output has the
analytic expression yð�Þ ¼ 2Re ½

P3
k¼1 dk e

i k!�
�, which is

not expanded for sake of conciseness.
Over and above the expected creation of a third

harmonic, another effect of the third order kernel is
the modification of the fundamental component. This
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effect has been experimentally measured in Menguy and

Gilbert (2000) and is compared in figure 6. A good

agreement is observed, although the third-order

approximation is the coarsest one which can model

such a variation.

Results of simulations with fHn¼1, 2, 3, 4g are given

in figure 7 for various length of pipes. No qualitative

differences are observed for ‘k¼1, 2, 3 when considering

N¼ 2 or N¼ 3 as the order of approximation in place

of N¼ 4.

4.1.3. Radius of convergence and ideal order of
approximation. The analytic computation of the radius
of convergence of the Volterra series has not been

performed. Indeed, determining the kernels in the time

domain to evaluate their infinite norms make some

Figure 7. The output (–) of the system is computed considering the kernels Hn¼1, 2, 3, 4 for a sinusoidal input with
a ¼ 6e� 3 � 152:6 dB spl, F ¼ 440Hz, �

0
¼ 4:77e� 1 (i.e. a pipe of radius R0 ¼ 1 cm), and for ‘0 ¼ 0, ‘1 ¼ 4:95e� 3,

‘2 ¼ 7:88e� 3, ‘3 ¼ 1:26e� 2, ‘4 ¼ 2:25e� 2, ‘5 ¼ 3:58e� 2, ‘6 ¼ 5:7e� 2, and ‘7 ¼ 9:08e� 2. These dimen-
sionless lengths correspond respectively to L ¼ 0m, 1:41m, 2:26m, 3:6m, 6:44m, 10:26m, 16:34m and 26m. In order to
appreciate the waveforms, the sinusoid which takes the same maximal value at the same � than qð‘, �Þ is represented with
dashed lines.

Figure 6. The ratio jd1=c1j of the fundamental amplitude of the output (L ¼ 4:98m) over that of the input is plotted with respect
to a ¼ 2 c1. The parameters of the experiment are F ¼ 2 kHz, R0 ¼ 29mm, L ¼ 4:98m. As �0 ¼ 0:164 and � ¼ 1:4 are
reliable parameters (see } 2.1), the speed of the sound which depends of the temperature, is determined from the first
measure. It is deduced from the attenuation modeled by jH1i!j since the linear propagation is available at 125 dB spl.
The estimation is c0 ¼ 347m s�1. Experiments (�) and the analytic determination (�) from the the first three Volterra
kernels are quite in agreements. These experimental data have been extracted from Menguy and Gilbert (2000, figure 3a,
curve (3)).
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complications appear in the calculus. Nevertheless, an

idea of this radius can be obtained through an estima-

tion computed directly in the Fourier domain.

If a Volterra series has a radius of convergence �, the
kernels Hn asymptotically satisfy the relation (Hasler

1999, p. 51)

Hnði!1,. . . , i!nÞ
�� �� 	 

�n
ð59Þ

where  is a constant. In this case, an estimation for

the sinusoidal case presented above is given by (see

figure 8(a, b))

� 	 �n ¼ Hnði!,. . . , i!Þ=Hnþ1ði!,. . . , i!Þ
�� �� ð60Þ

asymptotically. As expected (figure 8(b)), this radius is

infinite for ‘¼ 0 since identity is linear.

From a numerical point of view, a crucial decision

concerns the evaluation of a required order of approxi-

mation: how many kernels may be taken into account to

ensures the validity of the result? Inside the convergence

disc, an estimation of the N-order remainder of the

series can be approximated by

Rn ¼ 
ða=�Þn

1� ða=�Þ

����
����: ð61Þ

Moreover, the Burgers’ generalized model (5) ensures

errors of order Oða2Þ on the output signal [see (1)–(3)].

As a consequence, it is useless to overstep the order N*

such that RN� ¼ a2. The determination of such an order

is illutrated in figure 8(c).

4.1.4. Remark on quasi-periodic signals. As for the stan-
dard harmonic balance, an extension to quasi-periodic

signals is possible. The analytic expression of yð�Þ for

a given set of non-commensurable frequencies also exists

[see Hasler 1999, (3.119) for details].

4.2. Discrete time simulation for non-stationary signals

The main interest of Volterra series for time simu-

lation is that it is not limited to periodic, quasi-

periodic, nor stationary signals. This is a crucial

point for most of applications, including sound syn-

thesis. Another interesting feature from a signal

processing point of view concerns the control of alias-

ing. For an approximation of order N, the Shannon–

Nyquist theorem guarantees that no aliasing occurs

taking a sampling frequency Fs greater than 2NFmax

where Fmax denotes the highest frequency that the

input signal contains.

Thus, making use of a discrete implementation of the
multi-convolution (6) yields an algorithm. The kernels
in the time domain fh

ð‘Þ
1 ð�1Þ,. . . , h

ð‘Þ
N ð�1,. . . , �Ng can be

computed from the multi-dimensional inverse discrete
Fourier transform of fH

ð‘Þ
1 ði!1Þ,. . . , h

ð‘Þ
N ði!1,. . . , i!ng.

As a particular case, h
ð‘Þ
1 ð�1Þ can be derived analytically

(Abramowitz and Stegun (1970, (29.3.82))

h
ð‘Þ
1 ð�1Þ ¼

�0 ‘

2
ffiffiffiffiffiffiffi
��31

q e��20‘
2=4 �11�1 > 0ð�1Þ: ð62Þ

Another algorithm is obtained making use of the
discrete inverse Fourier Transform to implement the
computation of [Hasler 1999, (3.123)]

yð�Þ ¼
Xþ1

n¼1

Z
Rn

Uð!1Þ . . .Uð!nÞ

�Hnði!1, . . . , i!nÞe
ið!1þ���þ!nÞ� d!1 . . . d!n, ð63Þ

which uses the frequency domain version of (6) and
where Uð!Þ denotes the Fourier transform of uð�Þ.

Such methods have a very high cost of computation
due to the multi-dimensional convolutions (6) and
multi-dimensional inverse Fourier transforms (63),
respectively. For this reason, the following example is
computed only for N¼ 2. To build an example of
a musical application, the pipe is defined for
R0 ¼ 5:6mm and L¼ 4m, so that �0 ¼ 0:852 and
‘ ¼ 1:4e� 2, and where R0 is typical of a brass musical
instrument. The input signal uð�Þ has the main features
of a ‘‘musical note’’ (an attack, a sustain, a decay, a
vibrato) and is described by

uð�Þ ¼ Að�Þ sin 2�

Z �

0

f ð�Þ d�


 �
ð64Þ

where the amplitude A and and the frequency f are given
by Að�Þ ¼ a �=�1 for 0 
 � 
 �1, Að�Þ ¼ a for �1 
 � 
 �2,
Að�Þ ¼ a

�
1� ð� � �2Þ=ð�3 � �2Þ

�
for �2 
 � 
 �3, and

f ð�Þ ¼ F0 þ�F sinð2�Fvib�Þ. In order to exhibit the
progressive activation of the non-linearity, a smooth
attack is chosen with �1 ¼ 150ms. Other parameters
are a ¼ 4:8e� 3 � 150:6 dB spl so that N�

¼ 3,
�2 ¼ 100ms, �3 ¼ 500ms, F0¼ 440Hz, �F ¼ 22Hz,
and Fvib ¼ 5Hz. The spectrograms of the input and
the output are given in figure 9.

The simulations yield satisfying features, mainly:

. the output signal is damped because of the visco-
thermal losses;

. the ‘non-stationnary’ second harmonic is created
which coincides with the frequency 2f ð�Þ;
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. this harmonic appears progressively for � 
 �1
and slower than the fundamental component;

this enlightens the progressive activation of the

non-linearity with respect to the amplitude Að�Þ.

The heaviness of the algortihm may not be

considered as a drawback of the Volterra series

representations but only of these algorithms. Boyd
has shown that Volterra kernels can be approximated
by finite-dimensional non-linear systems which make
low-cost simulations possible. This tricky step is not
invetigated here but the examination of difficulties,
esentially due to the fractional derivative in (5), is
discussed below.

Figure 8. The estimation of the radius of convergence �n is computed for n 2 ½1, 8� with parameters ‘ ¼ 1e� 2 (i), 9:08e� 2 (�)
and 0:6 (œ) with �

0
¼ 4:77e� 1 F¼ 440Hz (a). For (i) and (�), �8 yield quite good estimates whereas for (œ), �n has not

still converged. Similar computations for ‘ 2 ½1e� 3, 1� are compiled in (b). As a consequence of (a), �ð‘Þ is a quite good
estimation for ‘ < ‘� and an significantly overvalued one for ‘ > ‘�. The amplitude and the lengths ‘k used for the
simulations of figure 6 are plotted with (þ): increasing the order of approximation for ‘6 and ‘7 will yield asymptotically
bad results since the series will diverge in thess cases. In (c), the orders of approximation N* leading to errors on qð‘, �Þ
similar to that due to the original model (5) are represented. When the remainder of the series Rn is of order a, the
corresponding truncated Volterra systems give a coarse representation of the original model. When Rn ¼ RN� is of order
a2, they give an accurate representation which cannot be improved from the original model point of view. The order of
approximation and the lengths ‘k used for the simulations in figure 6 are plotted with (þ). It clarifies why the simulations
performed with N ¼ 2, 3, 4 have no qualitative differences for ‘k¼1, 2, 3. For the same reasons as in (b), the part ‘ > ‘� is
underestimated.
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5. Limitations and extensions

5.1. Limitations

The complex structure of the kernels in the Laplace

domain makes the analytic derivation of inverse Laplace

transforms difficult. A first difficulty comes from the

square-root of the Laplace variables, due to viscother-

mal losses, requiring to define the kernels Hn with a cut,

namely on C n R
�. This leads complication in defining a

(n� 1)-dimensional Bromwich contour and applying the

residue theorem to derive the inverse Laplace transform.

Only the kernel H1 has the well-known solution (62).

The second difficulty is due to the expressions of the

functions f�, which makes the proof of the convergence

of the series difficult. Only a numerical estimation of the

radius of convergence has been performed here.

The numerical computation of the output for non-

stationary inputs requires a very high amount of floating

point operations. A better means would be to build a

realization of the system from identification of the

kernels (Rugh 1981, chap. 4) and simulate this system.

But, the identification of such a realization is not

straightforward, once again. The first reason still comes

from the pseudo-differential operators such as
ffiffi
s

p

and e��0‘
ffiffi
s

p

, which are associated to infinite dimensional

time-realizations (Staffans 1994). The second reason
comes from the non-unicity of the Volterra kernels.
Identifying a realization from kernels can be performed
from the ‘regular kernels’ (see Rugh 1981, chap. 4)
which are not those derived here. Unfortunately, their
computation makes difficulties similar to those of inverse
Laplace transforms appear.

5.2. Extensions

The method presented in (3) with the decomposition
(18) can be straightforwardly extended to model with
polynomial non-linearity of higher order and for other
kind of dampings. Thus, replacing the damping model
��0

ffiffi
s

p
q̂qð‘, sÞ by ��0 HðsÞ q̂qð‘, sÞ leads to the same

solutions taking s�HðsÞ in place of s�
ffiffi
s

p
to build

the functions 	
.
Replacing the non-linearity q@�q by P½@��QðqÞ where

P and Q are polynomials yields a more general sum
of crossed products in place of the right hand-side of
(32). Building the functions f ð‘Þ� and the identification of
polynomial coefficients keep a similar recursive law,
adapting the sets of indices Kn and L�.

Two more general extensions are also quite straight-
forward for some favorable cases, which are now
briefly described. The first one concerns the order of
the spatial derivatives. For orders n higher than 1, writ-
ing the model as a first-order one for the state
½q, @‘q, . . . , @

n�1
‘ q� and the associated boundary con-

ditions can lead to similar resolutions. The second one
concerns problems involving several spatial variables for
which the system is controlled by a single input. This can
be the example of a physical problem for which the
active boundary condition is uniform on a surface of
control, e.g. pistons for mechanical problems. In this
case, the Volterra kernels depend on several space vari-
ables and (12) becomes a partial differential equation
but it is still linear. If analytic solutions exists for the
given boundary conditions, a recursive analytic defini-
tion of the kernels can still be achieved.

6. Conclusion

A method to solve analytically a boundary con-
trolled weakly non-linear partial differential equation
has been developed, by representing the input/output
system for time-varying signals with Volterra series.
To the best knowledge of the authors, Volterra series
have never been applied in a systematic way to partial
differential equations. For the non-linear acoustic pro-
pagation model presented here, described by a general-
ized Burgers’ equation, the Volterra kernels has been
computed analytically in the Laplace domain (with
respect to the time variable). Recursive formula that
can readily be implemented on a computer allow us to
determine explicitly the Volterra kernels of all orders,

Figure 9. (a) Spectrogram of the input uð�Þ and frequency
f ð�Þ (– –). (b) Spectrogram of the output qð‘, �Þ and
frequencies f ð�Þ, 2 f ð�Þ (– –).
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yielding an interesting alternative to the recursive
calculations by the standard perturbation method
e.g. (Schelkunoff 1945, p. 207–209).

When Volterra series are applied to systems
described by ordinary differential equations, the kernels
in the Laplace domain are determined recursively by
solving linear algebraic equations. In the case of partial
differential equations, the equations to be solved become
differential ones but they are still linear. In the case
presented here, they can be solved analytically.

The explicit expressions for the Volterra kernels
allow to obtain an analytic resolution of the harmonic
balance method, that is used when the input is periodic
and quasi-periodic. Usually, this method is only per-
formed numerically. Most important, however, is the
fact that the Volterra series representation of the
input/output system allows to apply also non-periodic
signals. Computations which avoid aliasing have been
implemented by carefully controlling the order of
approximation of the series and the sampling frequency.
The algorithm, however, is computationally very costly.

If the input/output representation system is to be
simulated in real time, as e.g. for virtual musical instru-
ments, the kernels have to be approximated by rational
functions in the frequency domain in order to arrive
at systems that can be described by a finite number
of ordinary differential equations that in turn can be
described efficiently. The problem with the case treated
in this paper is that the solutions of Burgers’ equation
have a long memory, because the impulse response of
the linear part decreases slower than a damped expo-
nential. Previous works on linear systems with this prop-
erty, however, used the method of so-called diffusive
representations successfully, which suggests the exten-

sion of the method to weakly non-linear systems repre-
sented by Volterra series. All put together would allow
to arrive at good quality computationally low-cost rea-
lizations of long-memory weakly non-linear systems.
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