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ABSTRACT

In this paper, we show how the formalism of the Volterra series can
be used to represent the nonlinear Moog ladder filter. The analog
circuit is analyzed to produce a set of governing differential equa-
tions. The Volterra kernels of this system are solved from sim-
ple algebraic equations. They define an exact decomposition of
the system. An identification procedure leads to structures com-
posed of linear filters, sums and instantaneous products of signals.
Finally, a discrete-time realization of the truncated series, which
guarantees no aliasing, is performed.

1. INTRODUCTION

Most of the analog audio devices used in electro-acoustic music
have been simulated in numerous softwares thanks to digital im-
plementations. Nevertheless, many musicians still prefer original
devices rather than their digital versions. One of the main reasons
is that analog circuits involve nonlinearities, responsible for per-
ceptible characteristic distortions. Even for weak nonlinearities,
the distortion is progressively activated with respect to the signal
amplitude so that playing on the dynamics makes the sound “live”.
Including such phenomena in audio implementation is difficult to
tackle since nonlinearities naturally creates aliasing.

In this paper, we show that the Volterra series formalism can be
used to represent weakly nonlinear analog audio devices as input-
output systems, from which efficient digital implementations can
be deduced. Volterra series define exact representations of such
systems on given amplitude ranges. If the equations which govern
the circuit are differential, each kernel of the series is deduced in
the Laplace domain from simple algebraic equations. One kernel
isolates a sub-system attached to a monomial nonlinearity of order
n and monitors the exact associated sub-dynamics. In practice,
even a low order truncated version of the series yields realistic
distortions while it allows to overcome the problem of aliasing. In
order to concentrate on the method rather than a “new complex
circuit”, we choose to consider a well-known and deeply-studied
circuit, the Moog ladder filter [1, 2, 3, 4].

The paper is structured as follows. In section 2, the analog cir-
cuit of the Moog ladder filter is recalled and analyzed to produce a
set of governing differential equations. This nonlinear differential
system is re-casted, for dimensionless variables. Section 3 intro-
duces the Volterra series and some of their fundamental properties.
Section 4 establishes the equations satisfied by the Volterra kernels

of the Moog ladder filter: first in § 4.3 for a one stage filter, second
in § 4.3 for a four-stages filter, third in § 4.3 for the complete Moog
ladder filter with a loop. Analytic expressions of these kernels are
detailed for the orders n = 1, 2, 3. Section 5 presents a low-cost
numerical simulation in the time domain: in § 5.1, the kernels are
identified as structures composed of linear filters, sums and in-
stantaneous products of signals in the continuous time-domain; a
state-space representation is given in § 5.2; a digital implementa-
tion is derived in § 5.3 such that the pole mapping of the linear part
is exact and the aliasing due to the nonlinearities is rejected. The
validity of the approximated structure is discussed in section 6.
Finally, conclusions are given in section 7.

2. ELECTRONIC CIRCUIT AND NONLINEAR
DIFFERENTIAL EQUATIONS

2.1. The Moog ladder filter circuit

The Moog ladder filter is a circuit composed of a driver and a cas-
cade of four filters involving capacitors C and differential pairs of
NPN-transistors (see Figure 1).

2.1.1. Transistors

The NPN-transistors (see Figure 1a) are configured such that the
base currents IB can be neglected. Indeed, IB = IC/β with β >
100 so that IE = IC + IB ≈ IC . Moreover, the PN-junction BE
is governed by

IC = IE = Is

h

e
VB−VE

VT − 1
i

≈ Is e
VB−VE

VT , (1)

where the thermal voltage is VT = kT/q ≈ 25.85 mV and the sat-
uration current is Is ≈ 10−14 A for the temperature T = 300 K,
and where k = 1.38 10−23 J/K is the Boltzmann constant, and
q = 1.6 10−19 C is the electron charge.

2.1.2. Driver

From (1), the ratio I1
J1

is I1
J1

= e
−

U0
VT (see Figure 1b). Moreover,

I1 + J1 = Ic (2)

I1 − J1 = Ic

I1/J1 − 1

I1/J1 + 1
= −Ic tanh

U0

2VT

(3)
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Figure 1: Circuits: (a) NPN transistor, (b) driver, (c) one-stage
filter, and (d) four-stages Moog ladder filter

2.1.3. One-stage filters for k=1,2,3,4

From (1), the ratios Ik+1

Jk+1
are Ik+1

Jk+1
= e

−
Uk
VT (see Figure 1c).

Moreover,
Ik+1 = Ik + ik (4)
Jk+1 = Jk − ik (5)

The sum and the difference of (4) and (5) yield

Ik+1 + Jk+1 = Ik + Jk

`

= I1 + J1 = Ic

´

(6)
Ik+1 − Jk+1 = Ik − Jk + 2ik (7)

Now, the differential pair of transistors yields

Ik+1 − Jk+1 = Ic

Ik+1/Jk+1 − 1

Ik+1/Jk+1 + 1
= −Ic tanh

Uk

2VT

(8)

and the capacitor law yields

ik = C
dUk

dt
(9)

2.1.4. Four-stages filter and loop

Rewriting the terms of (7) for k = 1, 2, 3, 4 thanks to (3), (8) and
(9), leads to the voltage equations

−Ic tanh
Uk

2VT

= −Ic tanh
Uk−1

2VT

+ 2C
dUk

dt
. (10)

In practice, the Moog ladder filter includes the circuit in Figure 1d,
a voltage input which controls Ic, some voltage adders, and a loop
with a controlled feedback gain [1], [5, p46]. This feedback writes

U0 = Uin − 4r U4 (11)

where Uin is the input and r ∈ [0, 1] controls the feedback gain.

2.2. Dimensionless model

A dimensionless version of the problem is given by

1

ωc

duk

dt
+ tanh uk = tanh uk−1, k = 1, 2, 3, 4, (12)

with u0 = uin − 4r u4, (13)

where ωc = Ic/(4CVT ), uk = Uk/(2VT ) and uin = Uin/(2VT ).
In this paper, parameters ωc and r are supposed quasi-constant

so that the global system is quasi-stationary. Nevertheless, the
method presented below could be adapted to non-stationary prob-
lems, using non-stationary Volterra series [6, 7].

3. INTRODUCTION TO VOLTERRA SERIES

3.1. Definitions and notations

A system is described by a Volterra series of kernels {hn}n∈N∗

for inputs |u(t)| < ρ if the output y(t) is given by the multi-
convolutions

y(t) =

+∞
X

n=1

Z

Rn

hn(τ
1
, . . ., τn) u(t−τ

1
). . .u(t−τn) dτ

1
. . .dτn , (14)

where ρ is the convergence radius of the characteristic function

ϕh(x) =

+∞
X

n=1

‖hn‖1x
n, (15)

and ‖hn‖1 =
R

Rn |hn(τ
1
, . . ., τn)| dτ

1
. . .dτn is the L1-norm of hn.PSfrag replacements

{hn}
u(t) y(t)

Figure 2: System represented by Volterra kernels

For a causal system, hn are zero for τk < 0. Their mono-
lateral [8, (29.1.2)] Laplace transforms are denoted with capital
letters Hn(s1, . . ., sn). For stable systems, the kernels Hn are ana-
lytic for sk,<e(sk) > 0.
Notation: These systems are usually represented with their ker-
nels, either in the time domain {hn} as displayed in Figures 2 and
3 , either in the Laplace domain {Hn} as displayed in Figure 4.
Remark 1: Volterra series embed systems described by: (a) linear
filters (hn = 0 for n ≥ 2) ; (b) instantaneous nonlinear func-
tions y = h(u) with h(0) = 0 which admits a series expansion
h(u) =

P+∞
n=1 αnun; (c) their various combinations (sum, prod-

uct, cascade, as detailed in § 3.2).
Remark 2: For the case (b), the (convolution) kernels are given by
hn(t1, . . ., tn) = αnδ(t1, . . ., tn) in the time domain (δ denotes the
Dirac distribution), and by the constant functions Hn(s1, . . ., sn) =
αn in the Laplace domain.
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Figure 3: Sum (a), product (b), and cascade (c) of two systems

3.2. Interconnection laws

Let N
∗ denote the strictly positive integers. The kernels {Hn}n∈N∗

of the systems in Figures 3a, 3b, and 3c are given respectively
by [9, p. 34,35]

Hn(s
1
, . . ., sn) = Fn(s

1
, . . ., sn) + Gn(s

1
, . . ., sn), (16)

Hn(s
1
, . . ., sn) =

n−1
X

p=1

Fp(s
1

. . ., sp)Gn−p(sp+1
, . . ., sn), (17)

Hn(s
1
, . . ., sn) =

n
X

p=1

X

(i1,. . .,ip)∈I
p
n

Fi1(s1
, . . ., s

i1
). . .Fip(s

i1+ . . . + ip−1+1
, . . ., sn)

. Gp(s
1
+ . . . +s

i1
, . . . , s

i1+ . . . + ip−1+1
+ . . . + sn) (18)

where I
p
n =

˘

(i
1
, . . ., ip) ∈ (N∗)p s.t. i1+ . . . + ip = n

¯

. Note that
I
p
p is the singleton {(1,. . .,1)} and that I

p
n = ∅ when p > n.

The radii of convergence are such that ρh ≥ min(ρf , ρg) for
the cases (a,b) and ρh ≥ min

`

ρf , ϕ−1
f (ρg)

´

for the case (c).

4. VOLTERRA KERNELS OF THE MOOG LADDER
FILTER

4.1. Kernels of a single stage F

Let {Fn}n∈N∗ be the unknown kernels of a single stage filter with
input uk−1 and output uk. They describe the dimensionless sys-
tem (12) which corresponds to the circuit in Figure 1c, for a given
k. Let {Tn}n∈N be the coefficients of the series expansion of
tanh. They are given by T2p = 0 for p ∈ N, T1 = 1, T3 = −1/3
and, more generally, by T2p−1 = (−1)p−12(22p − 1)B2p/(2p)!
for p ≥ 1 where Bn denotes the nth Bernoulli numbers (see [8,
(4.5.64)]). According to the remark 2 in § 3.1, the coefficients
Tn also define the constant kernels {Tn} of the system y(t) =
tanh

`

u(t)
´

, in the Laplace domain.
Now, we describe (12) through a block diagram involving the

Volterra kernels {Fn} and {Tn} which define the null-system de-
tailed in Figure 4, where

Q1(s1
) =

s1

ωc

(19)

defines to the linear operator 1
ωc

d
dt

in the Laplace domain. The
kernels of this null-system can be derived from the interconnection
laws (16) and (18). Writing that the kernels of the null system are

PSfrag replacements
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Figure 4: Canceling system for F

zero yields, for n ∈ N
∗,

Fn(s
1
, . . ., sn)Q1(s1

+ . . . + sn) +
n
X

p=1

X

(i1,. . .,ip)∈I
p
n

Fi1(s1
, . . ., si1). . .Fip(s

i1+ . . . + ip−1+1
, . . ., sn)Tp = Tn.(20)

The first term in (20) represents the cascade {Fn} → Q1 in Fig-
ure 4. It is derived from (18) in which only the term with p = n is
not zero. The second term represents the cascade {Fn} → {Tn}.
Note that the index p = 1 is associated to Fn(s

1
, . . ., sn)T1 while

the indexes p ≥ 2 only involve Fk with k ≤ n − 1. The second
member stands for {−Tn}. Equation (20) rewrites, for n ∈ N

∗,

Fn(s
1
, . . ., sn) = [T1 + Q1(s1

+ . . . + sn)]
−1 .

"

Tn

−
n
X

p=2

Tp

X

(i1,. . .,ip)∈I
p
n

Fi1(s1
, . . ., si1). . .Fip(s

i1+ . . . + ip−1+1
, . . ., sn)

#

.(21)

This yields recursive algebraic equations: for each n, the second
member of (21) is a finite sum composed of kernels Fik

which
have been yet computed since ik < n. The kernels for n = 1, 2, 3
are given by,

F1(s1
) = [T1+ Q1(s1

)]−1 =

»

1 +
s
1

ωc

–−1

(22)

F2(s1
, s

2
) = 0, (23)

F3(s1
, s

2
, s

3
) = T

3

ˆ

1−F1(s1
)F1(s2

)F1(s3
)
˜

F1(s1
+s

2
+s

3
).(24)

Thus, including the nonlinear effect in the application requires to
consider the kernels at least until n = 3.

4.2. Kernels of a complete four-stages filter F4

Let {F k
n}n∈N∗ denote the kernels of the cascade of k systems

{Fn}n∈N∗ . The kernels {F 4
n} are derived from (18) in two steps:

first, the cascade of {Fn} and {Fn} yields {F 2
n}; second, that of

{F 2
n} with {F 2

n} yields {F 4
n}.

As F2(s1, s2) = 0, this leads to, for n = 1, 2, 3,

F 2
1 (s

1
) =

ˆ

F1(s1
)
˜2

, (25)
F 2

2 (s
1
, s

2
) = 0, (26)

F 2
3 (s

1
, s

2
, s

3
) = F3(s1

, s
2
, s

3
)F1(s1

+s
2
+s

3
)

+F1(s1
)F1(s2

)F1(s3
)F3(s1

, s
2
, s

3
), (27)
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and for the second step,

F 4
1 (s

1
) =

ˆ

F 2
1 (s

1
)
˜2

=
ˆ

F1(s1
)
˜4

, (28)
F 4

2 (s
1
, s

2
) = 0, (29)

F 4
3 (s

1
, s

2
, s

3
) = F 2

3 (s
1
, s

2
, s

3
)F 2

1 (s
1
+s

2
+s

3
)

+F 2
1 (s

1
)F 2

1 (s
2
)F 2

1 (s
3
)F 2

3 (s
1
, s

2
, s

3
)

=
3
X

k=0

ˆ

F1(s1
)
˜kˆ

F1(s2
)
˜kˆ

F1(s3
)
˜k

.F3(s1
, s

2
, s

3
)
ˆ

F1(s1
+s

2
+s

3
)
˜3−k

. (30)

4.3. Kernels of the Moog ladder filter L with a loop

Let {Ln}n∈N∗ be the kernels of the four-stages filter with the loop,
fed by the input uin and with output u4. They describe the dimen-
sionless system (12-13) which corresponds to the circuit in Fig-
ure 1d. This system is such that the block diagram in Figure 5
defines the null system. In this block diagram, the kernels of the

PSfrag replacements

uin −u4u0

u4

u4{Ln} −4r {−F 4
n}

0

Figure 5: Canceling system for L

sub-system inside the gray box are 4r Ln(s1, . . ., sn) + δ1,n where
δ1,n denotes the Kronecker symbol (δ1,n=1 if n=1 and δ1,n=0
otherwise). Writing from (18) that the cascade of this system with
{F 4

n}n∈N∗ is {Ln}n∈N∗ yields
n
X

p=1

X

(i1,. . .,ip)∈I
p
n

ˆ

δ1,i1− 4rLi1(s1
, . . ., si1)

˜

. . .

ˆ

δ1,ip− 4rLip(si1+ . . . + ip−1+1
, . . ., sn)

˜

.F 4
p (s

1
+ . . . +s

i1
, . . . , s

i1+ . . . + ip−1+1
+ . . . + sn) = Ln(s

1
, . . ., sn), (31)

so that, for n = 1, 2, 3,

L1(s1
) =

ˆ

1 − 4rL1(s1
)
˜

F 4
1 (s

1
), (32)

L2(s1
, s

2
) = 0, (33)

L3(s1
, s

2
, s

3
) = −4r L3(s1

, s
2
, s

3
)F 4

1 (s
1
+s

2
+s

3
)

+
ˆ

1 − 4r L1(s1

˜ˆ

1 − 4r L1(s2
)
˜

.
ˆ

1 − 4r L1(s3
)
˜

F 4
3 (s

1
, s

2
, s

3
). (34)

Finally, the kernels are given by

L1(s1
) = R(s

1
) F 4

1 (s
1
), (35)

L2(s1
, s

2
) = 0, (36)

L3(s1
, s

2
, s

3
) = R(s

1
)R(s

2
)R(s

3
) F 4

3 (s
1
, s

2
, s

3
)

. R(s
1
+s

2
+s

3
), (37)

with R(s) =
ˆ

1 + 4rF 4
1 (s)

˜−1
. (38)

5. SIMULATION

5.1. Identifying structures composed of filters, sums and products

The Volterra kernels of order 1 given in (22), (28) and (35) cor-
respond to standard linear filters. Those of order 3 given in (24),

(30) and (37) are sums of terms with general expression

A1(s1
)B1(s2

)C1(s3
)D1(s1

+s
2
+s

3
).

From (18), each term defines an elementary system of order 3 pre-
sented in Figure 6, where A1, B1, C1 and D1 are linear filters. For

PSfrag replacements
u y

A1

B1

C1

D1

Figure 6: Elementary system of order 3

instance, in (24), F3 can be decomposed into two elementary sys-
tems as in Figure 3a: one corresponds to A1 = B1 = C1 = 1 and
D1 = T

3
F1 and is the cascade of an instantaneous cube power

and the filter T
3
F1 where T

3
= −1/3; the second corresponds to

A1 = B1 = C1 = F1 and D1 = −T
3
F1 and is the cascade of a

filter F1, an instantaneous cube power and the filter −T
3
F1.

Thus, by identification, (22-24), (28-30) and (35-37) lead to
the structures given in Figures 7, 8 and 9 for the third order struc-
tures of F1, F4 and L, respectively. Note that third order approx-
imations of (12-13) would involve instantaneous loops whereas
these structures have no loops and yield realizable systems com-
posed of causal linear filters, sums and products in the time do-
main. The structure L3 makes the resonant filter R(s) appearPSfrag replacements
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v1 w1

y
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Figure 7: Third-order structure F3 of the system F
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Figure 8: Third-order structure F4
3 of the system F4

only through an encapsulation of the four-stages system F 4
3 . This

corroborates the remark given in [5, p.51] even for the third order
nonlinear case: the loop does not modify the low-pass properties
of the filter.
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Figure 9: Third-order structure L3 of the system L

Indeed, controlling the resonance (Q-factor) through the feedback-
gain r modifies the filter R but does not affect the structure F 4

3

since the cut-off pulsation ωc is controlled through Ic but not r.
Now, the filter R is resonant but has not a low-pass behavior. Bode
diagrams for r∈

n

0, 1
3
, 2

3
, 1
o

are displayed in Figure 10.
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5.2. State-space representation

In this section, linear filters involved in the structure L are re-
shaped into state-space representations

d x(t)

dt
= A x(t) + B u(t) (39)

y(t) = C x(t) + D u(t) (40)

which define stationary linear systems with P inputs u, Q outputs
y and the state x of dimension N . The vectors u, y and x have
dimensions P ×1,Q×1, N×1, respectively. The matrices A, B,
C and D have dimensions N ×N , N ×P , Q×N and Q×P ,
respectively.

5.2.1. Cascade of four filters F4
1

The cascade of four linear filters F1 with one input uF = u0

and four outputs yF = [u4, u3, u2, u1]
t (see Figure 8) admits the

representation (39-40) with the state xF = yF and

AF = ωc

2

6

4

−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

3

7

5
, (41)

BF = ωc

ˆ

0 0 0 1
˜t

, (42)
CF = I4, (43)
DF =

ˆ

0 0 0 0
˜t

, (44)

where I4 denotes the 4×4 identity matrix.

5.2.2. Filter R

The filter R defined in (38) with one input uR and one output yR

admits the representation (39-40) with the state
xR =

ˆ

x, dx/dt, d2x/dt2, d3x/dt3
˜t and

AR =

2

6

6

4

0 1 0 0
0 0 1 0
0 0 0 1

−ω4
c (1+4r) −4ω3

c −6ω2
c −4ωc

3

7

7

5

, (45)

BR =
ˆ

0 0 0 1
˜t

, (46)
CR =

ˆ

−4 r ω4
c 0 0 0

˜

, (47)
DR = 1. (48)

5.2.3. Linear processing

The linear part of the Moog ladder filter corresponds to the upper
stage of Figure 9, that is, the cascade of the filter R and the linear
four-stage filter F4

1 . It admits a state-space representation, with
uL = uin, yL = [u4, u3, u2, u1, u0]

t,
xL =

ˆ

u4, u3, u2, u1, x, dx/dt, d2x/dt2, d3x/dt3
˜t, and

d xL(t)

dt
=

»

AF BF .CR

04,4 AR

–

xL(t) +

»

BF .DR

BR

–

uL(t), (49)

y(t)=

»

I4 04,4

01,4 CR

–

xL(t) +

»

04,1

DR

–

uL(t). (50)

5.2.4. Processing of order 3

This part is composed of the intermediate and the lower stages in
Figures 8-9. The intermediate stage is nonlinear but memoryless.
It computes

v =
ˆ

(u3)
3− (u4)

3, (u2)
3− (u3)

3, (u1)
3− (u2)

3, (u0)
3− (u1)

3˜t
.

(51)
The lower stage is a cascade of four linear filters F1 with adders,
a gain T3 = −1/3 and a linear filter R. It admits a state-space
representation with uNL =v, yNL = w5, and
xNL =

ˆ

w, dw/dt, d2w/dt2, d3w/dt3, w4, w3, w2, w1

˜t where
w is involved in the state-space representation of R, and

d xNL(t)

dt
=

»

AR BR.
ˆ

T3, 0, 0, 0
˜

04,4 AF

–

xNL(t) +

»

04,4

ωcI4

–

uNL(t)

(52)
yNL(t)=

ˆ

CR DR.
ˆ

T3, 0, 0, 0
˜˜

xNL(t) (53)

5.3. Digital simulation without aliasing and results

The state-space representation of L3 is given by equations (49-
53). The digital implementation of its linear parts is very standard.
Methods such as bilinear or backward difference transforms and
even redesigned versions of L1 have been deeply studied in [2].
Another way to preserve important features such as the exact pole
mapping with (r, ωc) consists in deriving the exact free-regime dy-
namics from the solution of (39), namely, x(t) =

R t

0
exp

`

A(t −

τ)
´

.B.u(τ)dτ + exp
`

At
´

.x(0) so that, denoting xn = x(nT )
for the sampling period T ,

xn+1 = exp
`

AT
´

.xn+

Z (n+1)T

nT

exp
`

A(tn+1−τ)
´

.B.u(τ)dτ.

(54)
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Finite dimensional approximations of u(t) =
P

n∈Z
unh(t−nT )

with h(t) = sin(πt)/(πt) will yield digital filters. As a low order
example, the approximation h1(t)=

`

1− |t|
T

´

1[−T,T ](t) leads to

xn+1 = exp
`

AT
´

.xn + B1.un+1 + B0.un, (55)

where B1 = TE1(T ) − E2(T ), B0 = E2(T ) with E1(t) =

T−1
R t

0
exp

`

A(T − τ)
´

Bdτ and E2(t) =
R t

0
E1(τ)dτ . The

output yn is computed from (40). The approximation due to h1

means that the exact system is fed with a modified input with
spectrum TF[u](f) [sinc(Tf)]2 rather than TF[u](f), where TF
denotes the Fourier transform and [sinc(Tf)]2 = TF[h1](f).

Now, the aliasing due to the cube powers in (51) can be re-
jected by encapsulating the digital system with an oversampling
process at the input and an under-sampling process at the out-
put. Here, the oversampling factor is 3. This factor improves the
approximation due to h1 since [sinc(ξ)]2 decreases from 0 dB at
ξ = 0 to only −0.8 dB at ξ = 1/6 rather than −7.8 dB at ξ = 1/2.

Results are presented in Fig. 11 for a sum of 2 square waves
(437Hz, 443Hz) with a linear attack (0.5s) and a linear decay
(0.3s). Parameters are ωc = 2πfc with fc = 1500Hz, r = 0.15
and T = 1/44100s.
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Figure 11: Spectrograms and signals of uin 7→ u4 + w5 = yL3
.

6. DISCUSSION

The validity of the third order structure is conditioned by that of the
series expansion of tanh(u). Typical valid ranges for orders 1, 3
and 5 are |u|<0.5, |u|<0.75, |u|<1. Compared to Fig.7, a (2N+
1)-order structure F2N+1 involves N +1 elementary filters F1 and
also instantaneous operators (powers, products, sums). Moreover,
structures F4

2N+1 and L2N+1 are built from F2N+1. Now, a way to
improve the validity for a fixed order 2N+1 consists in modifying
coefficients T2k+1 (1 ≤ k ≤ N ) so that they minimize a distance
between tanh(u) and its (2N+1)-order polynomial approximation
P2N+1(u), globally on a u-range rather than near u = 0. This will
introduce some ripples on P2N+1(u) but which do not affect the
global behavior if sufficiently small (in particular, P2N+1(u) must
preserve the sign of tanh(u) over the considered u-range).

7. CONCLUSION

In this paper, the Volterra series have been used to model a weakly
nonlinear analog audio device. This formalism helps to transform
nonlinear differential systems (including loops) into an infinite set
of algebraic equations from which the Volterra kernels are de-
duced. Each kernel isolates a sub-system attached to a monomial
nonlinearity and monitors the exact associated sub-dynamics. In
practice, keeping the very first kernels suffices to capture the dis-
tortion in a significant amplitude range, which characterizes the
warmth of analog devices.

Structures which admits a realization in the time domain can
be deduced from the Volterra kernels. In this paper, for each ker-
nel, elementary and low-cost sub-systems have been identified,
but other systematic identification procedures are also available,
see e.g. [10]. Moreover, a truncated version of the series allows
to reject aliasing for digital implementations. In practice, using
lower oversampling factors can be sufficient, especially for natu-
rally low-pass systems.

This formalism also proves to be useful for solving weakly
nonlinear partial differential equations, see e.g. [11] for the non-
linear propagation in a brass.
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