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Acoustic waves travelling in axisymmetric pipes with visco-thermal losses at the wall
obey a Webster–Lokshin model. Their simulation may be achieved by concatenating
scattering matrices of elementary transfer functions associated with nearly constant
parameters (e.g. curvature). These functions are computed analytically and involve dif-
fusive pseudo-differential operators, for which we have representation formula and input-
output realizations, yielding direct numerical approximations of finite order. The method
is based on some involved complex analysis.
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1. Introduction

In the context of real-time simulation of virtual musical intruments, a model of
acoustic propagation in axisymmetric air-filled pipes is considered. This model,
which depends on a single space variable, takes two phenomena into account.
The curvature of the pipe is described by a Webster equation. The visco-thermal
losses induced by the wall are described by a Lokshin equation with a fractional
time-derivative of order one-half. The Webster–Lokshin model can be recast in the
framework of coupled hyperbolic–parabolic partial differential equations.
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The present work is aimed at obtaining an input–output system which is
modular (connecting pipes amounts to connecting systems) and which makes a low-
cost simulation in the time domain possible. Such a formulation does not involve
the computation of the acoustic state over the whole guide as standard methods
of numerical analysis of PDEs do, e.g. finite differences or finite elements, but only
at the boundaries. This can noticeably reduce the cost of computation due to the
weight of the fractional integro-differential operators: these operators must be com-
puted at each node of the mesh in standard methods, whereas they are embedded
in the input–ouput system in the other case. Nevertheless, standard methods are
currently studied and should provide a reference for making comparisons.1,2

We propose to describe the solutions of the Webster–Lokshin model by a
forward–backward wave decomposition. The definition of these waves extends the
exact decoupled cases of planar waves in lossless cylinders and spherical waves in
lossless cones. To our best knowledge, this definition is new. The governing equa-
tions of these waves are two coupled partial differential equations of first order both
in time and space. Taking their causal Laplace transform with respect to time leads
to two coupled ordinary differential equations in space. If the curvature and loss
coefficients are constant with respect to space, the scattering matrix can be derived
analytically. It is proven to correspond to a causal system.

In this input–output approach, we consider transfer functions, as Laplace
transforms of causal functions. The interest in the quite involved complex anal-
ysis of these transfer functions is twofold. On the one hand, this analysis helps
and enhances understanding of the mathematical structure and hence the physical
phenomena and properties. Among them, pure delays and pure diffusion kernels
are exhibited, wavetrain decomposition is performed, long-time asymptotics are
derived. On the other hand, this analysis is a means which reveals the necessity
for the stable approximation of these transfer functions as finite order differential
equations with delays. It yields an efficient tool for numerical simulation of the
input–output system.

In the case of non-negative curvatures, the representation and approximation
technique is based on the so-called diffusive representations. The fundamental
solution of pseudo-differential operator of diffusive type can be decomposed on
a continuous family of purely damped exponentials. A straightforward extension
is required here, which makes use of a decomposition on a continuous family of
damped oscillating exponentials. An approximation of such a representation is then
performed by picking up a finite subset of this family. Now, as exponentials are solu-
tions of first-order ordinary differential equations, the input/output relation based
on the diffusive representations can be easily implemented with a set of such equa-
tions. This yields an input/state/output relation, also called a diffusive realization
in the sense of systems theory (the Hilbert state space is of infinite dimension in the
exact case and of finite dimension in the approximated case); the stability proper-
ties are guaranteed. A straightforward implementation makes a causal computation
possible in the time domain, the computational cost being much lower than that
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of a convolution with a truncated impulse response. This feature is all the more
interesting than the convolution kernels involved by visco-thermal losses and the
curvature have slow decays, which forbid short-time truncation.

This paper is organized as follows. Section 2 introduces the Webster–Lokshin
model. Locally travelling waves are defined. The corresponding adimensional
problem is formulated in the Laplace domain. The scattering matrix is derived.
The case of a baffled bell is detailed. Section 3 introduces the mathematical frame-
work of diffusive representations of pseudo-differential operators. In Sec. 4, complex
analysis of the transfer functions is carried out: branching points are computed, from
which different choices of cuts are made. Our extensions of diffusive representations
are built on these cuts. In Sec. 5, two methods for finite-order approximations are
explained and numerical results are presented in the frequency domain. Section 6
presents the input–ouput representation of a whole waveguide thanks to a Kelly–
Lochbaum structure which yields “simulable digital waveguides”. Finally, Sec. 7 is
dedicated to perspectives and open questions.

2. Input–Output Representation of a Lossy Flared
Acoustic Waveguide

2.1. Webster–Lokshin model

A mono-dimensional model of linear acoustic propagation in axisymmetric
waveguides, which includes visco-thermal losses at the wall, has been derived assum-
ing the quasi-sphericity of isobars near the wall.3 For a fluid at rest until the initial
time t0 = 0, the acoustic pressure p and the particle velocity v are governed by
(t ≥ 0) [(

1
c2
0

∂2
t +

2 ε(�)

c
3/2
0

∂
3/2
t + Υ(�)

)
− ∂2

�

]
[r(�) p(�, t)] = 0, (1)

ρ0 ∂tv(�, t) + ∂�p(�, t) = 0, (2)

where t ≥ 0 is the time variable, � ∈ [0, L] is the space variable measuring the
arclength of the wall but not z the usual axis coordinate, ∂

3/2
t is the fractional time

derivative4 associated in the Laplace domain to the symbol s3/2 understood with

a cut on R−, r(�) is the radius of the pipe, ε(�) = κ0

√
1−r′(�)2

r(�) quantifies the effect
of the visco-thermal losses, and Υ(�) = r′′(�)/r(�) accounts for the curvature of the
pipe. The associated boundary conditions will be precised in the following.

Note that if r(z) denotes the radius of the pipe for the z-ordinate, the length
of the pipe from 0 to z is �(z) =

∫ z

0

√
1 + r′(z)2dz and r(z) = r(�(z)). As a

consequence, an important property of r is that3 |r′(�)| ≤ 1 (r′(�) = 1 means that
r′(z) → +∞).

Physical constants. For standard conditions and for the air at rest, the physi-
cal constants are given by: the mass density ρ0 = 1.2 kgm−3, the speed of sound
c0 = 344 ms−1, the coefficient κ0 =

√
l′v + (γ − 1)

√
lh ≈ 3.5 10−4 m1/2 where
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l′v = µ/(ρ0c0) ≈ 4.39 × 10−8 m and lh = λ/(ρ0c0CP ) ≈ 7.26 × 10−8 m denote char-
acteristic lengths of viscous and thermal effects5 respectively; the heat coefficients
at constant pressure and constant volume per unit of mass CP ≈ 1000 Jkg−1 K−1

and CV with the specific heat ratio γ = CP /CV = 1.4, the coefficient of
shear viscosity µ ≈ 1.8 × 10−5 kg s−1 m−1, the coefficient of thermal conductivity
λ ≈ 0.03Wm−1 K−1.

2.2. Travelling waves and quadripoles of conversion

An alternative to the acoustic state (p, v) is the state (ψ+, ψ−), with

ψ±(�, t) =
r(�)
2

[p(�, t) ± ρ0c0 v(�, t)] ∓ r′(�)
2

c0 ∂−1
t p(�, t). (3)

This change of functions is associated with the reciprocal change:

p(�, t) =
1

r(�)
[ψ+(�, t) + ψ−(�, t)], (4)

v(�, t) =
1

r(�)
1

ρ0c0

[
ψ+(�, t) − ψ−(�, t) +

r′(�)
r(�)

c0 ∂−1
t

[
ψ+(�, t) + ψ−(�, t)

]]
, (5)

where ∂−1
t X(�, t) =

∫ t

0 X(�, τ) dτ denotes the causal time integration.
This acoustic state defines travelling waves ψ+ and ψ− which extend the usual

decoupled incoming and outgoing planar or spherical waves propagating respec-
tively in straight or conical non-visco-thermal pipes (ε = 0, Υ = 0). The governing
equations (1) and (2) are proven to be equivalent to

[∂t ± c0 ∂�]ψ±(�, t) = −
[
ε(�)

√
c0 ∂

1/2
t +

Υ(�) c2
0

2
∂−1

t

]
(ψ+(�, t) + ψ−(�, t)). (6)

The transport operators ∂t ± c0 ∂� still make ψ+ and ψ− appear as outwardly
and inwardly directed travelling waves, respectively. The right-hand side of Eq. (6)
exhibits the coupling between these waves, due to curvature Υ and visco-thermal
losses ε. It is a purely time-operator acting on the total acoustic pressure through
ψ+ + ψ−.

The changes of functions (3)–(5) can also be defined in the Laplace domain, s

denoting the Laplace variable (see the definition in Sec. 2.4.1). For the impedance
convention, this yields the conversion quadripoles represented in Fig. 1 where
ζ� � c0 r′(�)/r(�) is finite for nonzero radius since |r′(�)| ≤ 1.

2.3. Adimensional variables and equivalent problem for an

elementary curved piece of waveguide

Now, let us consider that the piece of waveguide � ∈ [0, L] is not much curved or
is short enough to consider that ε(�) ≈ ε and Υ(�) ≈ Υ are constant. Defining the
adimensional variables t and � as detailed in Table 1 transforms (1), (2) and (6)
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Fig. 1. Conversion quadripoles at the input (� = 0, left) and the output (� = L, right) of pipe.
The impedances Zi and Z0 model the boundary conditions.

Table 1. Definition of the adimensional variables and coefficients.

Original problem Adimensional problem Adimensional problem
case Υ = 0 case Υ �= 0

variable (unit) adimensional variable adimensional variable
� arclength (m) � = �/L � = �/L

t time (s) t = t (c0/L) t = t (c0
p|Υ|)

s Laplace variable (s−1) s = −ξ + iω = s (L/c0) s = s /(c0
p|Υ|)

adimensional coefficient adimensional coefficient

τ = 1 τ =
p|Υ|L

β = ε
√

L β = ε / 4
p|Υ|

η = Υ L2 = 0 η = sgn(Υ) = ±1

respectively into the convenient forms:[
∂2

� + τ2
(
∂2

t + 2 β∂
3/2
t + η

)]
[r(�)p(�, t)] = 0, (7)

ρ0c0τ ∂tv(�, t) + ∂�p(�, t) = 0, (8)

[τ∂t ± ∂�]ψ±(�, t) = −τ
[
β ∂

1/2
t + (η/2) ∂−1

t

]
(ψ+(�, t) + ψ−(�, t)), (9)

for t ≥ 0, � ∈ [0, 1] and where β ≥ 0 and η = sgn(Υ).
These adimensional variables are those used in the following but, at each step, all

the results can be “denormalized” making use of Table 1. For the sake of legibility,
the notation X is given up and redefined as X .

In the following, only the cases of non-curved (η = 0) or flared (η = 1) pipes
are considered. The case η = −1 is discarded from our analysis for reasons detailed
in Sec. 7.

2.4. Scattering matrix and operators of propagation

2.4.1. Definitions: Laplace transforms, convolution operators and systems

We consider the Laplace transform for the causal functions and distributions,
defined by TL[h](s) =

∫ +∞
0 h(t) e−s tdt. The convergence strip will be C+

α = {s ∈
C |Re (s) > α} for α ∈ R.

We denote with cursive capitals such as H, the convolution operators
H: L2(R+) → L2(R+), u 	→ y = Hu = h � u with the corresponding convolution
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kernels h ∈ L1(R+) which are denoted with lowercase letters. The causal Laplace
transforms H(s) = TL[h](s) are denoted with capital letters. They correspond to
the “symbol of the convolution operator H”, but we prefer to call them transfer
functions as used in the field of control theory.

Matrices and vectors are denoted with bold letters.

2.4.2. Webster–Lokshin scattering matrix

For zero initial conditions, Eq. (9) writes in the Laplace domain, for s ∈ C
+
0 ,

∂�Ψ(�, s) = Θ(s)Ψ(�, s), (10)

Θ(s) = τ s

[
−1 0

0 1

]
+ τ (β

√
s + η/(2s))

[
−1 −1

1 1

]
, (11)

where Ψ(�, s) = [Ψ+(�, s), Ψ−(�, s)]T. The solution of this problem can be
represented, thanks to a quadripole, as a 2 input–2 output system. To define a
causal quadripole Q, the inputs and outputs are chosen according to the direc-
tion of propagation of ψ±. This is a crucial property to allow simulations in the
time domain and real-time applications. Inputs are [ψ+(� = 0, t), ψ−(� = 1, t)] and
outputs are [ψ+(� = 1, t), ψ−(� = 0, t)], so that the scattering matrix Q(s) is defined
by [Ψ+(1, s), Ψ−(0, s)]T = Q(s) [Ψ+(0, s), Ψ−(1, s)]T. Q(s) is a symmetric matrix
given by

Q(s) =

[
T (s) e−τ s R(s)

R(s) T (s) e−τ s

]
(12)

(see Appendix A for a complete proof). The corresponding system is represented
in Fig. 2. The transmission function T (s) and the reflection function R(s) are

T (s) =
1 − E(s)2

1 − E(s)2D(s)2e−2τ s
D(s), (13)

R(s) = − 1 − D(s)2e−2τ s

1 − E(s)2D(s)2e−2τ s
E(s), (14)

Fig. 2. Representation of the quadripole Q.
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where

E(s) =
Γ(s) − s

Γ(s) + s
, (15)

D(s) = e−τ(Γ(s)−s) (16)

and Γ(s) is a square-root of

Γ(s)2 = s2 + 2β s3/2 + η. (17)

Taking −Γ(s) instead of Γ(s) leaves T (s) and R(s) unchanged. In the following, we
choose to define Γ(s) for s ∈ C

+
0 (η 
= −1), as the unique analytic continuation of

“the positive square-root of Eq. (17) for s ∈ R+”. The analyticity over C
+
0 holds

because Γ(s) has no branching points in C
+
0 (see the proof in Sec. 4.1.1 for η = 1,

the case η = 0 is straightforward). For this definition of Γ(s), functions E(s) and
D(s) are analytic and such that |E(s)| < 1 and |D(s)| < 1 in C

+
0 (see the proof in

Appendix B). Moreover, they define causal systems (see the proof in Appendix C).
The analyticity in C

+
0 holds also for T (s) and R(s) as well as the causality for their

associated systems.

2.5. Transfer function of a baffled bell

This section details the case of a baffled bell with a C1-profile and nearly con-
stant parameters η and β, excited by an ideal generator of pressure. The baffle
corresponds to (β, η) = (0, 0) so that ψ+ and ψ− are decoupled and propagate
as spherical waves. The boundary condition at the output is then ψ−(1, t) = 0.
The ideal generator means that there is no impedance Z0 in Fig. 1. Defining the
input U(s) � r(0)P (0, s), the output Y (s) � r(1)P (1, s) and deriving the transfer
function F (s) = Y (s)/U(s) yields

F (s) =
T (s) e−τ s

1 + R(s)
=

G(s) e−τ s

1 − K(s) e−2τ s
, (18)

G(s) = (1 + E(s))D(s) =
2 Γ(s)

Γ(s) + s
e−τ (Γ(s)−s), (19)

K(s) = −E(s)D(s)2 = −Γ(s) − s

Γ(s) + s
e−2 τ (Γ(s)−s), (20)

where F (s), G(s), K(s) are analytic functions in C
+
0 . They define causal systems

(see Appendix C). The input–output system associated to F (s) takes the form

Y (s) = G(s)e−τ s U(s) + e−2 τ s K(s)Y (s). (21)

It corresponds to the feedback interconnection of subsystems presented in Fig. 3.
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Fig. 3. Block diagram of the system defined by Y (s)/U(s) = F (s).

2.6. Wavetrain decomposition and discussion on the simulation

Since |K(s)| < e−α < 1 holds for any s ∈ C
+
α with α > 0 (see Sec. B.4), the

equality [1 − K(s)e−2τs]−1 =
∑+∞

n=0 K(s)n e−2nτs holds uniformly in C+
α . Hence,

from Dupraz6 and after multiplying by e−α t, for t ∈ R+,

f(t) = g(t − τ) + g(t − τ) �t

+∞∑
n=1

k�n(t − 2 n τ), (22)

where f , k and g are the inverse Laplace transforms of F , K, G, respectively.
Note that f , g and k belong to L2(R+) ⊂ L2

loc(R
+) ⊂ L1

loc(R
+) (see Table 2 in

Appendix C); ∀n ∈ N
∗, k�(n+1) = k � k�n ∈ L1

loc(R
+) is the nth convolution of k.

The kernel g(t − τ) exhibits the delay of propagation τ and the scattering due
to visco-thermal losses and curvature of the pipe. The kernel

∑+∞
n=1 k�n(t− 2nτ) =∑E( t

2τ )
n=1 k�n(t−2nτ) ∈ L1

loc(R
+) expresses the successive reflexions at the boundaries

of the bell, where 2τ corresponds to a back and forth propagation. The multiple
convolutions k�n show that, for each new reflexion, the convolution kernel k is
cumulated.

The direct use of Eq. (22) for the numerical simulation in the time-domain will
be very time- and memory-consuming because the impulse responses g(t) and k(t)
decay very slowly, e.g. as t−3/2 for straight pipes with visco-thermal losses.7 The
next section is dedicated to build an efficient method for the simulation in the time
domain. The first step of this method consists in representing G(s) and K(s) as the
aggregation of first-order differential systems. It is performed from the analysis of
the singularities of the transfer functions. In a second step, the so-called diffusive
representations allow for finite-dimensional approximations which prove efficient
for their simulation in the time domain.

The whole waveguides with complex geometries can be represented, by
concatenating quadripoles Qn. In this case, a structure similar to Fig. 3 can be
built thanks to systematic algebraic manipulations. This is detailed in Sec. 6.1.

3. Introduction to Diffusive Representations

The transfer functions T (s), R(s), G(s), K(s) and H(s) are rational functions
of the variables s, e−τ s, and Γ(s), e−τ(Γ(s)−s). Combining the first two variables
leads to standard delay-differential equations, well-adapted to low cost numerical



April 4, 2006 15:51 WSPC/103-M3AS 00124

Diffusive Representations of Flared Acoustic Pipes 511

simulation in the time domain. On the contrary, Γ(s) and e−τ(Γ(s)−s) correspond to
pseudo-differential operators,8 which are much more difficult to tackle and simulate.
An interesting way to overcome this difficulty is to try to decompose the associated
convolution kernels on a family of purely damped exponentials with weights µ,
or if necessary, on a family of damped oscillating exponentials. Then, a natural
approximation strategy will be to select a finite subset of this family to approxi-
mate the kernels and the associated operators, yielding straightforward finite-order
differential equations for the simulation.

Diffusive representations provide a mathematical framework for such infinite-
dimensional decompositions, for which well-posed realizations of diagonal type can
be easily derived. They help to transform a nonlocal in time pseudo-differential
equation into a first-order differential equation on a Hilbert state-space, which
allows for stability analysis. We refer to Staffans9 (note that in Sec. 5, standard
diffusive representations of the first kind are defined; in Sec. 6, generalized diffusive
representations of the second kind are introduced in Ref. 9) for the treatment of
completely monotone kernels (also known as Laplace transforms of Stieltjes mea-
sure), to Montseny10 for diffusive representations of pseudo-differential operators,
and to Matignon4 for links between fractional differential operators and diffusive
representations.

3.1. Standard diffusive representations and realizations

Diffusive representations give a framework to represent convolution operators H :
L2(0, T ) → L2(0, T ), u 	→ y = h � u for which the associated convolution kernel h

is defined by

h(t) =
∫ +∞

0

e−ξ t 1t>0 (t)M(dξ), (23)

where M(dξ) is a measure on R+ such that∫ +∞

0

∣∣M ∣∣(dξ)
1 + ξ

< +∞. (24)

M can be a positive real-valued measure, or a signed real-valued measure, or even
a complex-valued measure, hence the presence of the modulus sign in Eq. (24).
Applying the dominated convergence theorem, the associated transfer function is

H(s) =
∫ +∞

0

M(dξ)
s + ξ

(25)

for s ∈ C
+
0 . When the measure M(dξ) = µ(ξ) dξ is absolutely continuous with

respect to the Lebesgue measure, applying the residues theorem for an adapted
Bromwich contour (see Fig. 14(c)) proves that µ is given by4

µ(ξ) =
1

2iπ
[H(−ξ + i 0−) − H(−ξ + i 0+)]. (26)
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A huge family of causal convolution kernels belong to this class and a few exam-
ples of transfer functions are recalled and detailed in Appendix D (s ∈ C

+
0 ):

• M1(dξ) =
K∑

k=0

µk δξk
(dξ) leads to H1(s) =

K∑
k=0

µk

s+ξk
(for Re (ξk) > 0),

• M2(dξ) =
+∞∑
k=0

2 δ(k+ 1
2 )

2
π2(dξ) leads to H2(s) = tanh(

√
s)√

s
,

• M3(dξ) = cos(
√

ξ)

π
√

ξ
dξ leads to H3(s) = e−

√
s√

s
,

• M4(dξ) = sin(aπ)
π ξ−a dξ leads to H4(s) = s−a (for 0 < a < 1).

One of the interests of this formulation is to represent a class of infinite-dimensional
systems, for which the measure M can be a point measure (H1, H2) or an absolutely
continuous measure (H3, H4), or a combination of such measures. A second inter-
est is that systems such as H2, H3, H4, will be approximated by finite-dimensional
diffusive systems (H1) for numerical simulation. A third interest is that the cor-
responding operators admit a simple diagonal realization in the sense of systems
theory, with state φ:

∂tφ(ξ, t) = −ξ φ(ξ, t) + u(t), ξ ∈ R
+

y(t) =
∫ +∞

0

φ(ξ, t)M(dξ). (27)

A functional framework is available11 to prove that this realization is a well-posed
systems in the sense of Salamon12 and Weiss.

To sum up, diffusive representations are used to represent the so-called diffusive
pseudo-differential systems of the first kind,9,10 meaning that singularities lie on
s = −ξ ∈ R−. As a consequence, the state φ(ξ, t) of the realization has a stable
dynamics, since it is subject to the damping factor ξ.

3.2. Extension by derivation

Every transfer function with a cut on R− does not admit a diffusive representation.
This is the case of the fractional derivative of order b (0 < b < 1) associated to
H5(s) = sb (0 < b < 1), for which it does not exist a measure M which fulfills the
well-posedness condition, (24). But its realization can be achieved through that of
H(s)/s = s−a with a = 1 − b and 0 < a < 1 thanks to the measure M4 and, to
compensate, by taking the derivative of the output.

For some transfer functions defined in s = 0 but for which H(0) 
= 0, this
extension is performed by representing

H̆(s) =
1
s

[
H(s) − H(0)

]
, (28)

thanks to an appropriate measure M̆(dξ). For this extension, the couple (H(s), M̆)
is unique provided that M̆ contains no Dirac measure δ0 at ξ = 0. In this case,
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Eqs. (25) and (27) become, respectively,

H(s) = s

∫ +∞

0

M̆(dξ)
s + ξ

+ H(0) (29)

and

∂tφ(ξ, t) = −ξ φ(ξ, t) + u(t), ξ > 0

y(t) =
∫ +∞

0

∂tφ(ξ, t) M̆(dξ) + H(0)u(t). (30)

This is the case of H6(s) = e−
√

s which does not admit a standard diffusive represen-
tation, but for which (H6(s)−1)/s is associated to the measure M̆6(dξ) = sin

√
ξ

πξ dξ.

3.3. Extension for generalized cuts and singularities: Diffusive

representation of the second kind

For many irrational tranfer functions H(s), the associated convolution kernels h(t)
cannot be decomposed on purely damped exponentials e−ξt1t>0 (t) with −ξ ∈ R−,
but on oscillating damped exponentials eγt1t>0 (t) with γ ∈ C ⊂ C

−
0 . Such gener-

alizations of diffusive representations of the first kind (either standard or extended
by derivation) have been proposed by Staffans9 and Matignon.4

For instance, let us consider the tranfer function H7(s) = 1/
√

s2 + 1 with associ-
ated convolution kernel13 h(t) = J0(t)1t>0 (t), J0 denoting the 0-order Bessel func-
tion of the first kind. Its extended diffusive representation has been investigated4,14

for the definition Γ(s) =
√

s − i
√

s + i. The cuts ±i + R− are associated to the
complex conjugate weights µ±(ξ) which are computed using the Bromwich contour
Fig. 4(a) by

µ±(ξ) =
1

2iπ
[H7(−ξ ± i + i 0−) − H7(−ξ ± i + i 0+)] =

1
π

1√
ξ

1√±2i − ξ
. (31)

As µ− = µ+, H7(s) admits the realization

∂tφ(ξ, t) = (−ξ + i)φ(ξ, t) + u(t), ξ > 0

y(t) =
∫ +∞

0

Re [µ+(ξ)φ(ξ, t)] dξ, (32)

where the weights fulfill the well-posedness condition9∫ +∞

0

∣∣∣∣ µ+(ξ)
1 + ξ − i

∣∣∣∣ dξ +
∫ +∞

0

∣∣∣∣ µ−(ξ)
1 + ξ + i

∣∣∣∣dξ < +∞. (33)

Other examples can be found in the transfer functions associated to linear PDEs
(see Duffy15). The Webster (β = 0) and Webster–Lokshin (β > 0) models lead to
such generalized diffusive transfer fonctions through G(s), K(s) and D(s). When
β = 0, Γ(s) equals

√
s2 + 1, so that they can be defined with the same cuts as those

of H7(s) and its representation can be derived in the same way.
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514 Th. Hélie & D. Matignon

(a) (b) (c)

Fig. 4. Bromwich contours used for deriving the generalized diffusive representations of H7(s) =
1/

√
s2 + 1 (a), G(s) (b) and K(s) (c).

In the following, we consider the even more complicated case of the Webster–
Lokshin transfer functions for which Γ(s) =

√
s2 + 2βs3/2 + 1. This requires both

analytical and numerical in-depth studies, and will be presented in the next section.

4. Diffusive Representations for the Webster–Lokshin Transfer
Functions

In this section, we first perform an analysis of the singularities of the transfer func-
tions in the complex variable s, from which we can choose and define cuts between
the branching points. In a second step, we adapt the diffusive representation based
on the cuts previously chosen.

4.1. Singularities of the transfer functions Γ(s), G(s) and K(s)

4.1.1. Branching points

Branching points involved in Γ(s) are 0 (because of the term s3/2) and the roots
of Γ(s)2. The roots of Γ(s)2 are given by s = σ2 where σ = ρeiθ with −π

2 < θ ≤ π
2

solves

σ4 + 2 βσ3 + 1 = 0. (34)

Two out of the four σ-roots (see Fig. 5(a)) correspond to complex conjugated
branching points, namely, s1 = σ1

2 (Im (s1) ≥ 0) and s2 = σ2
2 = s1 (see Fig. 5(b)),

while the others two do not correspond to s-roots.
The transfer functions G(s) and K(s) have three branching points 0, s1(β) and

s1 ∈ C
−
0 . The cuts of these functions are naturally the same as those of Γ(s).
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(a) (b)

Fig. 5. The roots of σ4+2βσ3+1 are represented in the complex plane (a). The σ-roots such that
Re (σ) ≥ 0 have associated s-roots represented in (b), namely: s1 = σ1

2 and s2 = σ2
2 = s1. These

complex conjugate branching-points evolve from s1 = +i for β = 0 to s1 = 0 for β → +∞ with
an increasing angle starting from π/2 to 2π/3, so that they all have a negative real-part (stability
domain). The other σ-roots (σ3,4) have a negative real-part so that they do not correspond to
s-roots. They evolve as complex conjugate pairs for 0 ≤ β < 2 × 3−3/4, merge in σ = − 4√3 for
β = 2× 3−3/4, then move on the negative real axis towards −∞ for one of them, and towards 0−
for the other.

4.1.2. Defining cuts

As Γ(s) is analytic in C
+
0 , the cuts of the possible analytic continuations over C

must be chosen in C
−
0 . Moreover, the transfer functions map real inputs to real

outputs, a natural choice is thus to preserve the hermitian symmetry in C
−
0 also.

The cut associated to the fractional derivative symbol s3/2 (starting from 0) is R−.
But there are infinitely many choices of symmetrical cuts starting from s1(β) and
s1. Here, we require cuts to be half-lines. Note that, for instance, this is not the
case for the natural definition Γ(s) =

√
s2 + 2β s3/2 + 1 where X 	→ √

X is defined
with the cut on R−. Solving s2 + 2β s3/2 + 1 = −ξ ∈ R− yields two roots s(ξ)
and s(ξ) which describe two curves in C

−
0 , starting from s1 and s1 respectively

(see Fig. 6(a)). But these are not straight lines.
Here, requiring half-lines leads to define the following family

Γ(s) =
1
2

[
(θ1)√

s − s1
(θ2)√

s − s1

√
χ(

√
s) +

(θ1)√
s − s1

(θ2)√
s − s1

√
χ(

√
s)

]
, (35)

where
(θ0)√

ρeiθ � √
ρei θ

2 with ρ ∈ R+ and θ ∈ [θ0, θ0 + 2π[ and where

χ(σ) =
(σ − σ3)(σ − σ4)
(σ + σ1)(σ + σ2)

, (36)

is proven to be such that ∀ σ ∈ C
+
0 , χ(σ) ∈ C

+
0 (σ1,2,3,4 are defined in Fig. 5(a)).

Thus, in Eq. (35), the term (θ1)√
s − s1

(θ2)√
s − s1

√
χ(

√
s) uniquely defines an ana-

lytic continuation of s 	→ Γ(s) on C for the cuts R− ∪ (s1 +eiθ1R+)∪ (s1 +eiθ2R+).
The mean of the two terms fulfills the hermitian symmetry.
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(a) (b) (c) (d)

Fig. 6. These figures illustrate the cuts defined by Γ(s) =
(−π)

q
Γ(s)2 (a) and by Eq. (35)(b)–(d).

If θ1, θ2 and distinct angles, Γ(s) has five cuts: two starting from s1, two from s1, and R− from 0
(b). If θ1 = −θ2 [2π] the two terms of Eq. (35) are identical and Γ(s) has only three cuts: one from

each branching point (c). Choosing θ1 = θ2 = −π/2, the discontinuity of
(− π

2 )√
s − s1 compensates

with that of
(− π

2 )√
s − s1 on s1 − iR+ and leads to the particular cuts Cc = R− ∪ [s1, s1] (d).

To ensure that the cuts e±iθ1R+ and e±iθ2R+ belong to C
−
0 and that ∀ x ∈ R+,

(θ0)√
x = +

√
x, the angles must be chosen as follows:

(θ1, θ2) ∈ Θ2 with Θ =
[
−3π

2
,−π

2

[
+ 4πZ. (37)

These functions usually have five cuts (Fig. 6(b)). Choosing θ1 = −θ2 [2π] leads
to three cuts (Fig. 6(c)), and the very special case θ1 = θ2 = −π/2 leads to the
“cross-cuts”(Fig. 6(d)). In the following, only the case of “three horizontal cuts”
(case (c) with θ1 = θ2 = −π), denoted Ch, and that of the “cross-cuts” (case (d),
θ1 = θ2 = −π/2), denoted Cc, are investigated, with

Ch = R
− ∪ (s1 + R

−) ∪ (s1 + R
−), (38)

Cc = R
− ∪ [s1, s1]. (39)

4.1.3. Poles

The function Γ(s) has no pole. The poles of G(s) and K(s) are the roots of Γ(s)+s.
Their determination is performed in two steps. Firstly, writing Γ(s)2 = s2 leads to
solve 2βs3/2 = 1 and yields s = (2β)−

2
3 e±i 2π

3 . Secondly, we check if these complex
conjugate solutions are the roots of Γ(s) + s (poles of G(s) and K(s)) or the roots
of Γ(s)−s (zeros of K(s)). This result depends on the chosen cuts: they correspond
to zeros of K(s) for both the “cross-cuts” Cc and the “horizontal cuts” Ch, and to
poles for the cuts defined, for example, taking θ1 = − 3π

2 , θ2 = −π
2 .

The tranfer functions under study in the following have no poles but only cuts.

4.2. Diffusive representations and realizations of G(s) and K(s)

From this singularities analysis, we build diffusive representations of the trans-
fer functions G(s) and K(s). A first family of representations is built for the cut
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Ch, and a second one for Cc. For K(s), the computation of weights µ yields measures
M(dγ) satisfying the well-posedness criterion∫

C

∣∣∣∣M(dγ)
1 − γ

∣∣∣∣ < +∞, (40)

for C = Ch and C = Cc. The case of G(s) requires an extension by derivation.

4.2.1. Generalized diffusive representations for the cuts Ch and Cc

Applying the residue theorem with the oriented Bromwich contour Fig. 4(b) for
K(s) yields, thanks to the dominated convergence theorem,

∀ s ∈ C
+
0 , K(s) =

∫ +∞

0

µ0,Ch
(ξ)

s + ξ
dξ +

∫ +∞

0

µs1,Ch
(ξ)

s − s1 + ξ
dξ

+
∫ +∞

0

µs1,Ch
(ξ)

s − s1 + ξ
dξ, (41)

∀ t ∈ R, k(t) =
∫ +∞

0

e−ξ t1t>0 (t)µ0,Ch
(ξ) dξ

+
∫ +∞

0

e(s1−ξ) t1t>0 (t) µs1,Ch
(ξ) dξ

+
∫ +∞

0

e(s1−ξ) t1t>0 (t) µs1,Ch
(ξ) dξ, (42)

where the weights µα,Ch
for α ∈ {0, s1, s1} are given by, for ξ > 0,

µα,Ch
(ξ) =

KCh
(α − ξ + i0−) − KCh

(α − ξ + i0+)
2iπ

. (43)

KCh
(s) denotes the analytic extension of K(s) on C\Ch. These weights are detailed

in Table 3 and represented in Fig. 7 2©, 3©.
The representation associated to Cc is obtained with the Bromwich contour

Fig. 4(c) and yields

∀ s ∈ C
+
0 , K(s) =

∫ +∞

0

µ0,Cc(ξ)
s + ξ

dξ +
∫ Im (s1)

−Im (s1)

µs1,Cc(ω)
s − Re (s1) − iω

dω, (44)

∀t ∈ R, k(t) =
∫ +∞

0

e−ξ t1t>0 (t) µ0,Cc(ξ) dξ

+
∫ Im (s1)

−Im (s1)

e(Re (s1)+iω) t1t>0 (t)µs1,Cc(ω) dω, (45)

where the weights are given by, for ξ > 0 and ω ∈ [−Im (s1), Im (s1)]

µ0,Cc(ξ) =
KCc(−ξ + i 0−) − KCc(−ξ + i 0+)

2iπ
, (46)

µs1,Cc(ω) =
KCc(Re (s1) + iω + 0−) − KCc(Re (s1) + iω + 0+)

2iπ
. (47)

KCc(s) is the analytic extension of K(s) for the cuts Cc.
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Fig. 7. Modulus and phase of K(s), s ∈ C
−
0 are represented in 1© for both cuts Ch (a), (b)

and Cc (c), (d). The corresponding (real-valued) weights µ computed on R− are in 2©a,c. The
corresponding (complex-valued) are computed on s1+ R− ( 3©a:modulus, 3©b:phase) and on [s1, s1]
( 3©c:modulus, 3©d:phase), respectively. The x-axis of 1©, 2© and 3©a,b correspond to −ξ = Re (s)
< 0 on a log-scale, and the y-Axis of 1©, 3©c,d to ω = Im (s) on a linear scale. Circles o represent
branching points and crosses × the pole placement for the approximation (see Sec. 5).

These representations satisfy the well-posedness condition, (40). Moreover,
because of hermitian symmetry, µ0,Ch

and µ0,Cc are real-valued, µs1,Ch
(ξ) =

µs1,Ch
(ξ) for ξ > 0 and µs1,Cc(−ω) = µs1,Cc(ω) for ω ∈ [−Im (s1), Im (s1)]. Hence,

(42) and (45) also take the real-valued form, for t ∈ R,

k(t) =
∫ +∞

0

e−ξ t1t>0 (t)µ0,Ch
(ξ) dξ + 2Re

∫ +∞

0

e(s1−ξ) t1t>0 (t)µs1,Ch
(ξ) dξ

=
∫ +∞

0

e−ξ t1t>0 (t)µ0,Cc(ξ) dξ

+ 2Re
∫ Im (s1)

0

e(Re (s1)+iω) t1t>0 (t)µs1,Cc(ω) dω. (48)

Similar calculations for G(s) do not lead to measures fulfilling Eq. (40): The
computed weights are not decreasing with ξ (see Fig. 8 2©, 3©). This requires to
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Fig. 8. Figure similar to Fig. 7 for G(s) in 1©, 2©, 3©, and for Ğ(s) in 4©, 5©. The weigths µ in 2©c
and 3©a do not decrease when −ξ → −∞ so that the well-posedness condition (40) is not satisfied.
This problem disappear in 4©, 5© for the extension by derivation computed from Ğ(s).

perform an extension by derivation (see Sec. 3.2) computing Ğ(s) = G(s)−G(0)
s

for both Ch and Cc. We check that the well-posedness condition (40) is satisfied for
Ğ(s). The corresponding weights are given in Table 3 and represented in Fig. 8 4©, 5©.
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Then, G(s) can be represented by, for s ∈ C
+
0 ,

G(s) = G(0) + s Ğ(s) (49)

Ğ(s) =
∫ +∞

0

µ̆0,Ch
(ξ)

s + ξ
dξ +

∫ +∞

0

µ̆s1,Ch
(ξ)

s − s1 + ξ
dξ +

∫ +∞

0

µ̆s1,Ch
(ξ)

s − s1 + ξ
dξ,

=
∫ +∞

0

µ̆0,Cc(ξ)
s + ξ

dξ +
∫ Im (s1)

−Im (s1)

µ̆s1,Cc(ω)
s − Re (s1) − iω

dω. (50)

The weights are computed, thanks to Eqs. (43), (46) and (47) taking ĞCh
(s) instead

of KCh
(s) and ĞCc(s) instead of KCc(s).

Choosing cuts yield equivalent diffusive representations but provides distinct
interpretations. For Ch, the convolution kernels are proven to admit a well-posed
decomposition on a family of purely damped exponentials and of damped oscillating
exponentials with the pulsation Im (s1) (see (42)). Cc is associated to a family
of purely damped exponentials and of damped oscillating exponentials with the
constant damping factor −Re (s1) and with pulsations smaller than Im (s1) (see
Eq. (45)). More generally, choosing a possible set of cuts is similar to choosing a
family of exponentials allowing such decompositions.

4.2.2. Realizations of the transfer functions in the time domain

For each cut, an associated time-domain realization of both operators y = Ku and
z = Gu can be derived. Those built on the Ch-representations are straightforwardly
deduced from Eqs. (41), (49) and (50) and are given by

∂tφα(ξ, t) = (α − ξ)φα(ξ, t) + u(t), ξ ∈ R
+, α ∈ {0, s1}, (51)

y(t) =
∫ +∞

0

φ0(ξ, t)µ0,Ch
(ξ) dξ + 2Re

∫ +∞

0

φs1(ξ, t)µs1,Ch
(ξ) dξ, (52)

z(t) = ∂t

(∫ +∞

0

φ0(ξ, t) µ̆0,Ch
(ξ) dξ + 2Re

∫ +∞

0

φs1(ξ, t) µ̆s1,Ch
(ξ) dξ

)
+ G(0)u(t). (53)

Swapping the time-derivative and the integral operator thanks to Lebesgue’s
dominated convergence theorem, which applies in the appropriate functional
framework,10 Eq. (53) is also given by

z(t) = G(0)u(t) +
∫ +∞

0

[−ξφ0(ξ, t) + u(t)] µ̆0,Ch
(ξ) dξ

+ 2Re
∫ +∞

0

[(s1 − ξ)φs1(ξ, t) + u(t)] µ̆s1,Ch
(ξ) dξ. (54)

The realizations built on the Cc-representations are deduced from Eqs. (44), (49)
and (50) and are given by

∂tφ0(ξ, t) = −ξ φ0(ξ, t) + u(t), ξ ∈ R
+, (55)

∂tφs1 (ω, t) = (Re (s1) + iω)φs1(ω, t) + u(t), ω ∈ [0, Im (s1)], (56)
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y(t) =
∫ +∞

0

φ0(ξ, t)µ0,Cc(ξ) dξ + 2Re
∫ Im (s1)

0

φs1(ω, t)µs1,Cc(ω) dω, (57)

z(t) = G(0)u(t) +
∫ +∞

0

(−ξφ0(ξ, t) + u(t)) µ̆0,Cc(ξ) dξ

+ 2Re
∫ Im (s1)

0

((s1 − ω)φs1(ω, t) + u(t)) µ̆s1,Cc(ω) dω. (58)

5. Finite Dimensional Approximation and Time-Domain
Simulation

Finite order versions of the stable realizations Eq. (27) are obtained by picking up
a finite subset of points which belong to the cuts. Two standard methods yielding
such approximations are first recalled. Secondly, numerical results are presented in
the frequency domain, for approximations built on both Ch- and Cc-representations.
Finally, associated low-cost time-domain simulations are proposed and the error of
approximation is quantified.

5.1. Methods of approximation

5.1.1. Approximation by interpolation of the state φ

For a standard diffusive representation (see Sec. 3.1), a first method consists in
approximating φ(ξ, t) by16

φ̃(ξ, t) =
K∑

k=1

φ(ξ, t) Λk(ξ), (59)

where {Λk}1≤k≤K defines continuous piecewise linear interpolating functions non-
zero on ]ξk−1, ξk+1[ such that Λk(ξk) = 1, with ξ0 < ξ1 < · · · < ξK < ξK+1. The
realization (27) is approximated by the first-order linear system of dimension K

∂tφ̃k(t) = −ξk φ̃k(t) + u(t),

y(t) =
K∑

k=1

µ̃k φ̃k(t)
(60)

with

µ̃k =
∫ ξk+1

ξk−1

µ(ξ)Λk(ξ)dξ. (61)

A straightforward and similar approximation can be derived for the generalized
realizations (51)–(58) interpolating some φ(γ, t) where γ lies on the cuts Ch or Cc.
This method has nice theoretical convergence properties but requires large values
of K in practice.
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5.1.2. Approximation by optimization of a criterion

A second method consists in a least-square regularized optimization of the weigths
µ, by minimizing an appropriate distance between an exact transfer function H(iω)
and its approximation H̃µ(iω) in the frequency domain. For a given order of approx-
imation K, this method yields much better results than the interpolation one.17

Moreover, the distance can be adapted to optimize some performances, in our con-
text, audio performances.

Model of approximation. Let S be a finite subset of points included in the cuts Ch

or Cc, these points being described by −ξ = (−ξj)1≤j≤J , ξj > 0 for those lying on
R− and by γ = (γk)1≤k≤K with γk = −ξ′k + iω′

k, ξ′k > 0, and ω′
k > 0 otherwise.

The approximation H̃µ is defined by

H̃µ(s) =
J∑

j=0

µj

s + ξj
+

K∑
k=0

[
µR

k

(
1

s − γk
+

1
s − γk

)
+ µI

k

(
i

s − γk
+

−i

s − γk

)]
, (62)

where µ denotes the vector µ �
(
µ1, . . . , µJ , µR

1 , . . . , µR
K , µI

1, . . . , µ
I
K

)t ∈ RJ+2K ,
µj and µ′

k = µR
k +iµI

k are the associated weights. Requiring real values for µ ensures
hermitian symmetry.

Criterion for audio performances. The criterion to be optimized is

C(µ) =
∫

R+
|(H̃µ(iω) − H(iω))wH(ω)|2M(dω)

+
J∑

j=1

εj(µj)2 +
K∑

k=1

ε′k
((

µR
k

)2 +
(
µI

k

)2)
. (63)

The parameters εj ≥ 0 are regularizing parameters for the purely diffusive part,
and ε′k ≥ 0 for the damped oscillating part. They allow to keep the problem well-
conditioned when the size J +2K of µ increases. The measure M and the weighten-
ing wH are chosen according to audio performances and human perception scales18:

(i) Frequencies are perceived from 20 Hz to 20 kHz on a logarithmic scale. We
choose

M(dω) � 1ω−<ω<ω+ (ω) d lnω = 1ω−<ω<ω+ (ω)
dω

ω
. (64)

(ii) The perception of intensity is also logarithmic so that we consider the rela-
tive error |H̃µ(iω)−H(iω)|/|H(iω)| rather than the absolute error |H̃µ(iω)−
H(iω)|. This yields the weightening wH(ω) = 1/|H(iω)|.

(iii) A precise modelling is sufficient for the typical “audio dynamics” of 80 dB. The
previous weightening wH(ω) can then be revised taking

wH(iω) = 1/SatH,Tr (iω). (65)

The saturation function with treshold Tr is defined by SatH,Tr (iω) equals TH �
Tr supω−<ω<ω+

|H(iω)| if |H(iω)| < TH , and equals |H(iω)| otherwise. This
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weightening is finite even for transfer functions with zeros. Note that 80 dB
corresponds to Tr = 10−4.

(iv) In the case of an extension by derivation H̆, we need an optimization for H

through that of G. Hence, the weightening to apply to H̆ is then that of G

with a compensation of the integrator 1/s in (28), i.e.

w̆H(iω) = ω/SatH,Tr (iω). (66)

Note that the saturation function is parametrized by H and not H̆, but that
the weightening w̆H will be applied on H̆ in (63).

For numerical computations, the criterion is computed for a finite set of angular
frequencies (ωn), 1 ≤ n ≤ N + 1 increasing from ω1 = ω− to ωN+1 = ω+. It is
approximated by

C(µ) =
N∑

n=1

∣∣(H̃µ(iωn) − H(iωn))wH(ωn)
∣∣2[lnωn+1 − ln ωn]

+
J∑

j=1

εj(µj)2 +
K∑

k=1

ε′k
((

µR
k

)2 +
(
µI

k

)2)
. (67)

It takes the equivalent matrix formulation

C(µ) =
(
Mµ − H

)∗
W∗W(Mµ − H) + µtEµ, (68)

where M∗ � M
t

denotes the transpose conjugate matrix of M. The matrix M is
defined by Mn,m = [iωn + ξm]−1 for 1 ≤ m ≤ J , by Mn,m = 1

iωn−γm−J
+ 1

iωn−γm−J

for J+1 ≤ m ≤ J+K, and by Mn,m = i
iωn−γm−(J+K)

+ i
iωn−γm−(J+K)

for J+K+1 ≤
m ≤ J + 2K. The vector H is the column vector (H(iωn))1≤n≤N . The weightening
matrix W is real positive diagonal and defined by Wn,n = wH(ωn)

√
ln ωn+1 − ln ωn

for 1 ≤ n ≤ N (recall that ω1 = ω− and ωN+1 = ω+). The regularizing matrix E
is real non negative diagonal and defined by Em,m = εm for 1 ≤ m ≤ J and by
Em,m = EK+m,K+m = ε′m for J + 1 ≤ m ≤ J + K.

Solving this least-square problem with the constraint that µ is real valued yields

µ = [Re(M∗ W∗ WM) + E]−1 Re(M∗ W∗ WH). (69)

This result is obtained by decomposing the complex values as x + iy, solving the
problem and recomposing the result into the compact form (69).

5.2. Results in the frequency domain

The results of this optimization are presented in Fig. 9 for the following parame-
ters: β = 0.3, τ = 1, ω− = 10−4, ω+ = 105, ωn = ω−(ω+/ω−)

n−1
N−1 for 1 ≤ n ≤ N

with N = 200. For the cuts Ch, we choose ξj = 10
j−4
2 for 1 ≤ j ≤ J with J = 4,

ξ′k = 10
k−1
2 and ω′

k = Im (s1) = for 1 ≤ k ≤ K with K = 8 (see Fig. 7 1©a,b). For
the cuts Cc, we choose ξj = 10

j−4
4 for 1 ≤ j ≤ J with J = 16, ξ′k = Re (s1) and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Bode diagrams of the exact transfer functions (-), of approximated functions for the cuts
Ch (:) and the Fourier transform of the corresponding discrete-time simulations (- -): K(iω) (a),
G(iω) (d), H(iω) (g). The transfer functions G are built from Ğ thanks to Eq. (49), and H thanks
to G, K and delays thanks to Eq. (18). Figures (b), (e), (h) represent the corresponding relative
errors in decibels 20 log10 |H̃(iω)/H(iω) − 1| for the cuts Ch and (c), (f), (i), for the cuts Cc.

ω′
k = k

K+1 Im (s1) for 1 ≤ k ≤ K with K = 2 (see Fig. 7 1©c,d). For these param-
eters, no regularization is necessary so that we choose E = 0. The corresponding
approximations all yield systems of dimension J + 2K = 20.

Note that the adimensional angular frequencies ω− and ω+ (see Table 1 for
the denormalization) allow to encompass nine decades (rather than 4 for the
physical audio range). This allows one to show that the method yields satisfying
results for various curvatures and lengths associated to a given set of adimensional
parameters.
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5.3. Time-domain simulation

The finite-dimensional realizations of the approximated transfer functions are

∂tφj(t) = −ξj φj(t) + u(t), 1 ≤ j ≤ J, (70)

∂tφ
′
k(t) = (−ξ′k + iω′

k)φ′
k(t) + u(t), 1 ≤ k ≤ K, (71)

ỹ(t) =
J∑

j=1

µjφj(t) + 2Re
K∑

k=1

µ′
kφ′

k(t), (72)

z(t) =
J∑

j=1

(−ξj µ̆j)φj(t) + 2Re
K∑

k=1

(−ξ′k + iω′
k)µ̆′

kφk(t)

+

[
G(0) +

J∑
j=1

µ̆j + 2Re
K∑

k=1

µ̆′
k

]
u(t). (73)

Approximating u(t) by its sample and hold version, that is u(t) ≈ u(tn) for tn ≤
t < tn+1, Eqs. (70)–(73) become, in the discrete-time domain,

φj(tn) = αj φj(tn−1) +
αj − 1
−ξj

u(tn−1), (74)

φ′
k(tn) = α′

k φ′
k(tn−1) +

α′
k − 1

−ξ′k + iω′
k

u(tn−1), (75)

ỹ(tn) =
J∑

j=1

µjφj(tn) + 2Re
K∑

k=1

µ′
kφ′

k(tn), (76)

z̃(tn) =
J∑

j=1

(−ξj µ̆j)φj(tn) + 2Re
K∑

k=1

(−ξ′k + iω′
k)µ̆′

kφ′
k(tn)

+

[
G(0) +

J∑
j=1

µ̆j + 2Re
K∑

k=1

µ′
k

]
u(tn), (77)

where tn = n Ts, Ts is the sampling period, αj = e−ξjTs and α′
k = e(−ξ′

k+iω′
k)Ts .

The impulse responses k(tn), g(tn) and h(tn) are simulated thanks to these
recursive equations and delay lines. They are represented in Fig. 10 for the sampling
frequency Fs = 104

4π . The corresponding relative errors in the frequency domain are
computed from the discrete Fourier tranform of the first 216 computed points of
the impulse response (see Fig. 9).

6. Generalization: Input–Ouput Representation
of a Whole Waveguide

In this section, all the variables are original ones (t, s, Υ, etc.) and not adimensional
ones (t, s, η, etc.) (see Sec. 2.3).
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Fig. 10. Simulations in the (adimensional) time domain of the impulse responses of the sub-
systems k(t) in (a), g(t) in (b) and of the whole bell system f(t) in (c). These impulse responses
are obtained from the approximations and the cut C = Ch.

6.1. Concatening quadripoles

Under our 1D-modelling hypotheses, the �-continuity of p, v and ψ± is satisfied
if19 the profile � 	→ r(�) has a continuous derivative. In such a case, a whole pipe
can be represented by cascading the (denormalized) quadripoles Qn (1 ≤ n ≤ N)
where the pieces of pipes located at � ∈ [�n−1, �n] (1 ≤ n ≤ N , �0 = 0, �N = L) are
described by nearly constant coefficients ε(�) ≈ εn and Υ(�) ≈ Υn (see Fig. 11).

Fig. 11. Assuming that the profile R is in C1, the whole pipe can be represented by concatenated
quadripoles Qn.
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Standard boundary conditions on (p, v) can be applied on the pipe by encapsulating
the chain of Qn with the conversion quadripoles given in Fig. 1. This defines a causal
dynamical system of the whole acoustic system.

6.2. Deriving a Kelly–Lochbaum structure

Concatenating quadripoles Qn(s) together or with the conversion quadripoles Ci

or C0 creates instantaneous infinite loops (see the dashed arrow on Fig. 12(a)).
This difficulty is overcome thanks to algebraic calculation: reformulating the equa-
tions of the junction (yn+1(s) = un(s) + En

2 2(s) yn(s) and yn(s) = un+1(s) +
En+1

1 1 (s) yn+1(s)) so that (yn, yn+1) are given as expressions of (un, un+1) cancels
this loop (see Fig. 12(b)). The stability condition for the “de-looping” is ∀s ∈ C

+
0 ,

∆n(s) 
= 0 where

∆n(s) = 1 − En
2 2(s)En+1

1 1 (s). (78)

Applying this result to the concatenation of quadripoles Ci, Qn=1,...,N and C0 yields
the Kelly–Lochbaum structure presented in Fig. 13. The crucial point is that the
loops of this structure include a delay, thus making the simulation possible.

The transfers of the quadripoles of junctions Jn (1 ≤ n ≤ N) are those of
Fig. 12(b) with En

2 2(s) = Rn(s), En+1
1 1 (s) = Rn+1(s), ∆n(s) = 1 − Rn(s)Rn+1(s).

The conversion quadripoles are of {E2 1, E1 2, E1 1, E2 2} type. At the input, Ci

Fig. 12. Infinite loop (dashed arrow) created by connecting two quadripoles {E2 1, E1 2, E1 1,
E2 2} a©, and equivalent junction without loop (∆n(s) is defined in Eq. (78)) b©.
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Fig. 13. Kelly–Lochbaum structure for a whole waveguide. Note that the denormalized delays
are τn = (�n − �n−1)/c0 for 1 ≤ n ≤ N .

corresponds to

ECi
2 1(s) = r(0)/∆0(s),

ECi

1 2(s) = −2/
[
ρ0 c0 r(0)∆0(s)

]
,

ECi
1 1(s) =

[
1 + ζ0/s − 2R1(s)/∆0(s)

]
/(ρ0 c0),

ECi
2 2(s) = −1/∆0(s)

where ∆0(s) = 1 + R1(s) and ζ� = r′(�)/r(�). At the output, C0 corresponds to

EC0
2 1 (s) = 2/[ρ0 c0 r(L)∆N (s)],

EC0
1 2 (s) = r(L)/∆N (s),

EC0
1 1 (s) = −1/∆N(s),

EC0
2 2 (s) = [−1 − ζL/s + 2RN (s)/∆N (s)]/(ρ0 c0),

where ∆N (s) = 1 + RN (s).
Adapting the methods presented for the bell transfer functions in Secs. 4 and 5

to those of Ci, Jn and C0 (see Sec. 7.1), the whole Kelly–Lochbaum structure of
Fig. 13 will give rise to well-known and widely used digital filters20 where delays
can be implemented, thanks to circular buffers.

7. Perspectives and Open Questions

7.1. Perspectives

7.1.1. Transfer functions of concatenated quadripoles

In the quadripole of junctions Jn (see Fig. 13), the irrational transfer functions have
five branching points instead of three because of ∆n(s) = 1 − Rn(s)Rn+1(s) (see
Sec. 6.2). Namely, branching points are s = 0 and two pairs (s1, s1), one pair being
associated to one cell. Then, it could seem necessary to extend our technique to the
case of five cuts. This can be avoided by choosing, for each quadripole Jn, one cut
which includes a connection between sQn

1 and s
Qn+1
1 , the complex conjugate cut

and R−. Thus, the realization in subsystems with delays of Rn involved in Jn and
that involved in Jn−1 will be different. The cuts of these subsystems can be chosen
independently since the only cut of Rn is R− (see Sec. 2.4.2).
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7.1.2. C-contour techniques

The C-contour (or usually called Γ-contour21) is an alternative to the use of dif-
fusive representations. It is deeply based on the Bromwich inversion formula of
the Laplace transform, with a contour C ⊂ C

−
0 which encircles all the singularities

(poles, branching points, cuts, etc.). In this case, the time-domain representation is
obtained, which involves as complex-valued weight µ(γ) = H(γ), namely:

∂tXγ(t) = γ Xγ(t) + u(t), γ ∈ Cγ ,

y(t) =
∫
Cγ

H(γ)Xγ(t)dγ. (79)

The well-posedness condition now reads
∫
Cγ

∣∣ µγ

1−γ

∣∣dγ < +∞ must be satisfied.
The diffusive representations can be interpreted as a limit case of a C-contour

which would embrace the cuts from both sides and eventually stick to them. This
cut technique captures the information through the discontinuity of the transfer
functions across the cuts (this is represented by µ, see e.g. (26) or (31)).

The Cγ-contour techniques express the same information on a somewhat aver-
aged form: on one hand, it does not require to compute the jump on the dis-
continuity, but on the other hand, they seem to be less favorable to yield good
approximations by systems of finite dimension with low orders.

7.1.3. Optimizing pole placement on the cut

An improvement of the optimization presented in Sec. 5.1.2 consists in minimiz-
ing the criterion (63) also with respect to the poles {−ξj} and {γk}, which are
required to remain on the cuts and preserve hermitian symmetry. This problem is
now a nonlinear optimization problem under constraint. A straightforward future
work will consists in applying classical method (Lagrange multipliers, Kuhn–Tucker
optimality conditions, etc.).

7.2. Open questions

7.2.1. Stability of a whole waveguide

For sound synthesis, it is most important to ensure the stability of a whole waveg-
uide made of concatenated quadripoles (see Fig. 11). In the simpler case of con-
catenation of cylinders, the waveguide is made of lossy transmissions (delays and
damping operators) and real reflection coefficients; the stability of this system can
then be proved as in Matignon.22 In our case, the reflections are no longer repre-
sented by real constant coefficients, but by complex-valued transfer functions, so
that this proof cannot be used as such. Moreover, it is not known if an extension
will be available: further investigation will be carried out.

7.2.2. Negative curvatures

When η = −1, Eq. (34) becomes σ4 + 2 βσ3 − 1 = 0. The roots of this equation
give rise to three branching points in the s-plane other than s = 0: two complex
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conjugated s1 and s2 = s1 with negative real-part, and s3 which is a strictly positive
real. The branching point s3 accounts for instability of the subsystems associated
to the transfer functions E(s), D(s), G(s) and K(s) (see (15)–(20)).

Nevertheless, 0 is the only branching point and R− the only cut of the transfer
functions T (s), R(s), F (s) (see Secs. 2.4.2–2.5) as well as of the quadripoles Ci(s),
Jn(s) and C0(s) (see Sec. 6.2). These are functions of Γ(s)2. All the corresponding
“macro-systems” are then stable. This is confirmed by the Webster equation: the
case β = 0 is known to be conservative and gives rise to trapped modes23 for
negative curvatures (η = −1).

A future work could consist in looking for a decomposition of these “macro-
systems” into delays and “subsystems” (different from E(s) and D(s)) which would
involve the only cut R−. Finding such a realizable decomposition is not straight-
forward but will allow to simulate the propagation in any waveguide, including
positive, zero and negative curvatures.

8. Conclusion

In this paper, we consider a one-dimensional model of propagation inside axisym-
metric pipes which takes into account both varying cross-sections and visco-thermal
losses at the wall. We give a new definition of travelling waves which extends that
of plane waves for cylinders and circular waves for cones. This definition allows
a straightforward formulation thanks to causal quadripoles: since they are causal
systems, they are well-adapted to simulation in the time domain. Now, apart from
delays, these quadripoles involve pseudo-differential operators in time, which do not
have a state-space realization of finite dimension.

Our work consists in building up finite-dimensional approximations. This is per-
formed in three steps. Firstly, a careful analysis of the poles and branching points
of the transfer functions is carried out. Secondly, cuts linking the branching points
are chosen, yielding equivalent infinite-dimensional representations of these transfer
functions. Finally, choosing a finite number of poles on these cuts and optimizing
the weights thanks to an audio criterion leads to accurate finite-dimensional approx-
imations.

As the example of a baffled bell illustrates, two systems of order 20 and two
delays can approximate the bell transfer function with a relative error less than 1%
on more than six decades.

Appendix A. Resolution of the Webster–Lokshin Model
in the Laplace Domain

The solution of (10)–(11) is given by

Ψ(�, s) = exp(Θ(s) �)Ψ(0, s), (A.1)

exp(Θ(s) �) =
[

E1 1(�, s) E1 2(�, s)
E2 1(�, s) E2 2(�, s)

]
, (A.2)
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E1 1(�, s) = cosh(τΓ(s)�) − 1
2

(
Γ(s)

s
+

s

Γ(s)

)
sinh(τΓ(s)�), (A.3)

E1 2(�, s) = −E2 1(�, s) = −1
2

(
Γ(s)

s
− s

Γ(s)

)
sinh(τΓ(s)�), (A.4)

E2 2(�, s) = cosh(τΓ(s)�) +
1
2

(
Γ(s)

s
+

s

Γ(s)

)
sinh(τΓ(s)�), (A.5)

for � ∈ [0, 1], s ∈ C
+
0 , where Γ(s)2 = s2 + 2β s

3
2 + η and Ψ(�, s) =

[Ψ+(�, s), Ψ−(�, s)]T. Note that, the power series of exp (Θ(s) �) shows that it is
a function of Γ(s)2 only.

We choose to define the quadripole Q for the inputs [ψ+(� = 0, t), ψ−(� = 1, t)]
and the outputs [ψ+(� = 1, t), ψ−(� = 0, t)] (see Fig. 2). This preserves the direction
of propagation of ψ± and defines a causal system (see proofs in Appendix C). The
scattering matrix Q(s) is

Q(s) =
[

E1 1(1, s) E1 2(1, s)
0 1

] [
1 0

E2 1(1, s) E2 2(1, s)

]−1

. (A.6)

The result yields the symmetric matrix detailed in Sec. 2.4.2.

Appendix B. Analyticity and Boundedness of Transfer Functions
in the Complex Right Half-Plane

All the results below are given for s ∈ C
+
0 and η ∈ {0, 1}.

B.1. Notations and parametrizations

Let σ = a(1 + iλ) with a > 0 and −1 < λ < 1 define a parametrization of
s = σ2 = a2(1−λ2+2iλ) ∈ C

+
0 . Denoting A(s) = Re (Γ(s)2) and B(s) = Im (Γ(s)2),

trigonometric formula for half-angles lead to Γ(s) =
(√

A(s) +
√

A(s)2 + B(s)2 +

iB(s)/
√

A(s) +
√

A(s)2 + B(s)2
)
/
√

2 ∈ C
+
0 (which is well defined since “A(s) < 0

and B(s) = 0” can never occur together). The functions A(s) and B(s) are poly-
nomials in the variables a and λ with coefficients depending on β and η. But for
the sake of conciseness, expressions are written in Secs. B.2–B.3 as functions of a,
λ and s (without ambiguity since (a, λ) and s are in bijection).

B.2. Function E(s) is analytic and such that |E(s)| < 1

The assertion |E(s)| < 1 is logically equivalent to 0 < Re (s̄Γ(s)) since
Γ(s) + s never cancels in C

+
0 (see Sec. 4.1.3). Now,

√
2Re (s̄Γ(s)) = a2(1 −

λ2)
√

A(s) +
√

A(s)2 + B(s)2 + 2a2λB(s)/
√

A(s) +
√

A(s)2 + B(s)2 > 0 since
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λB(s) > 0 and both terms never cancel together. The boundedness of E(s) and the
analyticity of Γ(s) prove, from (15), that E(s) is analytic.

B.3. Function D(s) is analytic and such that |D(s)| < 1

The assertion |D(s)| < 1 is logically equivalent to Re (Γ(s) − s) > 0 which writes√
A(s)2 + B(s)2 > 2[Re (s)]2 − A(s). Now, A(s)2 + B(s)2 − (2[Re (s)]2 − A(s))2 =

24β(1 − λ2)[(λ2 − 1)2 + 1]a7 + 4βλ2(3 − λ2)2a6 + 4η(1 − λ2)2 > 0 proves that√
A(s)2 + B(s)2 > |2[Re (s)]2 −A(s)| ≥ 2[Re (s)]2 − A(s). Finally, from (16), D(s)

is analytic.

B.4. Other functions

The above results prove that T (s), R(s), K(s) and G(s) are analytic, that |K(s)| =
|E(s) D(s)2| < 1, so that F (s) is also analytic in C

+
0 .

Appendix C. Causality

C.1. Hardy spaces and Paley–Wiener theorem

Let L2(R+) = {h : R+ → C |h is measurable and
∫

R+ |h(t)|2dt < ∞} denote the
space of causal functions with finite energy, and

H
m(C+

0 ) =
{

H : C
+
0 → C

∣∣∣H is holomorphic and

‖H‖Hm = sup
ζ>0

[
1
2π

∫
R

|H(ζ + iω)|mdω

]1/m

< ∞
}

(C.1)

denote the Hardy spaces for m > 0. The Hardy spaces define transfer functions H

of causal systems, that is, the associated convolution kernels h are zero for t < 0
(see e.g. Dupraz6). The Paley–Wiener theorem gives the particular and more precise
following result: under the Laplace transform, L2(R+) is isomorphic to H2(C+

0 ) (see
e.g. Curtain and Zwart24 (p. 645) or Partington25).

C.2. Causality for E(s) and D(s)

The functions E(s) and D(s) are analytic in C
+
0 and admit the asymptotic expan-

sions, for |s| → +∞ with s ∈ C
+
0 ,

E(s) =
β

2
1√
s

+ o

(
1√
s

)
, (C.2)

D(s) = e−τ β
√

s
[
e−τβ2/2 + o(1)

]
, (C.3)

so that E ∈ Hm(C+
0 ), ∀ m > 2 and D ∈ Hm(C+

0 ), ∀ m > 0.
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Table 2. Causality of systems under study throughout the paper.

Transfer Is equivalent to Belongs to Causal Kernel of
function (for |s| → +∞ Hm(C) system finite energy

with s ∈ C
+
0 )

T (s) D(s) ∀ m > 0 yes yes
R(s) E(s) ∀ m > 2 yes no
F (s) D(s) e−τ s ∀ m > 0 and delayed from τ yes
G(s) D(s) ∀ m > 0 yes yes

K(s) −E(s)D(s)2 ∀ m > 0 yes yes

C.3. Causality for other transfer functions

Similar proofs yield the results compiled in Table 2.

Appendix D. Examples of Diffusive Representations

D.1. Example 1 : Finite number of poles

The function H1(s) =
∑N

n=0
µn

s+ξn
, Re (ξn) > 0 is analytic on C

+
0 and meromorphic

on C
−
0 . For t < 0, the residues theorem can be applied to H1(s) es t integrated on

the Bromwich contour defined in Fig. 14(a) with ε > 1/max{Re (ξn)}. As no poles
lie inside this contour, the sum of the residues is zero. The Jordan’s lemma proves
that the integral on the demi-circle reaches 0 for ε → 0− and λ → +∞, since t < 0
and H1(s) is analytic on C

+
0 . The integral on the contour in C

−
0 , divided by 2iπ,

gives the inverse Laplace transform, i.e. the impulse response h1(t) of the system.
This implies that h1(t) = 0, proving the causality of the system.

For t > 0, applying the same method with the contour defined in Fig. 14(b)
with ε > 0, λ < 0. In this case, the Jordan’s lemma can be used for the semi-circle
in C

−
0 , and the contour encircles every poles for ε → 0+ and λ → −∞ so that the

(a) (b) (c)

Fig. 14. Bromwich contours used for meromorphic functions on C which are analytic on C
+
0 .
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sum of residues is
∑N

n=0 µn e−ξn t. The integral on the contour in C
+
0 , divided by

2iπ, gives the inverse Laplace transform, so that finally,

h1(t) =
N∑

n=0

µn e−ξn t 1t>0 (t). (D.1)

D.2. Example 2 : Infinitely many poles

The transfer H2(s) = tanh(
√

s)√
s

seems to bring a new difficulty since the square root
of a complex is defined except for a cut, generally taken as R−. This would prevent
from considering contour Fig. 14(b) since it would systematically cross the discon-
tinuity located in s = λ ∈ R−. But, the series expansion of s 	→ tanh(s)/s makes
only powers of s2 appear and has an infinite radius of convergence, so that H2(s)
has no cut on C. The expansion26 tanh(s)/s = 2

∑+∞
n=0[s

2 +(n+1/2)2π2]−1 (s ∈ C)
shows that H2(s) has only an infinite countable number of poles on R

−. Using the
dominated convergence theorem to swap the sum and the integral operator, the
same method and contours as for example 1 yield the impulse response

h2(t) = 2
+∞∑
n=0

e−
(
n+ 1

2

)2
π2 t 1t>0 (t). (D.2)

D.3. Examples 3 and 4 : A continuous line of singularities

The transfer H3(s) = e−
√

s√
s

has no poles but it is defined on C with the same cut as
that of s 	→ √

s. For causal and stable transfers (singularities in C
−
0 ) which maps

real-valued inputs–outputs (hermitian symmetry in the convergence domain), the
most natural analytic extension of H3(s) over C is obtained choosing the cut R−.
Note that choosing the cut in C

−
0 has no influence on the impulse response of the

associated causal system since it does not mofify H3(s) in its convergence domain.
Applying the residue theorem with the contour Fig. 14 (c) for ε0 → 0+, ε1 → 0+

and λ → −∞, leads to13

h3(t) =
∫ +∞

0

µ3(ξ) e−ξ t dξ =
e−

1
4t√

π t
, ∀ t > 0, (D.3)

where4

µ3(ξ) =
1

2iπ
[H(−ξ + i 0−) − H(−ξ + i 0+)] =

cos(τ
√

ξ)
π
√

ξ
. (D.4)

This is still possible according to the dominated convergence theorem since∫ +∞

0

|µ3(ξ)|
1 + ξ

dξ < +∞. (D.5)

Another example is the fractional integrator defined by the transfer H4(s) = s−a

with a cut on R− for 0 < a < 1, and which is associated to the diffusive symbol
µ4(ξ) = sin(aπ)

π ξ−a.



April 4, 2006 15:51 WSPC/103-M3AS 00124

Diffusive Representations of Flared Acoustic Pipes 535

Appendix E. Weights of the Diffusive Representations of the Bell
Transfer Functions

The expression of the weights used for the bell are shown in Table 3. The two first
lines precise the piece of the cut for which the weights are computed: µα,C denotes
the weight associated to K(s) computed on the part of the cut C which starts from
the branching point α; µ̆α,C is associated to Ğ(s). The two following lines detail the
expressions from the compact expressions defined just below and where χ is defined
in (36).

Table 3. Analytic expressions of the weigths µ involved in the bell transfer functions.

C = Ch C = Cc

α ∈ {0, s1}, ξ ∈ R+ α = 0, ξ ∈ R+ ξ1 = Re (s1), ω ∈ [Im (s1), Im (s1)]

µα,C(ξ) =
K−

α,C(ξ)−K+
α,C(ξ)

2iπ
µs1,Cc(ω) =

K−
s1,Cc

(ω)−K+
s1,Cc

(ω)

2iπ

µ̆α,C(ξ) =
Ğ−

α,C(ξ)−Ğ+
α,C(ξ)

2iπ
µ̆s1,Cc(ω) =

Ğ−
s1,Cc

(ω)−Ğ+
s1,Cc

(ω)

2iπ

K±
α,C(ξ) K±

s1,Cc
(ω)

= −Γ±
α,C(ξ)−α+ξ

Γ±
α,C(ξ)+α−ξ

e
−2τ

“
Γ±

α,C(ξ)−α+ξ

”
= −Γ±

s1,Cc
(ω)−ξ1−iω

Γ±
s1,Cc

(ω)+ξ1+iω
e
−2τ

“
Γ±

s1,Cc
(ω)−ξ1−iω

”

Ğ±
α,C(ξ) Ğ±

s1,Cc
(ω)

=
2Γ±

α,C(ξ) e
−τ

“
Γ±

α,C(ξ)−α+ξ

”

“
Γ±

α,C(ξ)+α−ξ

”
(α−ξ)

− 2e−τ

α−ξ
=

2Γ±
s1,Cc

(ω) e
−τ

“
Γ±

s1,Cc
(ω)−ξ1−iω

”

“
Γ±

s1,Cc
(ω)+ξ1+iω

”
(ξ1+iω)

− 2e−τ

ξ1+iω

Γ±
α,C(ξ) =

γ±
α,C(ξ)+γ±

α,C(ξ)

2
Γ±

s1,Cc
(ω) =

γ±
s1,Cc

(ω)+γ±
s1,Cc

(−ω)

2

with

γ±
0,Ch

(ξ) =
√−ξ − s1

√−ξ − s1

p
χ(±i

√
ξ)

γ±
0,Cc

(ξ) = (− π
2 )√−ξ − s1

(− π
2 )√−ξ − s1

p
χ(±i

√
ξ)

γ±
s1,Ch

(ξ) = ±i
√

ξ
p

2i Im (s1) − ξ
p

χ(
√

s1 − ξ)

γ±
s1,Cc

(ω) = ±
p

Im (s1)2 − ω2

q
χ(

p
Re (s1) + iω)
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3. T. Hélie, Unidimensional models of acoustic propagation in axisymmetric waveguides,
J. Acoust. Soc. Amer. 114 (2003) 2633–2647.



April 4, 2006 15:51 WSPC/103-M3AS 00124
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