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1 Introduction

There are many linear systems with irrational transfer functions, especially
transfer functions of mathematical physics which involve fractional powers of
the Laplace variable s. A wide class of such special functions can be found
in e.g. [12], and some of them are given infinite-dimensional representations
as in [9]. A more specialized literature concentrates on fractional differential
systems, such as [15], [11] for physical models, [7] for the mathematical the-
ory, and [10] for an interplay between signal processing, control theory and
applications of such systems and their generalization.

The question of representing these systems in a somewhat closed form, or in
a way which is more suitable for computation, not only in the frequency but
also the time domain, is seldom asked and rarely answered in a satisfactory
way. The aim of this paper is to give some answers to these questions, with a
point of view which lies half way between signal processing and control theory:
for short, complicated case studies will be introduced, analysed and simulated
thoroughly.

2 Examples of systems involving fractional derivatives

We select a family of ten linear systems, which involve either fractional deriva-
tives in the time domain, or fractional powers of the Laplace variable s in their
transfer function. Most of them stem from a physical example, which can be
very simple or quite involved, but this is not the point at stake in the present
paper: we are more interested here in presenting a kind of a hierarchy of frac-
tional systems.

2.1 An introductory example

The following transfer function is irrational, but can be simply represented by
a series of first-order systems:

__tanh(y/s) 2
Ha(s) = NE _%s-l-(n-l-%)%r?. (1)

Note that there are other examples of the same kind, which involve hyperbolic
trigonometric functions and /s, for which a series expression is available, see

e.g. [9].



2.2 Fractional integrals and derivatives

The classical integral or derivative operators of fractional order also have irra-
tional transfer functions, which cannot be represented by a series of first-order
systems, but can be exactly represented by a continuous superposition of first-
order systems (sometimes called diffusive representation) with some weight s,
which can be computed analytically:

Hy(s) =$iﬂ 0 < Re(B) < 1, @)
Hs(s)=s" 0 < Re(a) < 1. (3)

In the sequel, the output of system Hj(s) = s s%a will be considered as the
(integer) time-derivative of the output of system H, with parameter § =
1 — «; this simple remark will apply both for equivalent representations and
simulation purposes. A technical well-posenedness condition on this weight pu
will distinguish between the two cases Hy and Hs. This condition of theoretical
nature will also have numerical implications.

2.8  Fractional differential systems

A more complex combination of fractional derivatives gives rise to the so-called
fractional differential systems, the transfer function of which reads:

either Hy(s)=R(s%) = ggzzg =5 0 < Re(a) < 1, (4)
ag Slca
k=0
l=¢q
b P
or Has) = g L 0 < Re(B) < Re(Bra), 5

= ak 0 < Re(ag) < Re(ayy1)
l;)ak S

The first case H, is known as fractional differential systems of commensurate
order o, wich allows the use of some algebraic tools for equivalent representa-
tion, stability analysis and also simulation purposes.

On the contrary, the more general case H; is known as fractional differential
systems of uncommensurate orders: for these systems, no algebraic tools can
be applied, and both their analysis and simulation are quite involved.



Many results are known for these systems, as will be recalled later in § 3.2.3.

2.4 Diffusive systems

Let us now consider examples which are neither a series of first-order systems,
nor fractional differential systems, such as:

Hy(s)= " 6
6(8)— \/5 ) ( )
Hy(s)=e™V°. (7)

Both can be decomposed on a continuous family of first-order systems with
negative real poles —¢, with a specific weight p(¢) playing exactly the same
role as residues at the poles s = —&. The technical well-posenedness condition
on the weight p will distinguish between the two cases Hg and H7; exactly for
the same reason, a distinction was made between Hs and Hj earlier in § 2.2.

2.5 More complex systems

Let us now consider some strange systems, the transfer function of which have
poles of finite order and branching points with cuts to be chosen between
them:

Hg(s) = 52;4—1 (8)

is the transfer function of the causal Bessel function of order zero Jy(), and it
has been studied first in [3, § 3.3], then in [19], and finally in [8, Example 3.1]
with a new integral representation, which shows much freedom in the choice
of the cuts between the two fixed branching points, namely s = +1.

Now, some more intricate transfer functions can easily be met on more complex
examples,

Hy(s)=e*T), with ['(s) = Vs2 +es2 +1, ande >0 9)

Huals) =g @ (10)

They are involved in the description of a 1-D wave equation in a flared duct
of finite length, with viscothermal losses at the boundary: see e.g.[17] for a



theoretical study of this model, [18,16] for simulation of these transfer func-
tions, and [20, chapter 9] for a study of the modal decomposition related to
this model.

3 Integral representations with poles and cuts

We now investigate the general integral representations in the complex plane
with poles and cuts: we present the general framework, and then apply it to
the ten examples presented in section 2.

3.1 General framework

Many transfer functions can be decomposed as follows, in some right-half
complex plane Re(s) > a,

'rk,l )l +/M(d7) (11)

Y

5=

which translates in the time domain into the following decomposition of the
impulse response:

K Ly 1

h(t) = Z Zrk,ll—' tteset /e"’t M (d~), for t > 0. (12)
' c

k=11=1

The time-domain simulation of the finite-dimensional part of size Y5 Ly
is really standard and will not be detailed in the sequel. The time-domain
simulation of the infinite-dimensional part of these systems can quite easily be
done through the following continuous family of first-order differential systems,
parametrized by v € C:

0p(v, 1) =7 o(7,t) +u(t), ¢(7,0)=0, VyeC (13)
y()= [ 6(r.1) M(d), (14)

which is nothing but an input u-state ¢-output y representation of our system.

In all the integral equations above, C is a contour in some left-half complex
plane, and M is a measure on this contour. Once a parametrization has been
chosen for the contour, the measure can be decomposed into different parts,



such as a purely discrete part (Dirac measures at some points in some left-
half complezr plane) and an absolutely continuous part u(y) with respect to
the Lebegue measure dvy. A straightforward interpretation can therefore be
proposed: p(y) plays the role of the residue at the pole s = 7.

But of course, these representations make sense only if a so-called well-posedness
condition is fulfilled, namely:

/

15
a+1-—v (15)

M (dy) ‘

We refer to [5, § 5 and § 6] for the general theory and [4] for the implications
of the well-posedness condition.

When M has a density, an analytical computation of x4 can be performed from
H accross the cut, taking non-tangential limits; when C = R™, we find with

e.g. 3]

W(€) = lim — {H(—¢ —ic) — H(—€ + i)} , (16)

e—0+ 2i7

a formula which will be most useful in the sequel, namely in § 3.2.

As already mentioned in section 2, in some cases, since the well-posedness con-
dition (15) is not met, an extension can be proposed, which is still meaningful
in some larger mathematical framework, namely:

H(s)=s /Aj(fdz) + H(0), (17)

which gives rise to the following input u-state ¢-output z representation in
the time domain:

Op(y,t) =7 0(v,1) +ult), ¢(7,0)=0, VyeC (18)
2(t)= [ 0u(r,1) M(dy) + H(©O) u(t). (19)

Let us now go back to our examples and see how they fit in the general
framework.



3.2  Choice of the cuts and computation of the weights for the examples

3.2.1 An introductory example

Choosing C = R~ leads to My = 3, cn20(6 — (n+ )2 ?) with v = —¢, and
(15) is fulfilled.

3.2.2  Fractional integrals and derivatives
Choosing C = R~ and v = —¢ leads to puy(€) = %%ﬁ, which fulfills (15).

But H3 must be realized with an extension: H3(0) = 0 and ji3 = uy with the
particular choice =1 — a; thus, i3 now fulfills (15).

3.2.8 Fractional differential systems

3.2.3.1 Commensurate orders Following e.g. [2, § 2.2], one can decom-
pose the impulse response of system H, into a finite sum of special functions,

namely Mittag-Leffler functions (defined by £,(A, t) = t271 302, F(/\ki—l))

the roots of P in (4) are simple, see [21]). Hence, the transfer function reads
Hy(s) =3P _ r,(s*— A\,) "', and the impulse response reads:

) when

Z Tr Ea(An,t) - (20)

This decomposition looks finite dimensional, but the following remarks apply:

e from a numerical point of view, these special functions are difficult to com-
pute in the whole complex plane (since A\, € C); even in the case a = %,
where the function is easily related to the classical error function, the argu-
ment is not limited to R, and this makes the problem difficult;

e this decomposition allows an algebraic knowledge of the poles and residues
(namely s, = (\,)s and 7, = é)\né_l, but only for those A, satisfying
|arg(An)| < am);

e any such Mittag-Leffler function has a representation with a pole and a cut
on C = R~, with a weight which can be computed exactly when s, € C\R™:

__ sin(am) £«
Ha (€) = — & 2n cos(am)Ee T (21)

This is the reason why, at least for simulation purposes, the distinction between
commensurate and uncommensurate orders proves a bit artificial.



3.2.3.2 Uncommensurate orders Now, following [3, § 2.3] and[1], for
both cases, the following decomposition can be written down for system Hj:

K Ly

szl'tl ! Skt+/u & fort > 0. (22)

k=11=1

The following remarks apply to the previous decomposition:

e there is only a finite number of poles, as proved in [6,14];
e we have an analytical knowledge of p5, namely (see [3,2]):

ps(€) = l 22:0 E?:() arby sin((a — By)7) gak+/5z

T Yoo G E2%% 4 Yocrar<p 2001 cOS((ag — ) ) Er e

; (23)

e Still, the case of poles on the cut R~ is difficult, but it can be put in
a somewhat larger framework, involving measures or distributions: in this
case, the integral term in (22) is to be understood in a generalized sense
(see e.g. [20, pp 71-73]). Yet, there is another strategy of representation,
which consists in moving the cut between the same branching points (s = 0
and s = —00), so as to avoid the singularities, see e.g. [19].

3.2.4  Diffusive systems

Choosing C = R~ and v = —¢ leads to pg(€) = COS\\[[ which fulfills (15).

But H; must be realized with an extension: H7(0) = 1 and ji; = Sinsr‘g/g); thus,
fiz now fulfills (15).

3.2.5 More complex systems

For Hg, we now have two finite branching points, thus many cuts can be

proposed, we will only consider the two lines parallel to R™ stemming from
+i: yF(€) = 44 — £ Following [3, § 3.3], we get:

1 1
MS(&) W\/_\/W

(24)

with /s uniquely defined for s € C\R™ as the analytic continuation of y/z for
z € R*. Once again, (15) is fulfilled.

For Hy and Hjyy, also with three finite branching points (0, s; and 57 with
Re(s1) < 0), two different cuts will be investigated: either three horizontal



cuts parallel to R~ (C =R U (sl + R’) U (3_1 + R’)), or a cross-cut made
of the segment between the two branching points and the cut on R~ (C =
R~ U [s1,31]): more details can be found in [16].

4 Finite-dimensional approximation and simulation of poles and
cut-representation models

In this section, we propose to approximate stable realizations of fractional
systems and irrational tranfer functions ((1)-(10)) with finite order differential
systems, by picking up a finite subset of points which belong to the cut C and
the set of poles P of the original system. Two methods are described and the
corresponding numerical results are compared in both the frequency and the
time domain.

4.1 Approrimation by interpolation of the state ¢

A first method consists in approximating ¢(v,t), v € C by

301) = 3 6000 An(1), )

where {An, } << ar defines continuous piecewise linear interpolating functions
which are non zero on the piece |Vm_1, Ymyilc of the cut C and such that
Am(Ym) = 1; (Ym)o<m<m, are sorted with respect to the oriented cut C.
Convergence results can be proven, e.g. see [20] for the purely diffusive case
vy=-§£€R".

The realization (13)-(14) yields the first-order linear system of dimension M

Dy () = Ym I (t) + u(t), 1 < m < M,

zA®=:Z;ﬁm$mu) (26)

= [ p)An()dy, 1<m <M. (27)

[Ym—1,Tm+1]c

Contribution of poles v € P can be performed in the same way with standard
finite-order systems which are not detailed here.



4.2 Remark on approrimations preserving the hermitian symmetry property

For the case of transfer funtions with an hermitian symmetry, the set (,)1<m<m
can be described by —=¢ = (=§;)1<j<, & > 0 for poles v lying on R~ and by
the complex conjugate pair ¥ = (V)1<k<x and (3) with y, = =& +iwy, § > 0,
and w), > 0 otherwise. The approximation of (11) of dimension M = J + 2K
can be rewritten

ﬁ;(s)=i8ij€j+ilu§( S 1_>+u£< L _7;_)],(28)

§j=0 k=0 S—%% S~k S—7% S— Yk

where 4 denotes the vector p, (... g, pfty ... pge, p1d, ..., ph)' € R7P2E,

p; and pf, = pft 4 ipl are the associated weights. Requiring real values for )
ensures hermitian symmetry.

4.8 Approximation by optimization of a criterion

The second method consists in a least-square regularized optimization of the
weigths 4, by minimizing an appropriate distance between an exact transfer
function H (iw) and its approximation f{\;(zw) in the frequency domain, see
e.g.[13,19]. One interest is that the distance can be adapted to optimize some
performances.

The criterion to be optimized is
‘2

Clp) = /‘ (zw))wH(w) M (dw)

=

+ ;61'(:“] Z + (1)?)- (29)

The parameters €; >0 are regularizing parameters for the purely diffusive part,
and €, > 0 for the damped oscillating part. They allow to keep the problem
well-conditionned when the size J+2K of p increases. The measure M and
the weightening wy are chosen according to performances to be optimized.

For instance, audio performances are well adapted to Hyo which can be used for
sound processing. Corresponding mesures and weightenings can be obtained
as follows:

(i) Frequencies are perceived from 20 Hz to 20kHz on a logarithmic scale. We

10



choose

M(dw) = Lo cocon, (@) dInw = Lo_cocu, () %". (30)
(ii) The perception of intensity is also logarithmic so that we consider the rela-
tive error |H,(iw)—H (iw)|/| H (iw)| rather than the absolute error |H,, (iw)—
H (iw)|. This yields the weightening wy(w) = 1/|H (iw)|. -

(iii) A precise modelling is sufficient for the typical “audio dynamics” of 80dB.
The previous weightening wy(w) can then be revised taking

wy (iw) = 1/Saty 1, (iw). (31)

The saturation function with treshold T, is defined by Saty 1, (iw) equals
Ty , T; sup, <<y, |H(iw)|if |H(iw)| < Ty, and equals |H (iw)| otherwise.
This weightening is finite even for transfer functions with zeros. Note that
80 dB corresponds to T, = 1074,

(iv) In the case of an extension by derivation H ,e.g. H 3, We need an optimization
for H through that of H. Hence, the weightening to apply to H is then that
of H with a compensation of the derivation s in (17), that is,

Wy (iw) = w/Satg 1, (iw). (32)

Note that the saturation function is parameterized by H and not H , but
that the weightening wy will be applied on H in (29).

The weightening (i-ii) is also well-adapted to the Bode diagram scales. We
will use essentially this weightening which is noted Wi, ¢ (logarithmic scale
for frequencies and relative error) and sometimes the uniform weightening
Waunis = 1 with the Lebesgue measure dw.

For numerical computations, the criterion is computed for a finite set of angu-
lar frequencies (w,s, 1 <n < N +1 increasing from w; = w_ t0 wyy1 = wy.
It is approximated by

2

Clp)=> |(Hu(z'wn) - H(iwn))wH(wn)‘2 [lnwn+1 - lnwn]

+ ;éj(uj)Q + ;; e ()2 + (1)) (33)

It takes the equivalent matrix formulation

C(p) = (Mp — H)W*'W (Mp — H) + ' Ep, (34)

where M™ | ﬂt denotes the transpose conjugate matrix of M. The matrix
M is defined by M, ,, = [iw, + &n] 7 for 1 <m < J, by M, ,,, = 1

Wn—Ym—J

11



_forJ—|-1<m<J+K and by M, m, = - L +——=_— for

Wn~Ym—(J+K) tWn—=Ym—(J+K)
J+K+1<m< J+2K. The vector H is the columun vector (H(iwn))K <N’
ns

The weightening matrix W is real positive diagonal and defined by W, , =
wy (wp)vInwy 1 —Inw, for 1 <n < N (recall that w; = w_ and wy 1 = wy).
The regularizing matrix F is real non negative diagonal and defined by E,,, ,,, =
em for 1 <m < J and by Ep, = Eximgim = €, for J+1<m < J+ K.

Wy, —

Solving this least-square problem with the constraint that p is real valued
yields
= [Re(M*W*WM) + E]™" Re(M*W*WH). (35)

This result is obtained by decomposing the complex values as = + 7y, solving
the problem and recomposing the result into the compact form (35).

4.4 Results in the frequency domain

Plots of () and results for both approximations (27) and (35) are presented
in Fig.1-Fig.6 for H; to Hy, Hg, Hg and Hyy. A general remark is that the
approximation by optimization does not require to compute pu(y) and, for a
given pole placement (vm)i<m<a, it yields results much better than those
obtained by interpolation. Nevertheless, the analysis of u(7y) is required to
check the well-posedness condition (15) and is usefull to build relevant pole
placements (V,)1<m<nm. This last point is illustrated for He in Fig.4.

4.5  Time-domain simulations

The finite-dimensional realizations of the approximated transfer functions are

045 (t) = =&, ¢;(t) +u(?), 1<5< (36)
0y, (1) = (=& +iwy) ¢ (t) +u(t), 1<k<K, (37)
7
Z ) + 2Re Z i, 05 () (38)
k=1
7 K
Z —&ifij)d;(t) + 2%Re Z(_ﬂc + dwy,) fiy, Dr (1)
j=1 k 1
+|H(0 +Z fi; + 2Re Z ,uk] (39)
j=1 k=1

12



where g(t) stands for the output of a standard representation while Z(¢) stands
for the output of an extension by derivation (17).

Approximating u(t) by its sample and hold version, that is u(t) ~ u(t,) for
tn <t < tpy1, equations (36)-(39) become, in the discrete-time domain,

65(t2) = 56 tn1) + ) (40)
J
=1
Shlta) = 0 Giltn) + —g 7 ultr) (41)
J K
tn) = Z Mj¢j (tn) + 2Re Z M;c¢;c(tn)a (42)
j=1 k=1
J K
Z —&ilij);(tn) + 2Re Z(_gllc + iwy,) i B ()
j=1 k=1
K
+[H(0) + Z fij + 2Re > iy |ult). (43)
j=1 k=1

where ¢, = nT;, Ty is the sampling period, a; = e~%% and o, = e(~&+wi)Ts,

The impulse responses hy(t,), he(t,), hs(t,) and hio(t,) are simulated thanks
to these recursive equations for both the approximations by interpolation and
by optimization. The results for approximations by optimization are still better
than those obtained by interpolation. They are presented in Fig.3-Fig.6.

5 Perspectives

Further works are in view: for the final version of the present paper, a com-
parison with Mittag-Leffler functions will be provided for example H,; also
more worked out examples will be presented, such as Hs, H; and Hg with
both horizontal cuts and cross-cuts.

Some interesting questions remain still open. Firstly, the choice of the cut be-
tween fixed branching points in the left-half complex plane can be made on
different criteria, but it is not easy to know a priori which representation fits
best. Secondly, once a cut has been chosen, what is the optimal pole placement
on it, in order to reduce the infinite-dimensional system to a finite-order ap-
proximation (more suitable for time-domain simulation)? Both these questions
are quite involved from a theoretical point of view; nevertheless, they must be
taken into consideration, for they can have serious numerical consequences for
the finite-dimensional approximation of our fractional systems.

13
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Fig. 1. Bode diagrams for transfer function Hy: () exact (-), truncated series with
the N first poles, N=10 (x), N=20 (o) and N =40 (A); @ exact (-) and optimized
(- -) with N = 10 and W = Wyp;5; @ exact (-) and optimized (- -) with N = 10
and W = VVlog,rel-

Finally, it will be of utmost interest to enlarge the class of irrational tran-
fer functions by allowing for delay systems to be present: so far, they have
not been taken into account in our framework; even if some theoretical re-
sults are available, this will be a wide open direction of research concerning
representation and simulation of such systems.

6 Conclusion

A powerful and very flexible method of simulation of fractional systems has
been presented: it uses a simple optimization procedure with parameters which

14



|N2|

=20

-40

10 1072 1 102 10
©) w

Magnitude

B

107 102 1 10* 10*
w

Phase

+40

dB
&
rd

-20

-40

s

s

10 102 1 102 10*
6) w

107* 1072 1 102 10*
w

dB

Magnitude

+40

-20

-40

107

0% 102 1 102 10* 107* 1072 1 102 10°
w w
Magnitude Phase
n
2
\
T 0
_r
4
z
2
102 1 102 10 107 102 1 102 10*
w w

Fig. 2. Weight p9(§) = ji3(€) for 8 =1 —a = 1/2 (1,a) and two logarithmic pole
placements with N = 10 (0), N = 16 (x) between &;, = 5.107* and &,,42 = 5.103.
The corresponding bode diagrams are in column @ for Hy and in ® for Hs. The
line @) gives the exact Bode diagrams (-), and the result of interpolations (o, X).
The line 3) gives the exact Bode diagrams (-), and the result of optimization (- -)
for the case N = 10 with W = Wi, re1-

are meaningful from a signal processing point of view, and it enables a low cost
simulation, both in the frequency domain and in the time domain. From a a
theoretical point of view, this method is based on a representation with poles
and cuts, which generalizes the so-called diffusive representations. A family
of ten such systems, among which fractional differential systems, is presented
throughout the paper, which clearly illustrates the generality, the flexibility
and the power of this method.
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the second order oscillatory part in dotted lines (:).
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