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ABSTRACT
This paper deals with the theory and application of waveguide
modeling of lossy flared acoustic pipes. The novelty lies in a
refined 1D-acoustic model: the Webster-Lokshin equation. This
model describes the propagation of longitudinal waves in axisym-
metric acoustic pipes with a varying cross section, visco-thermal
losses at the walls, and without assuming plane waves or spher-
ical waves. Solving this model for a section of pipe leads to a
quadripole made of four transfer functions which imitate the global
acoustic effects. Moreover, defining progressive waves and in-
troducing some “relevant” physical interpretations enable the iso-
lation of elementary transfer functions associated with elemen-
tary acoustic effects. From this decomposition, a standard Kelly-
Lochbaum structure is recovered and efficient low-cost digital sim-
ulations are obtained. Thus, this work improves the realism of the
sound synthesis of wind instruments, while it preserves waveguide
techniques which only involve delay lines and digital filters.

1. INTRODUCTION

Because sound synthesis by physical models describes the acous-
tic mechanism of a musical instrument, it faithfully reproduces the
behavior of the instrument, especially during attacks and note tran-
sitions, contrary to signal processing approaches. Moreover, para-
metric models allow makers to obtain new virtual instruments and
explore new sounds, together with physical validation. However,
digital time simulations require intensive computation from signal
processors. That is why special care must be taken on the algorith-
mic complexity to perform real-time sound synthesis.

The aim of the present work is to build the whole resonator of
a wind instrument by connecting several systems which imitate the
acoustic of sections of pipes. To preserve the causality, the stan-
dard digital waveguide approach is used (see e.g. [2, 3]). The diffi-
culty and the novelty is to include subtle, but perceptible, phenom-
ena due to visco-thermal losses at the wall and continuously vary-
ing cross-sections (see e.g. [4, 5, 6]). The Webster-Lokshin equa-
tion is a 1D-acoustic model which describes the propagation of
longitudinal waves in axisymmetric acoustic pipes involving such
phenomena [5]. The following work therefore concentrates on
recovering a standard Kelly-Lochbaum structure from this model
and efficient low-cost digital simulations. The goal is to improve
the realism of the sound synthesis of wind instruments using stan-
dard waveguide techniques.

1 This work was carried out during a Masters degree program at Uni-
versity of Paris 6, see [1], and is supported by the CONSONNES project,
ANR-05-BLAN-0097-01

2 Ph.D. student at Telecom Paris / TSI

This paper is organized as follows. In section 2, the acous-
tic model, the acoustic state, and its decomposition into travel-
ing waves are presented. The quadripole describing a section of
pipe is defined and the corresponding analytic transfer functions
in the Laplace domain are given. Section 3 describes how a physi-
cal interpretation allows the isolation of some elementary acoustic
phenomena, leading to a physically meaningful structure of the
quadripole. This structure is made of causal filters and a fac-
torization isolates pure delays. In section 4, the concatenation
of quadripoles is performed and produces infinite instantaneous
loops. This problem is removed using an algebraic computation,
allowing for digital time simulation. The analysis of causality and
stability are discussed. Section 5 presents the digital approxima-
tion of the transfer functions, the simulated structure, and the result
of the real-time simulation in the time-domain. Then, this work is
validated by comparing the impedance measured on a real instru-
ment to that computed from the model. In section 6, we discuss
the case of pipes with a varying cross-section characterized by a
negative curvature, a case which involves unstable functions.

2. ACOUSTIC MODEL AND INPUT-OUTPUT
REPRESENTATION OF A PIPE SECTION

2.1. Webster-Lokshin model

The Webster-Lokshin model is a mono-dimensional model which
characterizes linear waves propagation in axisymmetric pipes, as-
suming only the quasi-sphericity of isobars near the inner wall
(rather than plane waves or spherical waves), and taking into ac-
count visco-thermal losses [7, 5, 6]. The acoustic pressure p and
the particle velocity v are governed by the following models, given
in the Laplace domain:
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where s is the Laplace variable, l∈ [0, L] is the space variable mea-
suring the arclength of the wall (but not the usual axis coordinate z,
see [5]), r(l) is the radius of the pipe, ε(l) = κ0

p
1−r′(l)2/r(l)

quantifies the visco-thermal losses (ε(l) ≥ 0, because |r′(l)| ≤ 1),
and Υ(l)=r′′(l)/r(l) accounts for the curvature of the pipe.

Note that the standard horn equation [8] corresponds to the
nonlossy case ε(l) = 0 with a plane wave approximation so that
the arclength l is approximated by the axis coordinate z. Bores and
conical pipes are characterized by Υ(l) = 0. If Υ(l) is negative,
the transfer functions are unstable (see e.g.[9]). This problem is
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discussed in section 6. In this paper, unless otherwise stated Υ(l)
is assumed to be positive (straight, conical or flared pipes).

For standard conditions, the physical constants are the mass
density ρ0 =1.2 kg.m−3, the speed of sound c0 =344 m.s−1 and
the coefficient κ0≈3.5 10−4 m− 1

2 .

2.2. Traveling waves

Let φ+(l, t), φ−(l, t) be defined by
»
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φ−(l, s)
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For planar waves traveling inside a nonlossy bore, the acoustic
state φ± corresponds to the standard decoupled progressive pla-
nar waves. For the Wester-Lokshin model, these waves are still
progressive so that they preserve the causality principle. They are
governed by the following equations (see [7, p.59 & apdx. B1]):
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where ζ(l) = r′(l)/r(l). The operator [s/c0 ± ∂l ] is the traveling
operator, and the right-hand side describes the coupling due to the
curvature and the visco-thermal losses. Moreover, for bounded
excitations, these progressive waves are also bounded, if ε ≥ 0
(independently from the sign of Υ, see [10]).

2.3. Transfer matrix of the quadripole

Consider a section of pipe of length L with nearly constant curva-
ture and losses Υ(l) = Υ and ε(l) = ε, ∀l ∈ [0, L]. The acous-
tic model (1-2) can be solved analytically [7, p.63]. Then, from
(3), the transfer matrix which characterizes the quadripole system
with inputs φ+(l=0, s), φ−(l=L, s) and outputs φ+(l=L, s)
φ−(l=0, s) (see fig. 1) can also be analytically derived [7, p.65].
It yields

»
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φ−(0, s)

–
=

»
T (s) Rr(s)
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– »
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–
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where the transmission T (independent from the direction), the
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Figure 1: Representation of the quadripole.

left and right reflections, Rl and Rr respectively, are given by
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where Γ(s) is a square root of Γ(s)2 =( s
c0

)2+2 ε( s
c0

)
3
2 +Υ, and

AT , BT , AR, BRl , and BRr are simple functions of: s, ζ0, ζL,
Γ(s)2 and c0.

3. DECOMPOSITION INTO FILTERS AND DELAYS

3.1. Acoustic interpretation of the progressive waves

The transfer functions Rr , Rl, and T represent the global effect of
the whole section of pipe on the progressive waves φ±. Neverthe-
less, some elementary effects can be isolated using the following
physical interpretations (see Fig.2):

At the left extremity (l = 0), the incident wave φ+
0 is partially

reflected in the opposite direction (modeled in Fig.2 by the trans-
fer function Rle) and is partially transmitted into the pipe section
(Tle). Then, this transmitted part travels inside the pipe until the
right extremity located at l = L (T+

p ), before being partially re-
flected (Rri) and partially transmitted (Tri) outside the pipe. Sym-
metrically, the incident wave φ−

L undergoes similar phenomena.
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Figure 2: Physical interpretation and its representation with filters

The figure 2 compiles these phenomena and includes all the
contributions (the indexes i and e mean respectively internal and
external; the functions T+

p and T−
p symbolize respectively the

forward and the backward propagation transmission through the
pipe).

The quadripoles described in figures 1 and 2 are equivalent if
the following algebraic equations holds:
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These equations do not lead to a unique identification of (Tli, Rli,
Tle, Rle, T+

p , T−
p , Tri, Rri, Tre, Rre) from (6-8). Nevertheless,

additional meaningful assumptions cope with this problem.

3.2. Identification of the transfer functions

Assuming the following hypotheses yields a unique identification:
(H1) The pressure continuity φ+

l +φ
−
l = ψ+

l + ψ−
l for l ∈ {0, L}

is required (see Fig. 2), so that every reflection r and every
transmission t fed by the same input are such that t=1+r.

(H2) The left-hand side functions depend only on the left param-
eter ζ0. Respectively, the right-hand side functions depend
only on the right parameter ζL.

(H3) The propagation transfer functions T±
p include a pure delay

operator: Tp(s)= eTp(s) e−sL/c0 , where eTp(s)=e−(Γ(s)−s/c0)L

stays causal and stable, see section 4.3.
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In this case, the unique solution is:

T+
p (s) = T−

p (s) = Tp(s) = e−Γ(s)L, (13)
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Note that, contrary to (6-8), these functions are not functions of
Γ(s)2. In the following, we choose to define Γ(s) for s ∈ C

+
0 =

{s ∈ C |Re(s) > 0}, as the unique analytic continuation of the
positive square root of Γ(s)2 for s ∈ R

+. The analyticity for
Re(s) > 0 holds because Γ(s) has no branching points in C

+
0 ,

if Υ≥0. This defines causal stable systems (see [6] for details).

4. BUILDING A WHOLE RESONATOR

4.1. Concatenating quadripoles

The whole resonator of a wind instrument with radius r∗(l) is first
approximated by the concatenation of K sections of pipes with
constant parameters εk,Υk and length Lk (1 ≤ k ≤ K), such
that the approximated radius r(l) is C1-regular. This implies that
ζ = r′/r is continuous with respect to l, that is, ζ(k)

r =ζ
(k+1)
l .

Assuming the continuity of the pressure and the flow, the vir-
tual resonator is built by successively connecting the quadripoles
Qk (see Fig.3), associated to the corresponding sections of pipe.

4.2. Removing infinite instantaneous loops

Connecting two quadripoles creates an instantaneous loop which
cannot be simulated digitally (see Fig.3, top). This difficulty is
overcome using algebraic calculations (see [6]) which lead to the
structure presented in Fig.3 (bottom), where a reflection function
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Figure 3: Connecting quadripoles and removing instantaneous
loops

of the junction R(k,k+1)
J is introduced and given by:

R
(k,k+1)
J (s) =

Γk+1(s) − Γk(s)

Γk+1(s) + Γk(s)
, (18)

and where Γk is the function Γ with the losses and the curvature
coefficients of the quadripole k, characterized by a length Lk and
coefficients εk, Υk.

4.3. Stability and causality analysis

It is proven in [1] that for all section k such that Υk ≥ 0, the
function Γk(s) satisfies Re(Γk(s)) > 0 and sign(Im(Γk(s))) =
sign(Im(s)), for all s∈C

+
0 . From this, it can be deduced that the

functions R(k,k+1)
J and T k

p are such that |R(k,k+1)
J (s)| < 1 and

|T k
p (s)| < 1, for all s ∈ C

+
0 and that they both define stable sys-

tems. Moreover, their asymptotic expansions for |s|→+∞ with
s∈C

+
0 make it possble to prove the causality of the associated sys-

tems (see [6, 1]).
Finally, the whole system (including all the quadripoles) is

proven to be causal. Nevertheless, its global stability must still
be proven (from the previous inequalities). This will be the object
of a future, in-depth study. At present, all numerical simulations
have satisfied this property.

5. APPROXIMATION AND DIGITAL SIMULATION

5.1. Diffusive representation and approximation

If Υ = 0, the function Γ has one branching point s = 0. We
choose the cut as R

− to preserve the hermitian symmetry. Thereof,
every transfer function has a continuous line of singularities on
R

−. The residues theorem shows that these functions are repre-
sented by a class of infinite-dimensional system, called Diffusive
Representations [11]. For any diffusive representationH(s) which
is analytic on C\R

−:

H(s) =

Z ∞

0

µH(ξ)

s+ ξ
dξ, (19)

µH(ξ) =
1

2iπ
{H(−ξ+i0−)−H(−ξ+i0+)}. (20)

In [12], it is proposed to approximate such diffusive representa-
tions by finite-dimensional approximations, given by
eHµ(s) =

Pj=J
j=1

µj

s+ξj
,where J is the number of poles, −ξj ∈ R

−

is the position of the pole number j and µj is its weight. The poles
are placed in R

− with a logarithmic scale, and the weights µj are
obtained by a least-square optimization in the Fourier domain.

If Υ > 0, Γ has two more branching points, which are com-
plex conjugate. In this case, the diffusive representations are ap-
proximated with a finite sum of first and second order differential
systems. Finally, a digital version is implemented using standard
numerical approximations (see [6]).

5.2. Real-time simulation

According to [13],the quadripole in figure 3 (bottom) can be rewrit-
ten as in figure 4. This structure allows a significant reduction of
the number of filters implemented and so decreases the processor
use for the real-time simulation.
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The figure 5 shows the impulse responses of a virtual instru-
ment made of a mouth-piece3, a bore, a bell with constant curva-
ture, and a radiation impedance [15]. P−

mp is the backward pres-
sure from the mouth-piece, and Pr is the radiated pressure.
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Figure 5: Impulse responses of the resonator

The figure 6 shows the comparison of the input impedance
measured on a real trombone4 with the input impedance computed
from the model (with or without losses) for a resonator described
by five sections of pipe. The parameters of the pipe sections have
been tuned from the geometrical shape measured on the real in-
strument. The computed impedance fits with measurements if re-
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Figure 6: Measured and computed impedances with/without losses

alistic losses are included (ε > 0). Otherwise (ε = 0), the quality
factor of the resonances are significantly overestimated. Further-
more, using cones rather than flared pipes would shift the frequen-
cies of the resonances, unless the number of sections of pipe are
increased. This highlights the accuracy of the Webster-Lokshin
model compared to more simplified and approximated models: in
terms of sound quality, using five cones would detune the instru-
ment and discarding losses would lead to more metallic and syn-
thetic sounds.

A real-time version of this has been implemented in C-language
(plug-in for Pure Data).

6. CONCLUSIONS AND PERSPECTIVES

In this paper, an efficient real-time simulation of flared acoustic
pipes using a Kelly-Lochbaum structure and digital waveguides
has been proposed for a Webster-Lokshin acoustic model. Com-
parisons between numerical results and experimental measures on
a trombone prove to be accurate.

For negative curvatures Υ, the stability of the quadripole in
fig.1 is preserved, but the elementary transfer functions (13-17)
are unstable. As a consequence, the Kelly-Lochbaum structure in
Fig.4 is useless in this case. This problem is well-known [16, 9]
and understood [17]: the elementary functions govern the waves
propagation in pipes with infinite length; they are unstable if the
pipe is convergent. Nevertheless, as the global quadripole proves

3The mouth-piece is modeled by an acoustic mass, resistance and com-
pliance in the low frequency approximation, see [14]

4These data correspond to a Courtois trombone. The authors thank
René Caussé for having given these data.

to be stable, stable decompositions is not hopeless: further works
will be carried out to cope with this problem.
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[5] T. Hélie, “Unidimensional models of acoustic propagation in
axisymmetric waveguides,” J. Acoust. Soc. Am., vol. 114, pp.
2633–2647, 2003.
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