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Abstract— In this paper, the Volterra series decomposition of
a class of quadratic, time invariant single-input finite dimen-
sional systems is considered. These systems are represented
using Volterra series. An explicit and computable lower bound
of the radius of convergence is obtained. Moreover, guaran-
teed error bounds in L

∞(R+) are given for the truncated
series. These results are illustrated on numerical simulations
performed on academic examples.

I. INTRODUCTION

Volterra series were introduced by the Italian mathemati-
cian Vito Volterra [Vol59]. They can be viewed as the
generalization of the transfer function of a linear system.
These functional series expansions are convenient tools for
on-line simulation or system identification [DPO02], but it is
often difficult to obtain convergence results and bounds for
the series.

In this paper, such convergence results and bounds are
obtained in the case of finite dimensional ODE quadratic
systems.

The paper is organized as follows. In section II, some
recalls on Volterra series are given. In section III, the class
of systems under consideration is defined (sec. III-A) and a
standard recursive formula for the associated Volterra kernels
is derived (sec. III-B). Section IV is devoted to the main point
of the paper: first, the convergence of the Volterra series
is proven and an explicit and computable lower bound for
the radius of convergence is obtained; second, guaranteed
error bounds in L∞(R+) are given for the truncated series.
Finally, in section V, numerical simulations are performed on
academic examples. This illustrates how easily the truncated
Volterra series can be implemented.

Detailed proofs of the theoretical results presented in
section IV as well as their extensions to MIMO systems can
be found in [HL07].

II. VOLTERRA SERIES

A. Volterra series of time-variant systems
Following [LL94, p.113], the Volterra series of a time-

variant system can be defined as follows.
Definition 1: A causal SISO-system can be described by

a Volterra series {hm}m∈N if there exists functions hm :
R

m+1
+ → R, for m ∈ N which are locally bounded,

piecewise continuous and such that, for all T > 0, there
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exists ε(T ) > 0 such that for all piecewise continuous
function u satisfying |u(t)| ≤ ε, ∀t ∈ [0, T ] the series

y(t) = h0(t) +
∑

m∈N∗

∫

[0,t]m
hm(t, τ1,m)

m∏

j=1

u(τj) dτ1,m (1)

is normally convergent, using the concise notations N
∗ for

the set of strictly positive integer and, for 1 ≤ p ≤ q,

(τp,q) := (τp, τp+1, . . . , τq),

dτp,q :=

q∏

j=p

dτj . (2)

Nevertheless, natural extensions to more general settings
can be defined. For example, taking hm in L1

loc(R
m+1
+ )

or L∞(
R+, L1

loc(R
m
+ )
)

still yields well-posed definitions.
In this paper, more specific spaces will be introduced in
section II-B.2.

B. Volterra series of time-invariant systems
We refer to [Boy85], [Has99] for developments in this

section.
1) Time domain and Laplace domain: For a time-invariant

system, the kernels are such that, for m ∈ N
∗, it exists h̃m

such that

hm(t, τ1,m) = h̃m(t − τ1, . . . , t − τm). (3)

Moreover, the zero-input response of the system h0 can be
omitted considering the difference output ỹ(t) = y(t)−h0(t).
Then, using the change of variables ti = t− τi, equation (1)
reduces to a sum of standard multi-convolutions given by

ỹ(t) =
∑

m∈N∗

∫

[0,t]m
h̃m(t1,m)

m∏

j=1

u(t − tj) dt1,m. (4)

For sake of legibility, the tilde of h̃m(t1,m) will be omit-
ted (without ambiguity since the number of independent
variables in hm makes the time-variant and time-invariant
versions distinguishable with m + 1 and m variables, re-
spectively).

The mono-lateral Laplace transform of the time-invariant
kernels is denoted with capital letters and defined by, ∀m ∈
N

∗, ∀(s1,m) ∈ Dhm
⊂ C

m,

Hm(s1,m) =

∫

Rm
+

hm(t1,m)e−(s1t1+···+smtm)dt1,m, (5)

where Dhm
denotes the domain of convergence of the

Laplace transform. For stable systems, Hm is analytic in
Dhm

⊃
(
C

+
0

)m where C
+
0 =

{
s∈C

∣∣<e(s)> 0
}

.



2) Functional spaces, characteristic function and a BIBO-
convergence theorem:

Definition 2 (Functional spaces): Let (m,n) ∈ N
∗ × N

∗

and p ∈ [1,∞]. The spaces Vm,n
p and Bn

p are defined by

Vm,n
p = L1(Rm

+ , Rn
p ) (6)

Bn
p = L∞(R+, Rn

p ) (7)

where R
n
p is the euclidean space of dimension n en-

dowed with the standard p-norm defined by ‖x‖p =

(|x1|p + · · · + |xN |p)1/p for p ∈ [1,∞[ and by ‖x‖∞ =
max(|x1|, . . . , |xN |) for p = ∞. When n = 1, all the p-
norms are identical so that p is omitted in this case.

Definition 3 (Characteristic function): Let {hm}m∈N∗ be
the Volterra series of a time-invariant SISO-system, such that
∀m ∈ N

∗, ‖hm‖Vm,1 =
∫

Rm
+
|hm(t1,m)|dt1,m is bounded.

The characteristic function ϕh of {hm}m∈N∗ is defined by
the power series

ϕh(z) =
∑

m∈N∗

‖hm‖Vm,1 zm, ∀|z| < ρ, (8)

where ρ is the radius of convergence of the power series.
Theorem 4: Let {hm}m∈N∗ be the Volterra series of a

time-invariant SISO-system such that the characteristic func-
tion ϕh has a radius of convergence ρ > 0. The Volterra
series is convergent in B1 for inputs such that ‖u‖B1 < ρ.
In this case, the output y is bounded and satisfies

‖y‖B1 ≤ ϕh

(
‖u‖B1

)
. (9)

This result is quite interesting for system analysis since it is
non-local in time. Nevertheless, it requires the determination
of the radius of convergence ρ and bounding ‖hm‖Vm,1 is not
straightforward. This paper copes with this practical problem
and establishes practicable BIBO-results.

3) Interconnection laws: Let {fm}m∈N∗ and {gm}m∈N∗

be the Volterra kernels of two systems, associated to the char-
acteristic functions ϕf and ϕg with radius of convergence
ρf and ρg , respectively. Connecting these systems through a
sum of outputs, a product of outputs or a cascade still defines
a Volterra series [Has99, p. 34,35] with kernels {hm}m∈N∗

such that for m ∈ N
∗,

◦ Sum : For (t1,m)∈
(
R+

)m, (s1,m)∈Dfm
∩Dgm

, z ∈
[0,min(ρf , ρg)[,

hm(t1,m) = fm(t1,m) + gm(t1,m), (10)
Hm(s1,m) = Fm(s1,m) + Gm(s1,m), (11)

ϕh(z) ≤ ϕf (z) + ϕg(z). (12)
Product : For (t1,m) ∈

(
R+

)m, (s1,m) ∈
∩

1≤p≤m−1

(
Dfk

×Dgm−k

)
, z∈ [0,min(ρf , ρg)[,

hm(t1,m) =

m−1∑

k=1

fk(t1,k) gm−k(tk+1,m), (13)

Hm(s1,m) =

m−1∑

k=1

Fk(s1,k)Gm−k(sk+1,m), (14)

ϕh(z) ≤ ϕf (z)ϕg(z). (15)

◦◦ Cascade with a linear system : For (t1,m)∈
(
R+

)m,
(s1,m)∈

{
(s1,m)∈Dfm

∣∣ ŝ1,m∈Dg1

}
, z∈ [0, ρf [,

hm(t1,m) =

∫

[0,min(t1,m)]

g1(θ1) fm(t1,m− θ1)dθ1, (16)

Hm(s1,m) = G1(ŝ1,m)Fm(s1,m), (17)
ϕh(z) ≤ ‖g1‖V1,1 ϕf (z). (18)

where ŝ1,m denotes the sum of the Laplace variables
ŝ1,m = s1 + · · · + sm. (19)

III. QUADRATIC SIMO SYSTEMS

A. System under consideration
Let the quadratic ODE system be defined by

ẋ = Ax +




xT E1 x
...

xT EN x


+ B u, (20)

y = C x, (21)
for t ∈ R

+ with x(0) = 0, where u(t) ∈ R, x(t) ∈ R
N

and y(t) ∈ R
Q are the input, state and output of the system,

respectively. All matrices are real and A is N × N , B is
N ×1, C is 1×N , and En (n = 1, . . . , N ) are N ×N . This
system can be viewed as a second order approximation of a
nonlinear system of the form ẋ = f(x) + B u, y = C x

around the initial state x(0) = 0.
Definition 5 (Strong and weak solutions): Let

C1
0 (R+, RN ) denote the set of all C1, R

N -valued functions
with compact support in R+. (x,y) is said to be a weak
solution of (20-21) in BN

p × BQ
p with p ∈ [1,∞] iff,

∀w ∈ C1
0 (R+, RN ),∫

R+

ẇT xdt +

∫

R+

wT Axdt

+

∫

R+

wT




xTE1x
...

xTENx


 dt +

∫

R+

wT Budt = 0, (22)

and y satisfies (21). Moreover, (x,y) is said to be a strong
solution, if it is a weak solution and x is C1(R+, RN ).
B. Derivation of the Volterra kernels

The formal computation of Volterra kernels is well-known
and standard (see [Fli81], [LL94], [Isi95]). It can be derived
easily using the interconnexion laws of section II-B.3 on
the formal Volterra series expansion of the solutions. This
yields a (linear) recursive formula which must be satisfied by
the Volterra kernels. Using the notation of the time-variant
systems hm(t, τ1,m) rather than the time-invariant version
hm(t1,m) with ti = t − τi, this yields, for all m ∈ N

∗,
[
IN∂t − A

]
hm(t, τ1,m) = fm(t, τ1,m), (23)

f1(t, τ1) = Bδ(t − τ1), (24)

fm(t, τ1,m) =
m−1∑

k=1




(hk(t, τ1,k))TE1hm−k(t, τk+1,m)
...

(hk(t, τ1,k))TENhm−k(t, τk+1,m)




if m ≥ 2. (25)



The solution is

h1(t, τ1) = eA(t−τ1)B 1R+(t − τ1), (26)

hm(t, τ1,m) =

∫ t

max(τ1,m)

eA(t−θ)fm(θ, τ1,m) dθ

· 1R+

(
t − max(τ1,m)

)
, if m≥2, (27)

where 1R+ denotes the Heaviside function.

IV. CONVERGENCE AND GUARANTEED ERROR BOUNDS

In this section, standard p-norms of vectors x (see II-B.2)
are considered for a fixed p ∈ [1,∞]. Norms for matrices
M and bilinear forms E and given by,

‖M‖p = sup
‖x‖p=1

‖Mx‖p, (28)

‖E‖Qp
= sup

‖x‖p=1,‖y‖p=1

|yT Ex|. (29)

Theorem 6: Consider system (20) with
max

(
<e
(
Spec (A)

))
< 0. Let {hm}m∈N∗ be the Volterra

kernels defined by (26-27). Then, for all p ∈ [1,+∞],

‖hm‖Vm,N
p

≤ Φm

(
εp αp

)m−1 (‖h1‖V1,N
p

)m
, (30)

with

εp =
∥∥∥
[
‖E1‖Qp

. . . ‖EN‖Qp

]T∥∥∥
p
, (31)

αp =

∫

R+

∥∥eAξ
∥∥

p
dξ < ∞, (32)

Φm = Cm−1 =

(
2(m − 1)

)
!

m! (m − 1)!
. (33)

Note that
‖h1‖V1,N

p
≤ αp ‖B‖p < ∞, (34)

and that Cn = Φn+1 for n ∈ N are the Catalan numbers
(see e.g. [FS07]).
Proof: The main steps of the proof (detailed in [HL07]) are
sketched below.

Equation (34) is straightforward and, (30) is satisfied for
m = 1 with equality by defining Φ1 = 1. Then, (30) is
proven with Φm =

∑m−1
k=1 ΦkΦm−k, by induction, consid-

ering that (30) is satisfied for any m′ with 1 ≤ m′ ≤ m− 1
and making use of, for m ≥ 2,

‖hm‖Vm,N
p

≤εp αp

m−1∑

k=1

‖hk‖Vk,N
p

‖hm−k‖Vm−k,N
p

, (35)

with the notations defined in the theorem. This recursive
relationship on Φm defines the Catalan numbers Cm−1

recalled in (33).
For m ≤ 2, the inequality (35) can be derived by proving

the successive following inequalities. From (3) and (27)
choosing t = 0,

‖hm‖Vm,N
p

≤
∫

R+

∥∥eAξ
∥∥

p

(∫

[ξ,+∞[m
‖fm(−ξ,−t1,m)‖p dt1,m

)
dξ.

From (25),

‖fm(t, τ1,m)‖p≤εp

m−1∑

k=1

‖hk(t, τ1,k)‖p ‖hm−k(t, τk+1,m)‖p.

Then,
∫

[ξ,+∞[m

‖fm(−ξ,−t1,m)‖pdt1,m≤εp

m−1∑

k=1

‖hk‖Vk,N
p

‖hm−k‖Vm−k,N
p

so that (35) is satisfied. ut
Theorem 7: Let p ∈ [1,∞]. Let the system (20-21) be

such that max
(
<e
(
Spec (A)

))
< 0 so that ‖h1‖V1,N

p
< ∞.

Then, the Volterra series expansions of the state and output
of the system (20-21) converge in BN

p and B1, respectively,
for all input u ∈ B1 such that

Zp(u) < 1/4, (36)

where Zp : B1 → R+ is defined by

Zp(u) = εp αp ‖h1‖V1,N
p

‖u‖B1 , (37)

so that the radius of convergence ρh satisfies

ρh ≥ ρ∗h = [4εp αp ‖h1‖V1,N
p

]−1. (38)

In this case, the following results hold:
(i) The sum of the series is a weak solution of the system. If

u is in C0(R+, R), this solution is also a strong one.
(ii) The output y and the state x are bounded as:

‖y‖BQ
p
≤ ‖C‖p ‖x‖BN

p
, (39)

‖x‖BN
p

≤ ϕh,p

(
‖u‖B1

)
≤ Φ

(
Zp(u)

)

εpαp
. (40)

(iii) Errors due to the truncation of order M ∈ N
∗ have

guaranteed bounds:

∥∥x − VMx
∥∥
BN

p

≤
FM

(
Zp(u)

)

εp αp
, (41)

∥∥y − VMy
∥∥
BQ

p
≤ ‖C‖p

FM

(
Zp(u)

)

εp αp
, (42)

where

|FM (z)| ≤ ΦM+1 zM+1

1 − 4z
(43)

≤ 1

2
√

π(M+1)(2M+1)

(4z)M+1

1 − 4z
.

These results involve the following definitions:

ϕh,p(z) =

∞∑

m=1

‖hm‖Vm,N
p

zm, (44)

Φ(z) = (1 −
√

1 − 4z)/2, (45)

VMx(t) =
M∑

m=1

∫

Rm

hm(τ1,m)
m∏

j=1

u(t − τj) dτ1,m, (46)

VMy(t) = C VMx(t), (47)

FM (z) =

+∞∑

m=M+1

Φm zm, (48)



and εp, αp, Φm are given in theorem 6.
Note that ϕh,p generalizes definition 3 to SIMO-systems.
Proof: The sketch of proof of (36) and (ii,iii) is as follows
(for a detailed version of (36), (i-ii), see [HL07]).

From (21), ‖y‖BQ
p
≤ ‖C‖p‖x‖BN

p
. Moreover, from theo-

rem 6, ‖x‖BN
p

≤ ϕh,p

(
‖u‖B1

)
≤ Φ

(
Zp(u)

)
/(εpαp) where

Φ(z) =
∑

m∈N∗Φmzm = z
∑

n∈N
Cnzn =

(
1 −

√
1 − 4z

)
/2

is absolutely convergent for z < 1/4. Similarly, for the
remainder RMx = x − VMx, we prove that

∥∥RMx
∥∥
BN

p

≤
∞∑

m=M+1

‖hm‖Vm,N
p

(
‖u‖B1

)m

≤ 1

εp αp

∞∑

m=M+1

Φm

(
Zp(u)

)m
,

which converges for Zp(u) < 1/4. Now, rewriting the
Catalan numbers as Φm = 4m−1

m

(
Γ(m+1/2)
Γ(m+1)

2m
2m−1

)
and

using Wallis’formula [AS70, (6.1.49)], 1√
m

(
1 − 1

8m

)
<

Γ(m+1/2)
Γ(m+1) < 1√

m
yield

(
1 − 1

8m

)
ξm < Φm < ξm =

4m−1

√
π
√

m
(
m− 1

2

) , from which (41-43) are deduced using the
superior bound ξm.

V. SIMULATION

To illustrate the previous theoretical results, computation
and simulation are proposed on two academic examples.
The optimality of the bounds computed is investigated. In
each case, guaranteed convergence radii and guaranteed error
bounds are explicitly computed for three p-norms (p =
1, 2,∞). A low-cost numerical simulation of the truncated
series is proposed.

A. First example
Consider the system (20-21) with N = Q = 2 and

A = −µI2 (49)

B =

(
1
γ

)
(50)

C = I2, (51)

En =
βn

2

(
0 1
1 0

)
for n ∈ {1, 2}, (52)

where µ, γ, β1 and β2 are strictly positive parameters. Such
a model describes phenomena involving two entities with
the same decay rate µ, a growth speed β1,2 x1 x2 and an
external input term proportional to u. The quadratic factor
x1 x2 of the growth speed models the probability for x1

to meet x2 and, for En, to produce more xn through the
coefficient βn. For instance, these equations could model
some catalytic processes, or auto-activating gene network,
or the death/birth process in an animal population structured
according to gender, etc. Note that this system is positive:
x1,2(0) ≥ 0 and u ≥ 0 implies x1,2 ≥ 0 on R+ (x1,2

represent the (positive) quantities of the entities “1” and
“2”).Parameters are chosen as follows: µ = 0.3, γ = 0.1,
β1 = 0.04, and β2 = 0.02.

We start by investigating the existence and local stability
of a positive equilibrium state for a constant positive input
u = a. An easy computation shows that the system has two
positive equilibrium states if and only if 0 ≤ a < a∗ =
135−45

√
5

16 ≈ 2.15, one of them being locally stable and the
other one unstable. Numerical simulation confirms that if
a < a∗ the systems state is bounded, and on the contrary, if
a > a∗, then the state is unbounded. As a consequence, the
convergence radius for the Volterra series is expected to be
less than a∗.

For p = 1, p = ∞ and p = 2, calculations lead to

α1 = α2 = α∞ =
1

µ
≈ 3.33,

ε∞ = β1 = 0.04, ε1 =
β1 + β2

2
= 0.03

ε2 =

√
β2

1 + β2
2

2
≈ 0.022,

‖h1‖V1,2
1

= (1 + γ)/µ ≈ 3.667,

‖h1‖V1,2
2

=
√

1 + γ2/µ ≈ 3.35,

‖h1‖V1,10
∞

= 1/µ ≈ 3.33.

From theorem 7, the corresponding guaranteed convergence
radii are ρ∗p = [4εp αp ‖h1‖V1,2

p
]−1, namely,

ρ∗1 = µ2/
(
4ε1(1 + γ)

)
≈ 0.68,

ρ∗2 = µ2/
(
4ε2
√

1 + γ2
)
≈ 1.008,

ρ∗∞ = µ2/(4ε∞) = 0.56.

As all p-norms are equivalent in finite dimensional spaces,
the series is convergent for any p-norm although the criterion
is not necessarily met. Here, the best convergence radius
among ρ∗1, ρ∗2 and ρ∗∞ is then ρ∗ = ρ∗2 which satisfies as
expected: ρ∗/a∗ ≈ 0.5 < 1.

Hence, for U = ‖u‖B1 < ρ∗, the output is guaranteed to
be bounded and the truncated series (at order M ) yields an
error less than:

E =
ΦM+1 (ε2 α2 ‖h1‖V1,2

2
U)M+1

ε2 α2

(
1 − 4ε2 α2 ‖h1‖V1,2

2
U
)

≈ ΦM+1

0.074

(0.248U)M+1

1 − 0.992U
.

Criterion (36) in theorem 7 therefore provides a lower bound
for the convergence radius of the Volterra series that might
seem conservative when restricting the system to the positive
input/positive state situation (or equivalently here to the neg-
ative input/negative state situation because of symmetries).
This problem is related to the use of matrix norms that
cannot take into account the signature of the quadratic forms
involved in the quadratic part of the system, as we shall see
on the second example.

The simulation of this system is performed below for M =
3 (so that ΦM+1 = 5). Inputs u such that ‖u‖B1 ≤ U∗ =
0.6 < ρ∗ are considered. The error is guaranteed to be less
than

E ≈ 0.08.



Real time implementation of Volterra decomposition is done
as follows: the first order contribution denoted as w1 is given
by the linear part of the system. In the Laplace domain this
contribution is

W1(s1) = (s1I − A)−1BU(s1) = H1(s1)U(s1).

Then mth order contribution wm is computed as the sum of
m−1 terms wmk, with 1 ≤ k ≤ m−1. In the time domain, a
realization for each wmk is obtained by computing the N dot
products (wk(t))T Eiwm−k(t), for 1 ≤ i ≤ N , and filtering
the resulting N dimensional vector with the filter with N
inputs, N outputs whose impulse response is eAt1R+(t) On
figure 1, truncated Volterra series of order 3 for a constant
input u(t) = 0.6 is plotted with the associated guaranteed
error bounds. The truncated series matches almost exactly the
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Fig. 1. Simulation of the Volterra approximation at order 3 (− ·),
guaranteed intervals (· · · ) using error bounds, and exact solution (−).

true solution of the system, so that, as pointed out before,
the convergence bound as well as the truncation error bound
are conservative in this situation.

B. Second example
In order to investigate the influence of the signature of the

quadratic forms involved in system (20-21) we consider the
same system as above, the only change being the expression
of matrices En:

En =
βn

2

(
1 0
0 1

)
for n ∈ {1, 2}, (53)

Parameters µ, γ, β1, and β2 have the same values as before,
and this system is still positive.

As before, we first investigate the existence and local
stability of a positive equilibrium state for a constant positive
input u = a. We easily find that the system has two
positive equilibrium states if and only if 0 ≤ a < a∗ =
−945+45

√
505

64 ≈ 1.04, one of them being locally stable and
the other one unstable.

The parameters involved in the computation of the conver-
gence radius and the guaranteed error bound of the Volterra
series of the system are the same as in the first example: the
only change is in the quadratic forms matrices E1 and E2

but the resulting values for parameters ε1, ε2 and ε∞ do not
change. This time we find that the best convergence radius
is ρ∗ = ρ∗2 which satisfies: ρ∗/a∗ ≈ 1, so that our bound is
very good for this example. On figure 2, truncated Volterra
series of order 3 for a constant input u(t) = 0.6 is plotted
with the associated guaranteed error bounds. We see that the
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Fig. 2. Simulation of the Volterra approximation at order 3 (− ·),
guaranteed intervals (· · · ) using error bounds, and exact solution (−).

computed error bound gives a sensible value in this case.

VI. CONCLUSION AND PERSPECTIVES

An algorithm to build the kernels for the Volterra series
decomposition for a stable system with quadratic state non-
linearity in L∞(R+, RN ), as well as a bound on the input
and on the truncation error have been obtained. The resulting
truncated system is easy to implement and simulate.

Further works will now consist in improving the quality of
the guaranteed radius of convergence and error bounds, by
refining the results of theorems 6 and 7 in order to have best
guaranties on particular situations. These results can also be
extended to nonlinear systems with a nth order polynomial
state nonlinearity, and in the future, this analysis can also be
extended (with greater technical difficulties to be overcome)
to some families of infinite dimensional systems such as
nonlinear propagation (see e.g. [HH04], [Hél06]) or diffusion
equations with polynomial in the state diffusion coefficients.
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