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ABSTRACT

We present an exact method to solve a one-dimensional nonlinear transport equation in a dissipative non homogeneous
media when the damping is frequency-independent. This work was motivated by the case of brass musical instruments
whose functioning at high sound levels implies nonlinear propagation. Though in that latter case, the medium is homo-
geneous, our approach is more general.

Usually, the wave propagation in musical wind instruments is justifiably considered to be linear. A well-known counter-
example is the case of brass instruments at high sound level. In this case,the nonlinear effects become dominant. They
account for the graduated waveshape distortion due to their cumulative nature which eventually leads to the arrival of
shock-waves.

For the class of propagation models under study in this paper, we derivean exact method which allows to recover an
input-output formalism and an efficient algorithm in the time domain. The method is based on three key points: (1) a
change of function which turns the original problem into a conservative problem of hyperbolic type, (2) the adaptation
of the standard "characteristics method" from which all possible solutionscan be deduced, and (3) the introduction of
an easily computable criterion which naturally selects the "physically meaningful" solution (this latter point provides a
generalization of the "potential function" proposed by Hayes ([(1)], see also [(2)]). This approach operates for regular
and continuous solutions as well as shocks and multiple shocks. Finally, a fast algorithm is deduced and proposed for
real-time sound synthesis issues.

INTRODUCTION

In practice, input-output representations used in system the-
ory and control engineering techniques are well-suited to real-
time simulations and sound synthesis purposes (e.g. as digital
waveguide techniques): in the linear case, efficient algorithms
in the time domain can be deduced from the study of trans-
fer functions (and possibly basic approximations or using stan-
dard model order reduction techniques). Deriving such repre-
sentations prove to be difficult in nonlinear cases (for which
the solution existence is even not always guaranteed).

It is shown in this paper that it is possible to find such a for-
mulation when the original problem is a 1D nonlinear trans-
port equation with frequency independent losses in a non ho-
mogeneous medium. After problem statement (section "prob-
lem statement"), it is shown how the model can be reformu-
lated through a change of variable as a conservative equation.
Strong solutions are obtained through an adapted version of
the method of characteristics (section "strong solutions"). As
soon as strong solutions become multivalued, weak solutions
must be considered, but they are not unique. A criterion is in-
troduced to select a unique solution (section "weak solutions").
In the example considered here (the nonlinear propagation of
acoustic waves), it corresponds precisely to the potential of
Hayes (1, 2)) that identifies the "physically meaningful" so-
lution branches (in the sense of an entropy criterion). This
method allows to construct a single-valued solution, even in
the case of multiple shocks. This is examplified for simulation
and sound synthesis purposes.

PROBLEM STATEMENT

Consider the 1D propagation in the domainΩ =]0,X[ where
X > 0 described by, for all(x, t) ∈ Ω×R

∗
+,

∂xp(x, t)+
1

c
(
x, p(x, t)

)∂t p(x, t)+α(x) p(x, t) = 0, (1)

with null initial conditions

∀x∈ Ω, p(x,0) = 0,

and a Dirichlet boundary condition atx = 0

∀t ∈ R, p(0, t) = p0(t),

wherep0 ∈ C 1(R) is supposed to be zero onR−.

Function(x, p) 7→ c(x, p) is assumed to be continuous onΩ×
R, to have a continuous derivative w.r.t.p and to be such that
c(0,0) > 0. Functionx 7→ α(x) is supposed to be continuous
and positive onΩ.

This model governs a traveling wave which propagates at local
celerity c

(
x, p(x, t)

)
and is subjected to a damping depending

on the positionx but not the frequency.

In this article, we seek solutions of smoothnessC 1 (sec.STRONG

SOLUTIONS) and weak entropic solutions when shocks occur
(sec.WEAK SOLUTIONS), under the following condition

∃c∗>0
∣∣c

(
x, p(x, t)

)
≥c∗ nearly everywhere inΩ×R. (2)
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which guarantees that waves propagate in the direction of pos-
itive x at a celerity larger thanc∗ and that the causality princi-
ple is satisfied. The intention is then to construct an efficient
numerical solver that is compatible with real-time applications
and that computes signalp(x, t) from the input signalp0(t), at
a fixed locationx.

Nondimensionalization A dimensionless version of this
problem is obtained by applying the change of variable below:

(t,x) → (x̃, t̃) =
(
x/X, c(0,0)t/X)

The problem is still described by previous equations, replacing
quantities by their versions denoted with a tilde given by:

p̃(x̃, t̃) = p
(
X x̃, t̃ X/c(0,0)

)
,

α̃(x̃) = Xα(Xx̃),

c̃
(
x̃,P

)
= c

(
X x̃,P)/c(0,0)

Ω̃ = ]0,1[.

In the sequel, symbols "tilde" are omitted (X=1, c(0,0)=1).

STRONG SOLUTIONS

This section provides basic results in the case where the solu-
tion is C 1-regular (C 1(E,F) denotes the standard set of con-
tinuous functions with a continuous derivative, fromE to F).
First, a change of function is introduced so that the problem be-
comes conservative (Theorem1). Second, the standard method
of characteristics is adapted to the case of problems with coef-
ficients varying w.r.t. the space variable (Theorem2).

Introduce the decreasing functionA∈ C 1
(
Ω, ]0,1]

)

A(x) = exp−
∫ x

0
α(ξ )dξ . (3)

Let c∗ ∈R
∗
+ andp0 ∈C 1

(
R,R) be such that∀t ∈R−, p0(t) =

0 and∀(x, t)Ω×R, c
(
x,A(x)p0(t)

)
≥ c∗. Then, the following

result holds.

Theorem 1 If q ∈ C 1
(
Ω×R

)
is a solution of

∀(x, t) ∈ Ω×R, ∂xq(x, t)+
1

c
(
x,A(x)q(x, t)

)∂tq(x, t) = 0,(4)

∀t ∈ R, q(0, t) = p0(t), (5)

then p: (x, t)∈Ω×R+ 7→A(x)q(x, t) belongs toC 1
(
Ω×R,R

)

and is a solution of the original problem. The converse is also
true.

The proof is straightforward.

Definition 1 (Characteristics) Let K be defined by

K : Ω×R −→ Ω×R

(x, t) 7−→
(
x,T(x, t)

) (6)

where, for all(x, t) ∈ Ω×R,

T(x, t) = t +
∫ x

0

1

c
(
y,A(y)p0(t)

) dy (7)

Properties 1 Functions T and K are such that:

(i) T and K areC 1-regular functions;
(ii) ∀(x, t) ∈ Ω×R, T(x, t) ≥ t;
(iii) K is surjective;
(iv) If ∀(x, t) ∈ Ω×R, ∂tT(x, t) > 0, then K is aC 1-regular

diffeomorphism.

Proof (i) is straightforward sincep0 is C 1-regular,A is con-
tinuous and(x, t) 7→ 1/c(x,A(x)p0(t)) is bounded and continu-
ous (c∗ > 0).
(ii) is a straightforward consequence of the positivity of
c
(
y,A(y)p0(t)

)
in (7).

Concerning (iii), for allt ≤ 0, p0(t) = 0 so that for allx ∈ Ω,
T(x, t)= t+T(x,0) −→

t→−∞
−∞. Moreover, from (ii),T(x, t) −→

t→+∞
+∞ for all x∈ Ω. Therefore, (iii) is satisfied becauseT is con-
tinuous.
Concerning (iv), if∀(x, t) ∈ Ω×R, ∂tT(x, t) > 0, then for all
x∈Ω, t ∈R 7→T(x, t) is injective since it is a strictly increasing
function. So in subsequent to (i) and (iii),K is C 1-regular and

bijective. The Jacobian matrixJ(x, t)=

(
1 0

∂xT(x, t) ∂tT(x, t)

)

of K is continuous and its determinant detJ(x, t) = ∂tT(x, t) >
0 is invertible, that concludes the proof. ⋄

Theorem 2 (Strong solution) Suppose that∀(x, t) ∈ Ω × R,
∂tT(x, t) > 0. Define theC 1-regular functionτ : (x,θ) ∈ Ω×
R 7→ [K−1(x,θ)]2 ∈ R. Then,

Q = p0 ◦ τ ∈ C
1(Ω×R,R

)

is a strong solution of (4-5).

Proof From property1(iv), τ andQ areC 1-regular and

∀(x, t) ∈ Ω×R, T
(
x,τ(x, t)

)
= t. (8)

Moreover, computing the left and the right hand sides of
∂xτ(x, t)∂t

[
(8)

]
−∂tτ(x, t)∂x

[
(8)

]

D2T
(
x,τ(x, t)

) whereD2T
(
x,τ(x, t)

)
> 0

yields
−D1T

(
x,τ(x, t)

)
∂tτ(x, t) = ∂xτ(x, t). (9)

Now,∂xQ(x, t)+ 1
c
(

x,A(x)Q(x,t)
)∂tQ(x, t)= [p′0◦τ](x, t)

(
∂xτ(x, t)+

1
c
(

x,A(x)Q(x,t)
)∂tτ(x, t)

)
is zero from (9) and since, from (7),

D1T
(
x,τ(x, t)

)
= 1

c
(

x,A(x)Q(x,t)
) . Finally,Q is a solution of (4),

that concludes the proof. ⋄

Therefore, in the case where the solution is strong, theorems1
and2 provide a solution to the original problem, given by

p(x, t) = A(x) p0
(
τ(x, t)

)
(10)

The existence of such a solution is conditioned by that ofτ,
that is, by the fact that∂tT > 0 to ensure the bijectivity ofK.

APPLICATION: FAST INPUT-OUTPUT ALGORITHM

Consider the simple case for which both the damping and the
celerity do not depend on the space variable (homogeneous
medium) and are characterized by

α(x) = α , c(x, p(x, t)) = 1/(1− p(x, t)). (11)

This celerity corresponds to a nonlinear acoustic model used
to represent the wave propagation in some musical wind instru-
ments at fortissimo nuances [(3)]. For this application,A(x) =
exp(−α x) (see (3)) and functionT is given by (see (7))

T(x, t) = t +x−Eα (x)q(0, t) with Eα (x) =
1−e−αx

α
. (12)

These characteristics are plotted in figure1 for input signal
q(0, t) = p0(t) = −0.3sin(8πt) and α = 1. Because of the
damping, in accordance with (12), characteristics in the(x,T)-
plane are not straight lines. Strong solutions are then constructed
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Figure 1: Top: input signal (atx = 0). Bottom: characteristics
in the (T(x, t),x) plane, given by (6) and (7).
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Figure 2: Strong solutions computed atxn = n
N x⋆ for n= 0

(blue), 1≤n≤N−1 (black) andn=N =7 (red), wherex⋆ ≈
0.1414 is the critical shock distance. Top:q(x, t) solution of
(4-5). Bottom:p(x, t) = A(x)q(x, t) solution of (1).

using (10) and theorem2. They are presented in figure2 for
various distancesx.

The top picture exhibits the distortion of the sinusoidal wave-
form q(x, t) that is expected for this type of non-linearity [(4,
6)]. In the bottom picture, the damping effect is included, ac-
cording to theorem1 and equation (10).

From theorem2, the validity of this construction is conditioned
by ∂tT > 0 which ensures bijectivity ofK. Graphically, the va-
lidity limit is reached as soon as characteristics intersect (fig-
ure1, bottom).

A precise analysis of characteristics and figure2 reveals that
the first intersection corresponds tox = x⋆ ≈ 0.1414. Beyond
this limit, no strong solutions are available: the use of charac-
teristics leads to a multi-valued solutionq(x, t).

WEAK SOLUTIONS

Intersections of characteristics means that distinct quantities
are carried in the same place at the same time (multi-valued
solution). It corresponds to the appearance of a shock (discon-
tinuous solution, called weak solution). In this case, from the
mathematical point of view, the problem must be solved in the
sense of distributions. It provides several (mono-valued but dis-

continuous) solutions. Only one of them is compatible with the
entropy principle [(5)].

A worthwhile solution proposed by Hayes [(1)] (without proof)
has been recently studied by Coulouvrat [(2)]. The method is
based on anad hocfunctional called “potential” in [(1, 2)]. A
generalization of this method, adapted to problem (4), is pro-
posed below.

Preliminary Results

Definition 2 (Functions φ and Φ+) For all x > 0, t ∈ R, de-
note T0(x, t) = T(x, t)

∣∣
p0=0 and define

φ(x, t) =
∫ t

−∞

T0(x, t ′)−T(x, t ′)
x

∂t ′T(x, t ′)dt ′, (13)

Φ+(x,θ) = sup
t∈T(x,θ)

φ(x, t), (14)

whereT(x,θ) =
{

t ∈ R
∣∣T(x, t) = θ

}
.

Note that, for allt ≤ 0, T0(x, t) = T(x, t) so thatφ(x, t) is zero
if t ≤ 0.

Properties 2 The following results hold:

(i) φ is C 1-regular.
(ii) SetsT(x,θ) are non empty and closed.
(iii) If a and b belong toT(x,θ), then

x
[
φ(x,b)−φ(x,a)

]
+

∫ b

a
T(x, t)dt = θ (b−a),

(iv) FunctionΦ+ is continuous w.r.t.θ .

Proof (i) follows from property1(i).
(ii) T(x,θ) = T̃−1

x < {θ}> is closed because it is the inverse
image of the closed set{θ} for the continuous functioñTx :
t 7→ T(x, t). It is non empty becausẽT < R >= R (See proof
of property1(ii)).
(iii) is a consequence of (13).
(iv) The proof sketched below is based on the construction of
the parametrized curvet 7→

(
T(x, t),φ(x, t)

)
for a fixedx (see

the curves in top right of figures3 and4).

In areas whereT is a singleton, the continuity ofΦ+ is ensured
by that of φ and T. For complementary areas, the first step
consists of proving that functionψ+

t : Ω×]−∞,θ+(t)] → R

where

ψ+
t (x,θ) = sup

a∈Tt (x,θ)
φ(a) with Tt(x,θ) = T(x,θ)∩]−∞, t],

and θ+(t) = supa≤t T(x,a), is continuous on]− ∞,T(x, t)].
This result comes from (iii) which yields the following prop-

erties: for allx > 0, (a,b) ∈ [T(x,θ)
]2 such thata < b,

(A) if T(x, t) < θ for all t ∈]a,b[, thenφ(x,b) > φ(x,a),

(B) if T(x, t) = θ for all t ∈ [a,b] thenφ(x,b) = φ(x,a)
(

=

φ(x, t)
)

,

(C) if T(x, t) > θ for all t ∈]a,b[ thenφ(x,b) < φ(x,a).

Then, we partition each connected sets into ordered sub-intervals
[ak,bk] of type (A,B,C), possibly completed by intervals[bk,ak+1]
if ak+1 6= bk. The conclusion is obtained by remarking that
T(x, t) ≥ t and θ+(x, t) ≥ t so thatψ+

t and Φ+ coincide on
]−∞, t]. Thus, the continuous functionψ+

t

∣∣
]−∞,t] reconstructs

Φ+ whent → +∞. ⋄
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Remark 1 The type (A) corresponds to a “negative branch”
(∂tT ≤ 0) first, and then, a “positive branch”. The type (C)
corresponds to a “positive branch” first, and then, a “negative
branch”.

Theorem 3 (Selection of a weak solution)The function defined
by q̂ = p0 ◦ τ̂ with

τ̂(x,θ) = sup{t ∈ T(x,θ)
∣∣φ(x, t) = Φ+(x,θ)

}

provides a unique solution of (4-5) in the sense of distributions.

The uniqueness of the selection made byτ̂ is obvious and it
can be easily checked thatq satisfies the Rankine-Hugoniot’s
condition at the locations of discontinuities.

Application and link with the Hayes method

For the application presented in sectionAPPLICATION, we find
that

φ(x, t) =
Eα (x)

x

[∫ t

0
p0(t)dt −

1
2

Eα (x)
(
p0(t)

)2
]
. (15)

In the case whereα → 0+ (no damping), thenEα (x) → x and
(15) coincides with the “Hayes potential” [(1)] (see also (9) in
[(2)] where the role of the spacey and timet are exchanged):

φH(x, t) =
∫ t

−∞
p0(t

′)∂t ′T(x, t ′)dt ′. (16)

The solutions which are selected byτ̂ and by the Hayes poten-
tial are identical. But althoughφH andφ coincide in this case,
this correspondence is lost in general. Moreover, equations (13)
and (16) cannot be interpreted in the same way.

Thus, in (13), (T0 −T)/x represents the difference (averaged
per unit length) between the travel duration (from 0 tox) of
a zero quantity (reference) and a non zero one (p0). This dif-
ference is is integrated w.r.t.∂t ′T(x, t ′)dt ′, that is, the measure
of the “output time”T (for a fixedx and as far asT is bijec-
tive). The selection made byΦ+ and τ̂ corresponds to retain
maximum parts of a quantity exclusively derived from time
transport information. On the contrary, in (16), the interpreta-
tion is no longer exclusively based on time information and
property2(iii) is also lost in general.

It has been proved that the Hayes potential provides the en-
tropic solution for this particular application but not in the gen-
eral case [(2)]. The question remains open for selection byΦ+

andτ̂ .

RESULTS

Figure 3 represents the wave signal atx = x⋆. The left bot-
tom picture exhibits the time derivative of the original signal
q(0, t) (recalled in top left) and the vertical limit (red) marking
the shock onset (dq(0, t)/dt = α/(1− e−αx)). It shows that
x = x⋆ ≈ 0.1414 corresponds to the validity limit of the strong
solutions, as suggested by1. This information is also displayed
in the bottom right picture which shows that at certain points
∂tT approaches 0 (but does not reach). The top right picture
representsφ defined in (13) plotted w.r.t.T(x, t). Again, the
fact thatφ(x,T(x, t)) is mono-valued shows that the solution is
strong. Thus, subsequent to (13):

Φ+(x,θ) = φ(x, t) ∀t ∈ T(x,θ), (17)

and each point of the input signalq(0, t) appears in the signal
q(x,T(x, t)). Makers◦ (green) in the subplots are in correspon-
dence.
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Figure 3: Top left picture: input signalp0(t) = q(0, t). Top
right picture:Φ(x⋆, t) defined by (13). Bottom left picture: time
derivative of the input signalq(0, t) and limit (vertical red line),
the non crossing of which signs the absence of shock before
x = x⋆. Bottom right picture: influence of nonlinear propaga-
tion on arrival times atx = x⋆ (the dotted black line corre-
sponds to the referencet = T).

The situation is different for a propagation on a longer distance.
This is illustrated in figure4, which is comparable to figure3

but atx = 1. On the bottom left picturedq(0,t)
dt exceeds the va-

lidity limit of the strong solutions. Non-admissible points (in
red) are those for whichdq(0, t)/dt > α/(1−e−αx) or, equiv-
alently,∂tT < 0. The top right picture exhibits a multi-valued
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Figure 4: Same quantities as in figure3, but atx = 1. Non-
admissible points (in red) are those for whichdq(0, t)/dt >
α/(1− e−αx) or, equivalently,∂tT < 0 so that they are in-
volved in one shock at least.

potential and shows thatΦ+ 6= φ . The (weak) solution atx= 1
is built according to theorem3.

The result is presented in figure5, for x = nx⋆, 0≤n≤7. On
the top picture, the plots ofq(x, t) show more and more sheer
shocks, until a N-wave appear (see e.g. [(4)]). On the bottom
picture, the plots ofp(x, t) = A(x)q(x, t) show the solution of
the original problem for which the amplitude decreases be-
cause of the damping. The waveform is preserved since the
damping does not depend on the frequency.
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Figure 5: Strong and weak solutions for several distancesx =
nx⋆, 0≤ n≤ 7. Top picture:q(x, t) solution of (4-5). Bottom
picture:p(x, t) = A(x)q(x, t) solution of (1).

CONCLUSION

A first advantage of the approach presented in this paper is
to separate during the propagation, effects related to damping
(independent of frequency) and those related to the nonlinear
transport. Moreover, the introduction of a functional allows to
treat the problem as a nonlinear input/output problem, even
when shocks occur. This functional makes the method of char-
acteristics still usable even for weak solutions. Moreover, the
output signal processing is not more expensive in the case of
multiple shocks than in the case of single shocks. This property
is interesting to built real-time simulations of brass instrument
sounds at high sound level. It will be exploited to extend some
known sound synthesis algorithms which are currently limited
to a lossless propagation and strong solutions as in [(8)], or to
weak solutions corresponding to symmetric shocks as in [(7)],
or to strong solutions with visco-thermal losses as in [(9)].

The work presented in this article has focused on a particular
model of nonlinear transport, but the objective is to prove that
any type of equation (1) can be treated in the same formalism.
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