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Abstract
Volterra series expansions have been extensively used to solve and represent the dynamics of
weakly nonlinear finite dimensional systems. Such expansions can be recovered by using the
regular perturbation method and choosing the input of the system as the perturbation: the state
(or the output) is then described by a series expansion composed of homogeneous contributions
with respect to the input, from which kernels of convolution type can be deduced. This paper
provides an extension (based on this approach) to a class of semilinear infinite dimensional
systems, nonlinear in state and affine in input. As a main result, computable bounds of the
convergence radius of the series are established. They characterize domains on which the series
defines a mild solution of the system. The convergence criterion is established for bounded
signals (infinite norms on finite or infinite time intervals) as follows: first, norm estimates of the
series expansion terms are derived; second, the singular inversion theorem is used to deduce an
easily computable bound of the convergence radius. In the formalism proposed here, non zero
initial conditions can be also considered as a perturbation so that no precomputation of nominal
trajectories is required in practice. The relevance of the method is illustrated on an academic
example.

Keywords: Nonlinear systems, perturbation analysis, partial differential equations, convergence
proofs

1. INTRODUCTION

Volterra series is a functional series expansion of the so-
lution of nonlinear controlled systems, first introduced by
the Italian mathematician Volterra (see Volterra (1959)).
This tool has been extensively used in signal processing
and control, electronics and electro-magnetic waves, me-
chanics and acoustics, bio-medical engineering, for mod-
eling, identification and simulation purposes. There ex-
ists a vast literature concerning Volterra series. Among
others, they were studied by Brockett (1976); Gilbert
(1977); Fliess et al. (1983); Isidori (1995) from the geo-
metric control point of view, and in Rugh (1981); Crouch
and Collingwood (1987); Schetzen (1989) from the input-
output representation and realization point of view. Most
of applications address finite dimensional systems even if a
few cases of some infinite dimensional problems has been
investigated (see e.g. Hélie and Hasler (2004); Hélie and
Roze (2008)).

Only a few results address the convergence of such series
expansions. The existence of a non zero convergence radius
for complex linear analytic finite dimensional systems with
no initial conditions has been proved by Brockett (1977).
Other theoretical and local-in-time results are known (see
e.g. Isidori (1995); Lamnabhi-Lagarrigue (1994)). Results
on fading memory have be investigated by Boyd and Chua
(1985). More recently, results have been obtained in the

frequency domain by Jing et al. (2008); Peng and Lang
(2007), results relying on regular perturbations are given
by Bullo (2002). We have also established computable
bounds of the convergence radius for finite dimensional
systems with a polynomial nonlinearity (see Hélie and
Laroche (2008, 2009)).

This paper focuses on the computation of guaranteed
convergence bounds of a series expansion which extends
the Volterra series formalism to the case of a class of semi-
linear infinite dimensional systems, nonlinear in state and
affine in input. The convergence criterion is established
for bounded signals (L∞

(
R+

)
or L∞

(
[0, T ]

)
norms, with

T > 0). The derivation of the result proceeds in two steps.
First, norm estimates of the series expansion terms are
derived. Second, the singular inversion theorem is used
to deduce an easily computable bound of the convergence
radius. Moreover, in the formalism proposed here, non zero
initial conditions can be also considered as a perturbation
so that no precomputation of nominal trajectories is re-
quired in practice.

The paper is organized as follows: section 2 defines the
notations, the functional setting, the class of systems under
consideration and recalls some general definitions and
basic properties of Volterra series. Section 3 introduces
the series expansion which provides a solution of the
system state and establishes the convergence results. These



results are illustrated on an academic example in section 4.
Finally, conclusions and perspectives are given in section 5.

2. GENERAL FRAMEWORK

2.1 Notations and functional setting

The following notations and functional setting are intro-
duced:

• T denotes the time interval [0, T ] with T > 0 or R+.
• U and X are Banach spaces on the field R.
• L(U, X) and L(X) are the sets of bounded linear

operators from U to X, and from X to X, respectively.
• MLj(X, X) (j ≥ 2) is the set of bounded multilinear

operators from X × · · · × X︸ ︷︷ ︸
j

to X, with norm

‖E‖ = sup
(x1,...,xj)∈Xj

‖x1‖=···=‖xj‖=1

‖E(x1, . . . , xj)‖.

• MLj,k(X, U, X) (j ≥ 1, k ≥ 1) is the set of bounded
multilinear operators from X × · · · × X︸ ︷︷ ︸

j

×U × · · · × U︸ ︷︷ ︸
k

to X, with norm

‖E‖ = sup
(x1,...,xj ,u1,...,uk)∈Xj×Uk

‖x1‖=···=‖uk‖=1

‖E(x1, . . . , xj , u1, . . . , uk)‖.

• U = L∞(T, U) and X = L∞(T, X) are standard
Lebesgue spaces.

2.2 System under consideration

Consider the class of infinite-dimensional nonlinear causal
system governed by

ẋ = Ax + B u + P (x) + Q(x, u), for t ∈ T, (1)

x(0) = xini ∈ X. (2)

Operator A is closed and generates a strongly continuous
semigroup S on X with growth bound α which is assumed
to be strictly negative if T = R+. Moreover, β > 0
denotes the lowest constant such that for all t ∈ T,
‖S(t)‖L(X,X) ≤ β exp(αt). Operator B belongs to L(U, X).
Moreover,

P (x) =

+∞∑

k=2

Ak(x, . . . , x︸ ︷︷ ︸
k

), (3)

Q(x, u) =
+∞∑

k=2

Bk(x, . . . , x︸ ︷︷ ︸
k−1

, u), (4)

where Ak ∈ MLj(X, X) and Bk ∈ MLk−1,1

(
X, U, X

)
are

multilinear bounded operator such that

+∞∑

k=2

‖Ak‖MLk(X,X)z
k

and

+∞∑

k=2

‖Bk‖MLk,1(X,U,X) zk−1 are analytic at z = 0.

Definition 1. (Mild solution). Let u ∈ L∞
loc(T, U). Then, x

is said to be a mild solution of (1-4) iff x ∈ C0(T, X) and
satisfies, ∀t ∈ T,

x(t) = S(t)xini

+

∫ t

0

S(t − τ)
(
Bu(τ) + P

(
x(τ)

)
+ Q

(
x(τ), u(τ)

))
dτ .

3. REGULAR PERTURBATION METHOD:
COMPUTABLE CONVERGENCE RESULTS

We look for an expansion of the trajectories of system
(1,2) using a regular perturbation approach, where the
input u and the initial condition xini are considered as
perturbations. Setting u = ηũ and xini = η ˜xini, we look
for a solution under the form

x =
∞∑

m=0

ηmx̃m =
∞∑

m=0

xm, with xm = ηmx̃m.

Replacing x in (1,2) and sorting along the powers of η yield
x0 = 0 and the following formal expressions, for all t ∈ T,

x1(t) = S(t)xini +

∫ t

0

S(t − τ)B u(τ) dτ, (5)

xm(t) =

∫ t

0

S(t − τ)χm(τ) dτ, for m ≥ 2, (6)

where

χm(τ) =

m∑

k=2

∑

p∈Mk
m

Ak

(
xp1

(τ), . . . , xpk
(τ)

)

+

m∑

k=2

∑
{

q∈M
k
m

qk =1

Bk(xq1
(τ), . . . , xqk−1

(τ), u(τ)
)
,

and the multiple index set M
K
m is defined for all m ∈ N

∗

and K ∈ N
∗ by

M
K
m =

{
p ∈ (N∗)K

∣∣ p1 + · · · + pK = m
}

.

As a standard result (see e.g. Pazy (1983)), (5) defines
a mild solution x1 ∈ C0(T, X) of the linearized problem.
Moreover, by induction, for all m ∈ N

∗, xm ∈ C0(T, X).

This expansion provides a generalization to the infinite
dimensional case of the standard Volterra series expansions
(when xini = 0) defined for finite dimensional nonlinear
systems (see e.g. Volterra (1959); Rugh (1981); Boyd et al.
(1984)).

Lemma 2. Let u ∈ U . Then, x1 ∈ X and ‖x1‖X ≤
κ1‖xini‖X + κ2‖u‖U where

κ1 = β max(1, eαT ), κ2 = β‖B‖L(U,X)
eαT − 1

α
, if T = [0, T ],

(κ2 degenerates into βT‖B‖L(U,X) when α = 0), and where
κ1 = β, κ2 = β‖B‖L(U,X)/|α|, if T = R+.

The proof is a standard.

Lemma 3. For all m ∈ N
∗, χm and xm belong to X .

Moreover, for all m ≥ 2,

‖xm‖X ≤
m∑

k=2

[
ak

∑

p∈Mk
m

k∏

i=1

‖xpi
‖X

+bk

∑
{

q∈M
k
m

qk =1

( k−1∏

i=1

‖xqi
‖X

)
‖u‖U

]
, (7)



where ak = γ
∥∥Ak

∥∥
MLk(X,X)

, bk = γ
∥∥Bk

∥∥
MLk−1,1(X,U,X)

and with ∫

T

∥∥S(θ)
∥∥
L(X,X)

dθ ≤ γ < ∞.

The best estimate in (7) is obtained for γ=
∫

T

∥∥S(θ)
∥∥
L(X,X)

dθ.

Proof. From lemma 2, x1 ∈ X . Now, by induction, let
m ≥ 2 and assume that for 1 ≤ m′ ≤ m− 1, xm′ ∈ X . For
all τ ∈ T,

‖χm(τ)‖X ≤

m∑

k=2

[ ∑

p∈Mk
m

‖Ak‖MLk

k∏

i=1

‖xpi
(τ)‖X

+
∑

{
q∈M

k
m

qk =1

‖Bk‖MLk−1,1

( k−1∏

i=1

‖xqi
(τ)‖X

)
‖u(τ)‖U

]

≤

m∑

k=2

[
‖Ak‖MLk

∑

p∈Mk
m

k∏

i=1

‖xpi
‖X

+‖Bk‖MLk−1,1

∑
{

q∈M
k
m

qk =1

( k−1∏

i=1

‖xqi
‖X

)
‖u‖U

]
.

It follows that χm ∈ X and that, for all t ≥ 0,

‖xm(t)‖X ≤

∫ t

0

‖S(t − τ)‖L ‖χm(τ)‖X dτ

≤ γ
m∑

k=2

[
‖Ak‖MLk

∑

p∈Mk
m

k∏

i=1

‖xpi
‖X

+‖Bk‖MLk−1,1

∑
{

q∈M
k
m

qk =1

( k−1∏

i=1

‖xqi
‖X

)
‖u‖U

]
,

which proves that xm ∈ X and that (7) holds.

Let G ∈ L(X,X ) and H ∈ L(U ,X ) be defined by

G : xini 7−→
(
t 7→ S(t)xini

)

H : u 7−→
(
t 7→

∫ t

0

S(t − τ)B u(τ) dτ
)
.

Then, (5) rewrites

x1 = Gxini + H x1, (8)

and we have the following theorem (main result of the
paper).

Theorem 4. (Convergence criterion). Let ω ≥ ‖H‖L(U,X ) >
0. Then, for all ε ∈ [0, 1]:

(i) Consider the analytic functions

a(z) =
+∞∑

k=2

akzk−1, b(z) =
+∞∑

k=2

bkzk−1,

where ak and bk are defined in lemma 3, and define
the (non constant) function

Fε(z) =
ω + εb(z)

1 − a(z)
,

with convergence radius r ∈ R
∗
+ ∪ {+∞} at z = 0.

Equation x F ′
ε(x)− Fε(x) = 0 has either one solution

denoted σ (case 1) or zero solution (case 2), in ]0, r[.
Let ρ⋆

ε > 0 be defined by

(case 1) ρ⋆
ε =

σ

F (σ)
, (9)

(case 2) ρ⋆
ε = lim

x→r−

x

F (x)
. (10)

There exists a unique function z 7→ Φε(z) analytic at
z = 0 and such that

Φε(z) = z Fε

(
Φε(z)

)
.

Its convergence radius is equal to (case 1) or greater
than (case 2) ρ⋆

ε.
(ii) Let u ∈ U and xini ∈ X be such that

(1 − ε)‖u‖U ≤
ε

ω
‖G(xini)‖X , (11)

‖u‖U +
1

ω
‖G(xini)‖X < ρε. (12)

Then, the series x =
∑

m∈N∗

xm defined from (5-6) is

normally convergent in X and
∥∥x

∥∥
X

≤ Φε

(
‖u‖U +

1

ω
‖G(xini)‖X

)
.

More precisely, z 7→ Φε

(
z
(
‖u‖U + 1

ω
‖G(xini)‖X

))
is

a dominating function of z 7→
∑

m∈N∗ ‖xm‖X zm for
|z| < 1.

Remark 5. If b = 0, then Fε, σǫ, ρ⋆
ε and (12) do not depend

on ε. Moreover, in this case, (11) is no longer a constraint
since there exists ε ∈ [0, 1] such that (11) is satisfied.

Remark 6. If xini = 0 (zero initial conditions), choosing
ε = 1 makes condition (11) trivial and the convergence
condition reduces to

‖u‖U < ρ1.

In this case, parameter ρ1 can be interpreted as a conver-
gence radius.

Remark 7. If u = 0 (uncontrolled), choosing ε = 0 makes
condition (11) trivial so that the convergence condition
reduces to

‖G(xini)‖X < ω ρ0.

Note that in this case, F0 and ρ0 do not involve function
b (related to Q in (4)).

Proof. The proof of (i) is a straightforward consequence
of lemma 9 in appendix A.

Now for (ii), consider the problem (1,2) with input u and
initial condition xini. Define φ1 = ω and, for m ≥ 2,

φm =

m∑

k=2

ak

∑

p∈Mk
m

k∏

i=1

φpi
+ ε

m∑

k=2

bk

∑
{

q∈M
k
m

qk =1

k−1∏

i=1

φqi
.

From (8), it follows that

‖x1‖X ≤ ‖H‖L(U,X )‖u‖U + ‖G(xini)‖X

≤ ω‖u‖U + ‖G(xini)‖X

≤ φ1

(
‖u‖U +

1

ω
‖G(xini)‖X

)
.



Moreover, from (11), ‖u‖ ≤ ε
(
‖u‖U + 1

ω
‖G(xini)‖X

)
so

that, from lemma 3 and by induction,

∀m ≥ 2, ‖xm‖X ≤ φm

(
‖u‖U +

1

ω
‖G(xini)‖X

)m
. (13)

Consider the function ã(X) = X a(X) and the formal

series Φ(X) =
∑

n∈N∗

φmXm. Then, Φ satisfies

ã
(
Φ(X)

)
+ εX b

(
Φ(X)

)

=

+∞∑

k=1

ak

(
Φ(X)

)k
+ εX

+∞∑

k=1

bk

(
Φ(X)

)k−1

=
+∞∑

m=2

Xm

[ m∑

k=2

ak

∑

p∈Mk
m

k∏

i=1

φpi
+ ε

m∑

k=2

bk

∑
{

q∈M
k
m

qk =1

k−1∏

i=1

φqi

]

=
+∞∑

m=2

φmXm = Φ(X) − φ1X = Φ(X) − ωX.

This leads to X
(
ω + εb

(
Φ(X)

))
= Φ(X)

(
1 − a

(
Φ(X)

))
,

which rewrites Φ(X) = X Fε

(
Φ(X)

)
.

Finally, from (i), Φ is analytic on the open disk with
radius ρε so that, if ‖u‖U + 1

ω
‖G(xini)‖X < ρε, then

the positive series
∑

m∈N∗

φm

(
‖u‖U +

1

ω
‖G(xini)‖X

)m

con-

verges,
∑

m∈N∗

xm is normally convergent and is bounded by

Φ
(
‖u‖U + 1

ω
‖G(xini)‖X

)
. This concludes the proof.

Remark 8. (Algorithm). Following theorem 4, the conver-
gence parameter ρε can be computed either numerically or
analytically, using this algorithm:

Step 1: Compute exact or overestimated values of ω =
‖H‖L(U,X ) (see (8)) and γ =

∫
T

∥∥S(θ)
∥∥
L(X,X)

dθ related

to the semi-group of the linearized system defined by
(1,2) with P = 0, Q = 0.

Step 2: Compute ak, bk and derive Fε.
Step 3: Compute the unique positive solution σε of the

equation Fε(σ) − σ F ′
ε(σ) = 0 if any.

Step 4 Compute ρ⋆
ε using (9-10).

Note that, in step 1, overestimated values can be easily
derived from the growth bound α, parameter β and
‖B‖L(U,X) (as in lemma 2).

It can be easily checked that, when the convergence

condition is satisfied, the series

∞∑

m=0

xm defines a mild

solution of (1-2) in the sense of definition 1.

4. EXAMPLE

We illustrate our method on a simple academic example.

4.1 System under consideration

Consider the 1D reaction-diffusion process with Dirichlet
boundary conditions, described by

∂tf(t, z) = ν∂2
zf(t, z) − µf(t, z)+

[
f(t, z)

]2
+ h(z)u(t),(14)

f(t, 0) = f(t, 1) = 0, (15)

f(0, z) = 0 (16)

where f is defined on T× [0, 1] with T = R+, h belongs to
C

(
[0, 1]

)
and ν, µ are positive constants.

These equations take the form (1-2) where U = R, X =
C0

(
[0, 1]

)
(space of continuous functions on [0, 1] that

vanish on the boundary, equipped with the supremum
norm). Operator A is defined by

A = ν∂2
z − µ I,

with domain D(A) = H2(0, 1) ∩ H1
0 (0, 1). Operator B is

defined by
B(u) : z 7→ h(z)u.

Moreover, P (x) = A2(x, x) with A2 : (x, y) 7→ xy and
Q = 0.

4.2 Computation of ρ⋆

We follow the algorithm steps given in remark 8.

Step 1 (parameters ω and γ) A straightforward compu-
tation shows that the eigenvalues of A are λn = −(µ +
ν(nπ)2) for n ∈ N

⋆. The first eigenvalue of A is therefore
λ1 = −(µ + νπ2).

Following Cazenave and Haraux (1998), A is the infinites-
imal generator of a semigroup of contraction S whose
growth bound is α = λ1, and the following estimate hold

‖S(t)‖L(X,X) ≤ M exp(λ1t),

with M = exp
(

π
4

)
. We therefore have

∫

T

∥∥S(θ)
∥∥
L(X,X)

dθ ≤ M
1 − exp(λ1T )

|λ1|
,

so that we can choose the overestimated value

γ = M
1 − exp(λ1T )

|λ1|
.

It may happen in some cases (i.e. for some particular
functions z 7→ h(z)) that a better value for M is available.

In this example, we use the tight bound

ω = ‖H‖L(U,X ) = sup
t∈T

∫ t

0

‖S(t − τ)h‖X dτ.

Step 2 (parameters ak, bk and function Fε) Operator A2

is such that ‖A2‖ML2(X,X) = 1, so that a2 = γ and that

Fε(X) = F (X) =
ω

1 − γX
,

which does note depend on ε as stated in remark 5.

Step 3 (solution σ) Solving F (σ) − σ F ′(σ) = 0 yields

σ =
1

2γ
.

Step 4 (solution ρ⋆) ρ⋆ =
1

4ωγ
.

Convergence criterion Following remark 5, the conver-
gence condition is given by

‖u‖U +
1

ω
‖G(xini)‖X < ρ⋆.



Convergence parameter ρ⋆ depends on the time interval T

(involved in ‖.‖X and ‖.‖U ). Figure 1 exhibits T 7→ ρ⋆ for
finite time intervals T = [0, T ].

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

T

ρ
⋆

Figure 1. Function T 7→ ρ⋆ computed for T ∈ [10−1, 102]
and parameters ν = 0.005, µ = 1 and h : z 7→ sin(πz).
Markers × and + correspond to choices made for
simulations (see section 4.3).

4.3 Numerical simulations

Numerical simulations are performed for ν = 0.005, µ = 1
and h : z 7→ sin(πz) (first eigenfunction of A). In this
case, it is easy to find that M =1 is the bound for γ. The
discretization steps used for the simulations are δz = 0.02
for the space and δt = 0.1 for the time. The convergence
is studied on T = [0, T ] with T = 5 (corresponding to
ρ⋆ ≈ 0.2783) and simulations are computed on a longer
duration (40 seconds) in order to reveal the behaviour
beyond the guanranteed limits.

The first simulation is performed for xini = 0 and the
constant input u(t) = 0.9ρ⋆ for t ≥ 0. Figure 2 displays
the reference in a© and the deviation between this ref-
erence and the solution computed using the expansion∑

m≥1 xm(t) truncated at order 6 with (5-6). The devi-

ation is globally lower than 0.01 (that is less than 3%) on
t ∈ [0, 40] and much lower than 0.001 on t ∈ [0, 5] on which
the convergence is guaranteed.

A comparison between the reference, the expansion trun-
cated at oder 6, and that truncated at order 1 (lin-
earized system) is detailed in figure 3 a© for the signal
f(t, 0.5). Figures 3 b© and 3 c© correspond to cases which
satisfy the convergence criterion in the same way (‖u‖U +
1
ω
‖G(xini)‖X = 0.9ρ⋆) but with non zero initial conditions.

More precisely, in figure 3 c©, u = 0 and 1
ω
‖G(xini)‖X =

0.9ρ⋆ where xini(z) is zero if |z − 1/2| > 1/8 and a (non
zero) constant otherwise. In figure 3 c©, the contribution of
the input and of the initial condition are equally balanced
in the convergence criterion, namely, ω‖u‖U/‖G(xini)‖X =
1. As expected, in all these cases, the accuracy of expan-
sions truncated at order 6 is fair at least for t < 5.

Figure 4 displays the results obtained with xini = 0 and
u(t) = 1.11ρ⋆ (corresponding to marker × in figure 1).
Notice that parameter 1.11ρ⋆ for T = 5 corresponds to the
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Figure 2. Simulation for xini = 0 and u(t) = 0.9ρ⋆: a©
is the reference which is computed using a standard
numerical version of A and a standard solver (ode15s
in Matlab), b© is the deviation between the reference
and the solution (5-6) truncated at order 6. These
simulations are associated to marker+ in figure 1.

convergence parameter ρ⋆ for T ≈ 3 (see figure 1). Hence,
the convergence of the expansion is guaranteed until 3 s.
This is actually in accordance with the results which are
plotted in figure 4. Moreover, for this input, the system
is no more stable, as exhibited by the reference. This
shows that, on this example, ρ⋆ gives an accurate bound
of the convergence in X (even if it does not always lead to
optimal bounds since inequality (13) is not guaranteed to
be optimal).

5. CONCLUSION

Computable convergence bounds of a series expansion
which yields exact mild solutions have been established, for
a class of infinite dimensional systems that are nonlinear in
state and affine in input. This series can be interpreted as
an extension of Volterra series. Our results bring a useful
contribution in all the applications where series expansion
with a guaranteed precision are needed (e.g. simulation
and model order reduction). It can also be used for the
characterization of stability domains of nonlinear systems
(using the L∞

(
R+

)
norm), as well as e.g. the optimiza-

tion of parameterized stabilizing controllers through the
maximization of the convergence parameter ρε.

The extension of these results to the multiple input case is
under study. In the near future we also plan to generalize
the above results to systems that are, in addition to the
above assumptions, nonlinear in input.
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Figure 3. Simulations of f(t, 0.5) for inputs and initial
conditions such that ‖u‖U + 1

ω
‖G(xini)‖X = 0.9ρ⋆:

a© xini = 0 (input only), b© ω‖u‖U/‖G(xini)‖X = 1
(equally balanced contributions of u and xini, a©
u = 0 (initial conditions only). These simulations are
associated to marker+ in figure 1.
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Appendix A. TECHNICAL LEMMA

Lemma 9. Let A(X) =

+∞∑

k=1

akXk and B(X) =

+∞∑

k=1

bkXk

be analytic functions at X = 0 with non-negative coef-

ficients. Let β ∈ R
∗
+. Define F (X) =

β + B(X)

1 − A(X)
and let

r ∈ R
∗
+∪{+∞} be the radius of convergence of F at x = 0.

Then, the following results hold:

(i) At x = 0, F is nonzero and analytic with nonnegative
Taylor coefficients.

(ii) Equation x F ′(x) − F (x) = 0 has either one solution
denoted σ (case 1) or zero solution (case 2), in ]0, r[.

(iii) There exists a unique function z 7→Ψ(z), analytic at
z = 0 such that Ψ(z) = z F

(
Ψ(z)

)
. Its convergence

radius ρΨ at z=0 is such that

(case 1) ρΨ = ρ⋆=
σ

F (σ)
, (A.1)

(case 2) ρΨ ≥ ρ⋆= lim
x→r−

x

F (x)
. (A.2)

Proof.
Assertion (i): If A = 0, (i) is straightforward. Otherwise,
A has at least one positive Taylor coefficients so that,
for all z ∈ C such that |z| < r, |A(z)| < A

∣∣z|
)

<

limx→r−(x) ≤ 1 and F (z) =
(
β + B(z)

) ∑+∞

n=0

(
A(z)

)n
,

which proves (i).
Assertion (ii): Define H(x) = x F ′(x) − F (x) for x ∈
[0, r[. If F is affine then H(x) = −β so that x F ′(x) −
F (x) = 0 has no solution. Otherwise, H is a strictly
increasing function on ]0, r[ from H(0) < 0 to ℓ =
limx→r− H(x) ∈ R∪ {+∞} since for all x ∈]0, r[, H ′(x) =
x F ′′(x) > 0. Therefore, if ℓ > 0, then x F ′(x) − F (x) = 0
has a unique solution on [0, r[ (case 1), otherwise (ℓ ≤ 0),
it has no solution (case 2).
Assertion (iii): In case 1, the hypotheses of the singular
inversion theorem (see e.g. proposition IV.5. and theo-
rem VI.6. in Flajolet and Sedgewick (2009)) are met, and
its application proves (iii). In case 2, (iii) is a direct con-
sequence of the analytic inversion lemma (see e.g. lemma
4.2. in Flajolet and Sedgewick (2009)).


