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Abstract— In this paper, the Volterra series decomposition
of a class of multiple input time-invariant systems, analytic in
state and affine in inputs is addressed. Computable bounds for
the non-local-in-time convergence of the Volterra series to a
trajectory of the system are given for infinite norms (Bounded
Input Bounded Output results) and for specific weighted norms
adapted to some “fading memory systems” (exponentially
decreasing input-output results). This work extends results
previously obtained for polynomial single input systems. Besides
the increase in combinatorial complexity, a major difference
with the single input case is that inputs may play different roles
in the system behavior. Two types of inputs (called “principal”
and “auxiliary”) are distinguished in the convergence process to
improve the accuracy of the bounds. The method is illustrated
on the example of a frequency-modulated Duffing’s oscillator.

I. INTRODUCTION
Volterra series is a functional series expansion of the solu-

tion of nonlinear controlled systems introduced by the Italian
mathematician Volterra [1]. This tool has been extensively
used in signal processing, control, electronics, mechanics,
acoustics, bio-medical engineering (etc) for modeling, iden-
tification and simulation purposes. There is a vast literature
concerning Volterra series (see e.g. [2], [3], [4], [5], [6], [7],
[8]) but only a few results on the convergence. These are
mainly existence results (see [9] for complex linear analytic
systems, [8], [10] for local-in-time results and [11] for fading
memory systems). More recently, results in the frequency
domain have been developed in [12], [13], results relying on
regular perturbations (that can be related to Volterra series)
are established in [14] and computable convergence radius
for quadratic and polynomial systems are given in [15], [16].

This paper focuses on the computation of guaranteed con-
vergence bounds for the input-to-state Volterra series expan-
sion of a class of multiple-input systems, excited by bounded
and exponentially decreasing signals. A major difference
with the single input case studied in [16] is that two types of
inputs, which play different roles in the convergence process,
are introduced to characterize the convergence domain.

The paper is organized into six sections. Section II defines
the notations, the functional setting and the class of systems
under consideration. Section III recalls some results on
Volterra series for single input systems. Section IV details the
main results of the paper on convergence bounds for multiple
input systems. In section V, these results are illustrated on
an example. Section VI gives conclusions and perspectives.
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II. GENERAL FRAMEWORK
A. Notations and functional setting

The following notations are introduced, where E, E1, . . . ,
EK (K≥2) and F are real normed vector spaces:

• L(E,F) is the vector space of continuous linear func-
tions from a E to F with norm ‖f‖L(E,F) =
supx∈BE

‖f(x)‖F where BE is the unit ball in E.
• ML(E1, . . . ,EK ,F) is the vector space of continuous

multilinear functions f : E1×. . .×EK → F where

‖f‖ML(E1,...,EK ,F) = sup
(x1,...,xK)∈BE1

×...×BEK

‖f(x1, . . . , xK)‖F.

• MLj1,...,jK
(E1, . . . ,EK ,F) is the concise notation for

ML(E1, . . . ,E1︸ ︷︷ ︸
j1

,E2, . . . ,E2︸ ︷︷ ︸
j2

, . . . ,EK , . . . ,EK︸ ︷︷ ︸
jK

,F).

Moreover, X=R
n (n∈N

∗) is a real vector space equipped
with a norm ‖.‖X and T denotes the time interval [0, T ] with
T > 0 or R+. For all λ∈R+ and m ∈ N

∗, we introduce:
• Xλ is the set of functions f such that t 7→ eλtf(t) ∈

L∞(
T,X

)
endowed with the norm

‖f‖Xλ
= sup

t∈T

(
eλt ‖f(t)‖X

)
.

• Uλ is defined like Xλ, replacing X by R.
• Vm

λ is the set of functions f : T × T
m → X such that

t 7→
(
τ 7→ eλt−λτ)f(t, τ)

)
∈ L∞(

T,L1
(
T

m,X
))

,
where ∀τ=(τ1, . . . , τm)∈T

m, τ=τ1+τ2+· · ·+τm.
This set is endowed with the norm defined

‖f‖Vm
λ

= sup
t∈T

(
eλt

∫

Tm

‖f(t, τ)‖X e−λτdτ
)
.

• VSλ is the set of the series (fm)m∈N∗ such that for
all m ∈ N

∗, fm ∈ Vm
λ .

Remark 1: Uλ is the set of bounded signals decreasing at
least like e−λt. If λ2>λ1≥0 then Uλ2

⊂Uλ1
⊆U0.

B. Systems under consideration
The systems under consideration are analytic in state x :

T→X, affine in input u : T→R
d and described on T by

ẋ = f(x, u) = Ax+B u+ P (x) +Q(x, u), (1)

with zero initial conditions x(0)=0, where A is a n×n real
matrix, B is a nonzero n×d real matrix, and where P and
Q are expressed as a series of homogeneous contributions

P (x)=

∞∑

k=2

Pk(x, . . . , x︸ ︷︷ ︸
k

), Q(x, u)=

∞∑

k=2

Qk(x, . . . , x︸ ︷︷ ︸
k−1

, u), (2)

with Pk ∈ MLk(X,X) and Qk ∈ MLk−1,1

(
X,Rd,X

)
.



Remark 2: If (x, u) is in the analytic domain of a function
g almost everywhere (a.e.), the output y=g(x, u) is bounded
a.e. Hence, we focus on the study of input-to-state relations.

III. RECALLS ON SINGLE INPUT SYSTEMS
This section recalls some results established in [16].

A. Definitions and formal solution
Definition 1 (Volterra series in VSλ): A causal SI-

system can be described by an input-to-state Volterra series
{hm}m∈N∗ ∈ VSλ if there exist ρ ∈ R

∗
+ such that for all

input u ∈ Uλ satisfying ‖u‖Uλ
< ρ and t ∈ T, the series

∀t ∈ T, x(t) =
∑

m∈N∗

∫

[0,t]m
hm(t, τ)

[
Π

m
u
]
(τ) dτ, (3)

with
[
Π

m
u
]
(τ) =

∏m
i=1 u(τi), is normally convergent in Xλ.

The function hm is called the kernel of order m.
Definition 2 (Index set and selection function): Let m ∈

N
∗ and K ∈ N

∗. The set M
K
m is defined by

M
K
m =

{
p ∈ (N∗)K

∣∣ p1 + · · · + pK = m
}
.

For all p∈M
K
m and for all k∈ [1,K]N, the selection function

Sk
p : T

m → T
pk is defined by, denoting τ = (τ1, τ2, . . . , τm),

Sk
p (τ) =

(
τp1+···+pk−1+1, τp1+···+pk−1+2, . . . , τp1+···+pk

)
.

Note that if K > m, then M
K
m = ∅.

Proposition 1 (Kernels recursive construction): Let the
family of kernels {hm}m∈N∗ be defined by h1 : T×T → X

h1(t, τ1) = 1R+
(t−τ1) eA(t−τ1)B, and by hm : T×T

m → X,

hm(t, τ) = 1R+
(t− max τ)

(∫ t

max τ

vm(t, θ, τ) dθ + wm(t, τ)

)

if m ≥ 2, where 1R+
denotes the Heaviside function and

vm(t, θ, τ) = eA(t−θ)
m∑

k=2

∑

p∈Mk
m

Pk

(
hp1

(
θ, S1

p(τ)
)
, . . .

. . . , hpk

(
θ, Sk

p (τ)
))
, (4)

wm(t, τ) = 1R+
(τm− max

1≤i<m
τi) eA (t−τm)

[ m∑

k=2

∑


q∈M
k
m

qk =1

Qk

(
hq1

(
τm, S

1
q (τ)

)
, . . . , hqk−1

(
τm, S

k−1
q (τ)

)
, 1

)]
. (5)

Then, the Volterra series (3) is a formal solution of system
(1-2).
B. Gain bound function and theoretical convergence result

Definition 3 (Gain bound function ϕλ): Let
{hm}m∈N∗ ∈ VSλ and ρ ∈ R+ be the convergence
radius of the formal series

∑
m∈N∗ ‖hm‖Vm

λ
Xm. If ρ > 0,

then the gain bound function ϕλ of {hm}m∈N∗ is defined
for all z ∈ C such that |z| < ρ by

ϕλ(z) =
∑

m∈N∗

‖hm‖Vm
λ
zm.

Theorem 1: Let {hm}m∈N∗ ∈ VSλ be such that ϕλ has a
non zero convergence radius ρ > 0. Then, the Volterra series
is convergent in Xλ for inputs such that ‖u‖Uλ

< ρλ. In this
case, x ∈ Xλ satisfies ‖x‖Xλ

≤ ϕ
(
‖u‖Uλ

)
<∞.

C. Computable results and guaranteed error bounds
In [16], the following results (with examples) were pre-

sented in the case where P , Q are polynomials, T = R+, A is
Hurwitz with −a = max

(
<e

(
specA

))
< 0, and λ ∈ [0, a).

Proposition 2 (Coefficients κk,λ and norm of h1): Let
β > 0 be such that for all t ∈ T,

∥∥eAt
∥∥
L(X,X)

≤ β e−at.
Then, the coefficients defined by, for all k ∈ N

∗,

κk,λ = sup
t∈T

(
eλt

∫ t

0

∥∥eA(t−θ)
∥∥
L(X,X)

e−kλθ dθ

)
(6)

are finite and satisfy 0 < κk,λ ≤ κ1,λ ≤ β
a−λ . Moreover,

h1 ∈ V1
λ and ‖h1‖V1

λ
≤ β

a−λ ‖B‖L(R,X).
Definition 4: The function Fλ is formally defined by

Fλ(X) =

‖h1‖V1
λ

+

deg(Q)∑

k=2

Qk X
k−1

1 −

deg(P )∑

k=2

Pk X
k−1

,

with Pk =κk,λ

∥∥Pk

∥∥
MLk(X,X)

and Qk =κk,λ

∥∥Qk

∥∥
MLk−1,1(X,R,X)

.
Theorem 2 (Lower bound for the convergence radius):

The family {hm}m∈N∗ defined in proposition 1 belongs to
VSλ. Moreover, the convergence radius of its gain bound
function is greater than ρ?

λ, where ρ?
λ > 0 is given by

ρ?
λ = lim

x→+∞
x

Fλ(x)
, if Fλ in (4) is affine (7)

ρ?
λ =

σλ

Fλ(σλ)
, otherwise. (8)

In (8), σλ is the unique solution of Fλ(σ) − σF ′
λ(σ) = 0

on ]0, R[ where R is the convergence radius of Fλ at x = 0.
Theorem 3 (Truncation error bound): Assume that Fλ is

not affine. Let σλ and ρ?
λ be defined as in theorem 2. For

all M ∈ N
∗, let VMx(t) =

M∑

m=1

∫

[0,t]m
hm(t, τ)

[
Π

m
u
]
(τ) dτ

denote the finite M -order partial sum of the Volterra series.

Then, for all u ∈ D?
λ,

∥∥x−VMx
∥∥
Xλ

≤ σλ

(
‖u‖Uλ

/ρ?
λ

)M+1

1 − ‖u‖Uλ
/ρ?

λ

.

IV. MULTIPLE INPUT ANALYTIC SYSTEMS
In this section, results of section III are extended to

multiple-input (MI) analytic-in-state systems. Most of the
definitions and key points can be straightforwardly general-
ized (see IV-A and IV-B). However, when some columns of
matrix B are zero, the corresponding inputs do not influence
the system as long as other inputs are zero (section IV-
C). This defines two types of inputs (called auxiliary and
principal) which play different roles in the convergence
process and in the results and proofs given below (see IV-D).

In the sequel, the number of inputs is d ≥ 2.

A. Definitions and formal solution
Definition 5: Let VSd

λ be the set of the series {fm}m∈N∗
d

indexed by the multiple orders m belonging to N
∗
d = N

d\{0}
and such that, for all m ∈ N

∗
d,

fm ∈ Vm
λ , denoting m = m1 + · · · +md.



A causal MI-system can be described by an input-to-state
Volterra series {hm}m∈N∗ ∈ VSd

λ if there exist a non empty
domain D ⊆ (Uλ)d such that for all input u ∈ D, the series

∀t ∈ T, x(t) =
∑

m∈N∗
d

∫

[0,t]m
hm(t, τ)

[
Π

m
u
]
(τ) dτ, (9)

with
[
Π

m
u
]
(τ) =

d∏

i=1

mi∏

j=1

ui(τm1+···+mi−1+j), is normally
convergent in Xλ.

Definition 6 (Multiple-index set and selection function):
Let m ∈ N

∗
d and K ∈ N

∗. The set M
K
m is defined by

M
K
m =

{
p ∈ N

d×K
∣∣∣ all columns of p belong to N

∗
d

and their sum equals to m
}
.

Moreover, for all p ∈ M
K
m and for all k ∈ [1,K]N, the

selection function is defined by

Sk
p : τ ∈ T

m → (τ`1 , . . . , τ`L
) ∈ T

L

where L =
∑d

i=1 pi,k and the sequence of indexes `1, . . . , `L
is given by

Λ1,k+1 , Λ1,k+2 , . . . . . . , Λ1,k+p1,k ,
Λ2,k+1 , Λ2,k+2 , . . . . . . , Λ2,k+p2,k ,

...
Λd,k+1 , Λd,k+2 , . . . . . . , Λd,k+pd,k ,

denoting Λi,k =

i−1∑

i′=1

K∑

k′=1

pi′,k′ +

k−1∑

k′=1

pi,k′ .

Note that, in this sequence, the i-th row is empty if pi,k = 0.
But, the complete sequence is not empty since L ≥ 1 from
the definition of M

K
m. Note also that if K>m, then M

K
m =∅.

Proposition 3 (Kernels recursive construction): For all
n ∈ [1, d]N, let en ∈ R

d be the vector composed of
zeros except the n-th coordinate which equals to 1, so
that {e1, . . . , ed} is the canonical basis of R

d. Moreover,
let the family of kernels {hm}m∈N∗

d
be defined by

hen
: T × T → X, hen

(t, τ1) = 1R+
(t− τ1) eA(t−τ1)B en ,

if m = en with n ∈ [1, d]N, and by hm : T× T
m → X,

hm(t, τ) = 1R+
(t−max τ)

(∫ t

max τ
vm(t, θ, τ) dθ+wm(t, τ)

)
,

if m ≥ 2, where, denoting p∗,k the k-th column of p,

vm(t, θ, τ) = eA(t−θ)
m∑

k=2

∑

p∈Mk
m

Pk

(
hp∗,1

(
θ, S1

p(τ)
)
, . . .

. . . , hp∗,k

(
θ, Sk

p (τ)
))
, (10)

wm(t, τ) = 1R+
(τm − max

1≤j<m
τj)

[
m∑

k=2

∑


q∈M
k
m

q∗,k =1

eA
(
t−Sk

q (τ)
)

Qk

(
hq∗,1

(
Sk

q (τ), S1
q (τ)

)
, . . . , hq∗,k−1

(
Sk

q (τ), Sk−1
q (τ)

)
, q∗,k

)]
. (11)

Then, the Volterra series (9) is a formal solution of system
(1-2).

B. Gain bound function and theoretical convergence results
Definition 7 (Multi-variate gain bound function ϕλ): Let

{hm}m∈N∗ ∈ VSd
λ. Suppose that there exists a neighborhood

V ⊆ C
d of 0 such that the formal multi-variate series

(X1, . . . , Xd) 7→
∑

m∈N∗‖hm‖Vm
λ
Xm1

1 . . . Xmd

d is normally
convergent. Then, the gain bound function ϕλ is defined by

ϕλ(z) =
∑

m∈N∗
d

‖hm‖Vm
λ

d∏

i=1

zmi .

Theorem 4: For all input u belonging to

Υ(V )=
{
u∈Ud

λ

∣∣ (
‖u1‖Uλ

, . . . , ‖ud‖Uλ

)
∈V ∩ R

d
+

}
, (12)

the Volterra series is convergent in Xλ and
‖x‖Xλ

≤ ϕλ

(
‖u1‖Uλ

, . . . , ‖ud‖Uλ

)
<∞.

Proof: Let u ∈ Υ(V ). Then, z=
(
‖u1‖Uλ

, . . . , ‖ud‖Uλ

)

belongs to V and ϕλ

(
‖u1‖Uλ

, . . . , ‖ud‖Uλ

)
< ∞. Now, for

all m ∈ N
∗
d,

sup
t∈T

(
eλt

∥∥
∫

[0,t]m
hm(t, τ)

[
Π

m
u
]
(τ) dτ

∥∥
X

)

≤ sup
t∈T

(
eλt

∫

[0,t]m

∥∥hm(t, τ)
∥∥

X
e−λτ

d∏

i=1

(
‖ui‖Uλ

)mi
dτ

)

≤ ‖hm‖Vm
λ

d∏

i=1

(
‖ui‖Uλ

)mi
.

Hence, the series
∑

m∈N∗
d

∫
[0,t]m

hm(t, τ)
[
Π

m
u
]
(τ) dτ con-

verges normally in Xλ to a limit x such that

‖x‖Xλ
= sup

t∈T

(∥∥∥
∑

m∈N∗
d

∫

[0,t]m
hm(t, τ)

[
Π

m
u
]
(τ) dτ

∥∥∥
X

)
≤

∑

m∈N∗
d

‖hm‖Vm
λ

d∏

i=1

(
‖ui‖Uλ

)mi≤ ϕλ

(
‖u1‖Uλ

, . . . , ‖ud‖Uλ

)
.

C. Principal and auxiliary inputs
Hypothesis 1: The system (1-2) is such that t 7→ exp(At)

belongs L1(T,Rn×n), that is: A is supposed to be Hurwitz
if T = R+ and there is no assumption on A if T is a finite
interval [0, T ]. Then, we assume that λ ∈ R+. Moreover, if
T = R+, then λ < a where −a = max

(
<e

(
specA

))
< 0.

Denote {e1, . . . , ed} the canonical basis of R
d. For all

n ∈ [0, d]N, the kernel hen
given in proposition 3 belong

to V1
λ and is zero if B en = 0. We assume that the inputs

are sorted so that non-zero columns of B come first and
are indexed from 1 to dπ (dπ ≥ 1 since B 6= 0) and the
remaining dα null columns (if any) are indexed from dπ +1
to d. Hence, whenever the first dπ inputs are set to zero,
the system will remain at the null steady-state, even if the
dα last inputs are nonzero. These two types of inputs play
different roles in the convergence of the Volterra series. They
are called principal for the first ones (index π), and auxiliary
for the second ones (index α).

The effect on the convergence will be accounted for
through a ratio γ between the norms of auxiliary and
principal inputs. This ratio appears in (14) below.



Definition 8 (Function Fλ,γ): Define the dπ× d matrix
χ

π
=

(
Idπ

, 0dπ,dα

)
, the dα×d matrix χ

α
=

(
0dα,dπ

, Idα

)

and the d×d matrices Wπ =χ
π

T (diagω)−1χ
π

and Wα =

χ
α

T χ
α

where the vector ω=
(
ω1, . . . , ωdπ

)T is chosen such
that

∀n ∈ [1, dπ]N, ωn ≥ ‖hen
‖V1

λ
. (13)

For all γ ∈ R+, the function Fλ,γ is formally defined by

Fλ,γ(X) =

1 +
+∞∑

k=2

pk X
k−1 + γ

+∞∑

k=2

ak X
k−1

1 −
+∞∑

k=2

Pk X
k−1

, (14)

where Pk = κk,λ

∥∥Pk

∥∥
MLk(X,X)

and, for ζ = π or α,
defining Q̃ζ

k(x1, . . . , xk−1, u) = Qk

(
x1, . . . , xk−1,Wζ u

)
,

pk = κk,λ

∥∥Q̃π
k

∥∥
MLk−1,1(X,Rd,X)

,

ak = κk,λ

∥∥Q̃α
k

∥∥
MLk−1,1(X,Rd,X)

.

Remark 3: If there is no auxiliary input (dα = 0), then
ak = 0 and Fλ,γ does not depend on γ.
D. Computable results and guaranteed error bounds

Theorem 5 (Convergence subset): Let λ ∈ R+ be such
that hypothesis 1 is satisfied. Let γ ∈ R+. Then, the family
{hm}m∈N∗

d
defined in proposition 3 belongs to VSd

λ. Let
R ∈ R

∗
+ ∪ {+∞} be the convergence radius of Fλ,γ at

x = 0. Equation xF ′
λ,γ(x) − Fλ,γ(x) = 0 has either one

solution denoted σλ,γ (case 1) or zero solution (case 2), in
]0, R[. Let ρ?

λ,γ > 0 be defined by

(case 1) ρ?
λ,γ =

σλ,γ

Fλ,γ(σλ,γ)
, (15)

(case 2) ρ?
λ,γ = lim

x→R−

x

Fλ,γ(x)
. (16)

Then, the Volterra series is convergent in Xλ for all input u
belonging to Υ(Vλ) where Vλ =

⋃
γ∈R

Vλ,γ and

Vλ,γ =

{
z∈ C

d
∣∣∣

dπ∑

n=1

ωn |zn| < ρ?
λ,γ

and
d∑

n=dπ+1

zn = γ

dπ∑

n=1

ωn zn

}
, (17)

and ω is given in (13).
The proof is detailed in appendix B.

Theorem 6 (Truncation error bound): Let M ∈ N
∗ and

consider the finite M -order partial sum of the Volterra series

SMx(t) =
∑



m ∈ N
?
d

m ≤ M

∫

[0,t]m
hm(t, τ)

[
Π

m
u
]
(τ) dτ.

Let γ∈R
∗
+, u∈Υ(Vγ), β=ρ?

λ,γ

(
1

dπω1
, . . . , 1

dπωdπ
,

dα︷ ︸︸ ︷
γ
dα
, . . . , γ

dα

)T.

In case 1 (∃!σλ,γ< +∞), if sup
1≤n≤d

‖un‖Uλ

βn
=U < 1, then

∥∥x− SMx
∥∥
Xλ

≤ σλ,γ U
M+1/(1 − U).

The proof is detailed in appendix C.

V. AN EXAMPLE
To illustrate these results, an example is presented in the

BIBO case (λ = 0). Let a ∈]0, 1[, ε ∈ R
∗
+, and consider the

system governed by

∀t > 0, ÿ + 2aẏ + (1 + εy2 + u2) y = u1, (18)

with zero initial conditions y(0) = 0, ẏ(0) = 0 and where
the input is u = [u1, u2]

T . This system defines a damped
Duffing oscillator where u1 is an exciting signal and u2 can
be interpreted as a frequency-modulation signal. It takes the
form (1-2) where X = R

2 is associated with the euclidean
norm, the state is x = [y, ẏ]T , d = 2 and

A =

(
0 1
−1 −2a

)
, B =

(
0 0
1 0

)
,

P (x) =

(
0

−εx3
1

)
, Q(x, u) =

(
0

−x1u2

)
,

so that max
(
<e

(
spec(A)

))
= −a < 0. Following sec-

tion IV-C, input u1 is principal and u2 is auxiliary.
In definition 8, straightforward computations yield for all

k ∈ N
∗, pk = 0, a2 = κ2,0, P2 = εκ2,0 and ak = Pk = 0 if

k 6=2. In this example, P (x) and B1 are collinear (P (x)=
−εx3

1B1) so κ2,0 can be replaced by ν=‖he1
‖V1 (which is

smaller) in the proof of theorem 5. This leads to

F0,γ(X) =
1 + γνX

1 − ενX2
.

Then, σ0,γ is the positive root of 2εγν2X3+3εν X2−1 and

ρ?
0,γ = σ0,γ

1 − εν (σ0,γ)
2

1 + γν σ0,γ
. (19)

For γ = 0, (19) yields ρ?
0,γ = 2

3
√

3νε
and, for γ → +∞,

σ0,γ ∼(2εν2γ)−1/3 and ρ?
0,γ ∼(νγ)−1. From theorem 5, for

a given γ ≥ 0, the Volterra series converges if (‖u1‖, ‖u2‖)
belongs to the line segment

‖u1‖Uλ
<
ρ?
0,γ

ω
and ‖u2‖Uλ

= γω ‖u1‖Uλ
,

for ω ≥ ‖he1
‖V1

0
. Hence, the union of all these seg-

ments is the region under the curve described by (x, y) =
(ρ?

0,γ/ω, γρ
?
0,γ) for γ ≥ 0. Figure 1 shows such curves for

the system with parameters a = 0.65 and ε = 0.1.
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Fig. 1. Convergence domain boundaries for T = [0, T ] with T ∈
{1, 2, +∞}. For T = 1, ν = ‖he1

‖
V1
0
≈ 0.63. For T = 2, ν ≈ 1.09.

For T =+∞, ν≈1.69. In each case, we have chosen ω=ν and the curve
(x, y)=(ρ?

0,γ
/ω, γρ?

0,γ
) is parameterized by γ∈R+.



Time simulations based on the first seven Volterra kernels
are shown in figure 2. Curve 1 corresponds to × in figure 1,
for which the Volterra series expansion is convergent for any
time horizon T . In practice, an accurate approximation is
obtained at order 3. Curve 2 corresponds to + in figure 1.
From figure 1, the convergence is guaranteed for T =1 but
neither for T = 2 nor T = +∞. In figure 2, the divergence
seems to appear before order 7 for T >6.
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Fig. 2. Curve 1 (top): u1(t) = 0.2 and u2(t) = −0.2. Curve 2 (bottom):
u1(t) = 1 and u2(t) =−0.6. These curves 1 and 2 are associated to the
markers × and + in figure 1, respectively.

VI. CONCLUSION

Introducing an adequate functional setting, computable
bounds of the convergence radius and of truncation errors
of Volterra series expansions have been proposed for fading
memory MI systems, analytic in state and affine in input. Re-
sults have been illustrated on one several example including
one principal input and one auxiliary input.

Extensions to systems that are (in addition to the above
assumptions) analytic in input and have nonzero initial
conditions will be studied. Another task will consist of gener-
alizing these results to some classes of infinite dimensional
systems, such as boundary and distributed controlled PDE
systems solved using Volterra series (see e.g. [17], [18]).

APPENDIX

A. Lemma 1 and proof
Lemma 1: Let A(X)=

∑+∞
k=1 akX

k, B(X)=
∑+∞

k=1 bkX
k

be analytic functions at X=0 with non-negative coefficients.
Let β ∈ R

∗
+. Define F (X) =

β +B(X)

1 −A(X)
and let r ∈ R

∗
+ ∪

{+∞} be the convergence radius of F at x=0. Then,
(i) At x = 0, F is nonzero and analytic with nonnegative

Taylor coefficients.
(ii) Equation xF ′(x) − F (x) = 0 has either one solution

denoted σ (case 1) or zero solution (case 2), in ]0, r[.
(iii) There exists a unique function z 7→ Ψ(z), analytic at

z = 0 such that Ψ(z) = z F
(
Ψ(z)

)
. Its convergence

radius ρΨ at z = 0 is such that ρΨ = ρ? = σ
F (σ) in

case 1 and ρΨ ≥ ρ? = limx→r−
x

F (x) in case 2.
Proof: (i): If A = 0, (i) is straightforward. Otherwise,

A has at least one positive Taylor coefficients so that, for all
z ∈ C such that |z| < r, |A(z)| < A

∣∣z|
)
< limx→r−(x) ≤ 1

and F (z) =
(
β +B(z)

) ∑+∞
n=0

(
A(z)

)n, which proves (i).
(ii): Define H(x) = xF ′(x) − F (x) for x ∈ [0, r[. If F is
affine then H(x) = −β so that xF ′(x) − F (x) = 0 has no
solution. Otherwise, H is a strictly increasing function on
]0, r[ from H(0) < 0 to ` = limx→r− H(x) ∈ R ∪ {+∞}
since for all x ∈]0, r[, H ′(x) = xF ′′(x) > 0. Therefore, if
` > 0, then xF ′(x) − F (x) = 0 has a unique solution on
[0, r[ (case 1), otherwise (` ≤ 0), it has no solution (case 2).
(iii): In case 1, the hypotheses of the singular inversion
theorem are met (see [19, prop. IV.5. and th. VI.6. ]), and its
application proves (iii). In case 2, (iii) is a direct consequence
of the analytic inversion lemma (see [19, lemma 4.2.]).

B. Proof of theorem 5
Step 1: We prove by induction that, ∀m ∈ N

∗
d, hm belongs to

Vm
λ and satisfies ‖hm‖Vm

λ
≤ψm where ψen

=ωn≥‖hen
‖V1

λ
,

if 1≤n ≤d, and where, for all m such that m ≥ 2,

ψm ≤
m∑

k=2

[
Pk

∑

p∈Mk
m

k∏

i=1

ψp∗,i
+ pk

∑


q ∈ M
k
m

q∗,k ∈{e1, . . . , edπ}

(ωTχ
π
q∗,k)

k−1∏

i=1

ψq∗,i

+ ak

∑


q ∈ M
k
m

q∗,k ∈{edπ+1, . . . , ed}

k−1∏

i=1

ψq∗,i

]
, (20)

recalling that q∗,k denotes the k-th column of matrix q.
The details of this step are similar to [16, (th. 2, step 1)]

in which indexes are replaced with multiple indexes and Qk

is split as follows, using definition 8,
• if q∗,k is one of the first dπ vectors of the canonical

basis (associated to a principal input), then

Qk(. . . , q∗,k) = (ωT χ
π
q∗,k) Q̃π

k (. . . , q∗,k),

• if q∗,k is one of the last dα vectors of the canonical
basis (associated to a principal input), then

Qk(. . . , q∗,k) = Q̃α
k (. . . , q∗,k).



Step 2: Consider the multi-variate formal series defined, for
X = (X1, . . . , Xd)

T, by Ψ(X) =
∑

m∈N?
d

ψmX
m (generating

function of ψm) where Xm = Xm1

1 Xm2

2 . . . Xmd

d . The
multivariate formal series

R(X) =

+∞∑

k=2

[
Pk

(
Ψ(X)

)k
+ (ωTχ

π
X)pk

(
Ψ(X)

)k−1

+(ζTX) ak

(
Ψ(X)

)k−1
]
,

with ζ = (0, . . . , 0︸ ︷︷ ︸
dπ

, 1, . . . , 1︸ ︷︷ ︸
dα

)T , satisfies

R(X) =
∑



m ∈ N
?
d

m≥2

ψmXm = Ψ(X) − ωTχ
π
X. (21)

Let γ ∈ R
+. Applying the change of variables

X −→ X̃ and denoting Ψ̃(X̃) = Ψ(X) where
X̃=

(
ωTχ

π
X, ζTX, X2, . . . , Xdπ

, Xdπ+2, . . . , Xd

)
, equa-

tion (21) can be rewritten

X̃1

[
1 +

+∞∑

k=2

pk

(
Ψ̃(X̃)

)k−1

+ γ

+∞∑

k=2

ak

(
Ψ̃(X̃)

)k−1
]

+
(
X̃2 − γX̃1

) +∞∑

k=2

ak

(
Ψ̃(X̃)

)k−1

= Ψ̃(X̃)

[
1 −

+∞∑

k=2

Pk

(
Ψ̃(X̃)

)k−1
]
.

In the quotient space R[[X̃]]/(X̃2 − γX̃1), this equation
becomes Ψ̃(X̃) = X̃1 Fλ,γ

(
Ψ̃(X̃)

)
.

From lemma 1 (iii), let Ψ̃λ,γ be the unique function, ana-
lytic at x = 0, such that Ψ̃λ,γ(x) = x Fλ,γ

(
Ψ̃λ,γ(x)

)
, with

convergence radius ρλ,γ . Then, from definition (17),

∀z ∈ Vλ,γ , Ψ(z) = Ψ̃λ,γ(ωTχ
π
z), (22)

where Vλ,γ is defined by (17). Since ‖hm‖Vm
λ

≤ ψm and
from definition 7, Ψ is a majorizing function of ϕλ so that
the Volterra series is convergent in Xλ.

C. Proof of theorem 6
Let u ∈ Υ(Vγ) be such that U < 1. Define a =(
‖u1‖BR(λ), . . . , ‖ud‖BR(λ)

)T

. Then obviously, for all n ∈

[1, d]N, an ≤ βn U . Therefore, for all N ∈ N
∗,

∑

m∈N?
d

m=N

ψm am ≤ UN
∑

m∈N?
d

m=N

ψm βm. (23)

Moreover,
d∑

n=dπ+1

an = γρ?
λ,γ and (ωTχ

π
β) = ρ?

λ,γ so that

d∑

n=dπ+1

βn = γ(ωTχ
π
β) and (ωTχ

π
β)U < ρ?

λ,γ . Therefore,

from (22), function U 7→ Ψ(β U) is analytic on ]− 1, 1[ and
Ψ(β U) = Ψ̃λ,γ(ωTχ

π
β U) = Ψ̃λ,γ

(
ρ?

λ,γ U
)
. Identifying

the Taylor coefficients (w.r.t. U ) of the left and right members
of the latter equation shows that, for all positive integer N ,∑

m∈N?
d

m=N

ψm βm = [Ψ̃λ,γ ]N (ρ?
λ,γ)N , where [Ψ̃λ,γ ]N denotes

the Taylor coefficient of Ψ̃λ,γ at order N . Replacing in (23),
it comes

∑

m∈N?
d

m=N

ψm am ≤ [Ψ̃λ,γ ]N (ρ?
λ,γ U)N and it follows

that
∥∥x− VMx

∥∥
Xλ

≤
∑

m∈N?
d

m≥M+1

ψma
m≤

+∞∑

n=M+1

[Ψ̃λ,γ ]n(ρ?
λ,γU)n.

In case 1 (see [16, proof of th.3], Cauchy estimates yield
[Ψ̃λ,γ ]n(ρ?

λ,γU)n ≤ σλ,γU
n so that

∥∥x − VMx
∥∥
Xλ

≤

σλ,γ
UM+1

1 − U
< +∞, which concludes the proof.
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[18] T. Hélie and D. Roze. Sound synthesis of a nonlinear string using
volterra series. Journal of Sound and Vibration, 314:275–306, 2008.

[19] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge
University Press, 2009.


