
On the 1D wave propagation in wind instruments
with a smooth profileThomas Hélie and Thomas HézardIRCAM-CNRSUMR9912-UMPC, 1 plae Igor Stravinsky, 75004 Paris, Frane.Rémi MignotInstitut Langevin, ESPCI ParisTeh, 10, rue Vauquelin, 75005 Paris, Frane.Denis MatignonUniversite de Toulouse, ISAE 10, av. E. Belin. BP 54032, 31055 Toulouse Cedex 4, Frane.SummaryDue to the simple properties of plane waves, non lossy straight pipes and their onatenation havebeen extensively used to ompute aousti transfer funtions from bore pro�les of wind instruments(input impedane, transmittane, et). This is also the ase for real-time simulations: introduingtravelling waves has led to the well-known digital waveguides formalism. Nevertheless, suh dison-tinuous onatenations involve impulse responses omposed of pulse trains of Dira measures, whihare struturally unrealisti for smooth bores. Similarly, ontinuous but non smooth approximationsbased on onial segments involve disontinuous pulse trains of damped exponentials. This invitedpaper presents an overview of results that have been elaborated to weaken suh artifats and in-rease realism, while preserving most of the worthwhile properties of straight pipes. The key stepsare based on the use of: (1) a re�ned 1D wave equation (urvilinear horn equation) based on an isobarmap reti�ation; (2) smooth (C1-regular) juntions of onstant-�ared aousti pipes; (3) a radiationmodel whih is ompatible with (1); (4) viso-thermal losses. It allows to reover a standard matrixformalism to ompute impedanes and transmittanes of smooth bore parts that yield aurate re-sults. It still make de�nitions of travelling waves and digital waveguide-like strutures possible for thesimulation. Finally, by representing smooth bores by very few �ared segments (ompared to manystraight or onial pipes), suh desriptions (with a few parameters) are an interesting alternative tooptimize wind instrument bores w.r.t. some riteria (target shape or impedane, harmoniity, et).PACS no. 43.75.Fg, 43.75.Ef, 43.20.Mv1. IntrodutionThis paper fouses on some possible re�nements of1D aousti models in order to ompute aurate in-put impedanes for wind instrument resonators, andespeially, smooth horns. It is organized as follows.In setions 2 to 5, we reall some appropriate modelsand investigate on the in�uene of (� 2) the hoieof the wave-shape assumption in the horn equation,(� 3) the geometri regularity at juntions in piee-wise segment modelling, (� 4) the radiation impedaneand (� 5) viso-thermal losses. These studies are illus-trated on an aademi horn pro�le. Setion 6 presentsresults on a trombone bell, the pro�le and the inputimpedane of whih have been measured.() European Aoustis Assoiation

Along all this paper, physial onstants are the airmass density ρ0 = 1.18Kg.m−3 and the sound eler-ity c0 = 346.63, dedued from the alibration of theimpedane sensor [1℄ for the measured trombone bell.The aademi �ared pro�le R† used in setions 2-5 is hosen suh that boundaries oordinates (z,R)mathes with those of the trombone bell (z0 =0, R⋆
0 =

10.4 × 10−3m, z⋆ =568 × 10−3m, R⋆ =110 × 10−3m),with a null slope at z=0. A simple polynomial modelwhih satis�es these properties is given by
R† : z ∈ [0, z⋆] 7→ R0 +

(
R⋆ − R0

) ( z

z⋆

)10

. (1)2. Horn equation and isobars2.1. Uni-dimensional models and geometryThe �rst uni-dimensional model of the lossless aous-ti propagation in axisymmetri pipes with pro�le
z 7→ R(z) is due to [2, 3℄. It is usually alled �hornequation� or �Webster equation� [4℄ and is given by
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z + 2R′(z)
R(z) ∂z]p(z, t) inequation 2 (A = πR2 is the bore setion area).This model whih assumes planar waves has beenextensively investigated [5℄ and its hypotheses peri-odially revised: spherial wavefronts orthogonal tothe bore are assumed in [6, 7℄, the quasi-spheriity isexperimentally on�rmed in the low frequeny rangefor horns in [8℄, ellipsoidal wavefronts are proposedin [9℄. Moreover, it has been proved in [10℄ that everyone-parameter aousti �elds obey a horn equation forsome adapted spae variables.For many wind instruments, transverse modes [11℄only appear as small perturbations on a signi�ant fre-queny range. So, re�ning horn equations makes senseand an apply to the derivation of aurate harater-isti immittanes (input impedane, transmittane,et) and real-time sound synthesis purposes.2.2. Quasi-spheriity and urvilinear absissaIn this paper, we onsider the model detailed in [12℄,based on an exat isobar wave equation (step aO)from whih an assumption on isobar shapes (quasi-spheriity at order 2) is inferred and used (step bO).Step aO For axi-symmetri problems, writing thewave equation [

∂2
r − 1

r ∂r +∂2
z − 1

c2 ∂2
t

]
p(z, r, t) = 0 ina reti�ed isobar map, by using a oordinate trans-formation z = f(s, u, t), r = g(s, u, t) suh that

p(f(s, u, t), g(s, u, t), t) = p̃(s, t) does not depend on
u (s indexes isobars Is,t, f. Figure 1 aO)), yields theisobar wave equation [

α∂2
s+β∂s+γ∂s∂t− 1

c2
0

∂2
t

]
p̃(s, t) = 0where α, β, γ depend on f, g and their derivatives.The hange of oordinates an be hosen suh that:(i) u and s are orthogonal; (ii) f(s,−u, t)= f(s, u, t),

g(s,−u, t) =−g(s, u, t) (symmetry w.r.t. the axis de-sribed by u=0); (iii) u=1 maps to the (motionless)bore pro�le desribed by known (time-invariant) fun-tions f(s, u = 1, t) = W(s), g(s, u = 1, t) = R(s).
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Figure 2. Comparisons on the referene pro�le.Using (iii), omputations yield α(s, 1, t) =√(
W ′(s)

)2
+

(
R′(s)

)
)2, γ(s, 1, t) = 0. But β(s, 1, t)annot be evaluated from the bore pro�le (W,R)alone: it requires an additional information on the�rst variations of the �eld lines near the bore (∂ufand ∂ug at (s, u = 1, t)). Thus, β is responsible forthe oupling between the propagation of the pressurelevel of isobars and their geometry.Step bO An assumption providing this deouplinginformation is looked for, preserving the properties:(P1a) Isobars are (i) planes in straight pipes, (ii) spherialin ones, (iii) orthogonal to the wall, (iv) quasi-spherial inhorns [8℄, and (v) are not required to be time-invariant.The simplest hoie is given by (f. Figure 1 bO):(H1) Near the wall (u =1), an isobar deviates from its tan-gent spherial approximation slower than a parabola, that is,

∂k
uζ(s, 1, t)=0 for k=0 (ontat), k=1 (tangeny) and k=2(assumption) for the relative deviation ζ(s, u, t)= ρ(s,u,t)

ρ⋆(s) −1.This yields β(s, 1, t) = 2α(s, 1, t)R
′(s)

R(s) . As a result:(R1) Under hypothesis (H1), horn equations 2-3 are reoveredwith (
s,R(s)

) in plae of (
z,R(z)

), if α(s, 1, t) = 1, that is,if s=ℓ is the urvilinear absissa measuring the pro�le length:
ℓ = L(z) =

∫ z

0

√
1 +

[
R′(z)

]2
dz, R(ℓ)=R

(
L−1(ℓ)

)
. (4)Similarly, Euler equation for plane waves is reovered in whih

z is replaed by ℓ (f. [12, (53)℄):
ρ0∂tv = −∂ℓp (v is the partile veloity). (5)2.3. Comparisons between z- and ℓ-modelsChanging the spae variable in the horn equa-tion makes some substantial di�erenes appear.Additionally to (P1a), straightforward properties are:(P1b) (i) travel lengths are inreased for the urvilinearhorn model ompared to the original one (f. Figure 2);(ii) |R′(ℓ)| ≤ 1 (sine R′

(
L(z)

)
= R′(z)√

1+R′(z)2
); (iii) R′(ℓ) = 1orresponds to a vertial slope in the z-spae; (iv) if a pro�le

z 7→ R(z) ends with an in�nite derivative, the urvilinear hornequation operates a natural onnetion with spherial waves.
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R
rather than Υz = R′′

R . Itan be mapped to a loal-in-spae uto� frequeny
f⋆ = c0

2π

√
Υ (aseΥ ≥ 0), below whih travellingwaves beome evanesent [8℄. Figure 2 exhibits that:(P1) The urvilinear ℓ-model makes Υ and f⋆ lower than forthe axial z-model. It also modi�es their variation in spae.Finally, onsidering ℓ-models rather than z-modelsmodi�es (1) the equivalent pipe length, (2) the valuesof Υ, (3) the shapes of the pipe and Υ, and so, (4) theimmittanes peak loations, (5) the uto� frequeny.3. Constant-�ared aousti pipesThe main interests of 1D propagation models are that:(1) immittanes an be omputed using the transfermatrix method and (2) if a stable travelling wave de-omposition is available, digital waveguides formalismmakes real-time sound synthesis possible.3.1. Transfer matrix methodConsider a bore segment governed by equations 5 and3 with onstant parameter Υ ≥ 0 on [a,b[ (Υ = 0 forstraight and onial pipes, Υ > 0 for �ared pipes).Denote L=b−a and Xℓ(s)=

[
P (ℓ, s) , U(ℓ, s)

]Twhere
P and U are Laplae transforms of signals t 7→ p(ℓ, t)and t 7→ πR(ℓ)2v(ℓ, t) (assumed to be zero for t < 0),respetively. Straightforward omputations lead to

Xb(s) = Tb,a(s)Xa(s), (6)where Tb,a has determinant one and is given by
Tb,a(s) = diag( L

R(b−) ,
πR(b−)

ρ0s

)
Mb,a(s) diag(R(a+)

L , ρ0s
πR(a+)

)
,and [Mb,a(s)]p,q =

(
Vp,q(s)

)T
Φ

(
LΓ(s)

) with Φ(z) =

[cosh z , sinh z
z ]T , V11 = [1 , σ(a+)]T , V12 = [0 , −1]T ,

V21(s) = [σ(b−)− σ(a+) , σ(a+)σ(b−) −
(
LΓ(s)

)2]T ,
V22 = [1 , −σ(b−)]T , with ℓ ∈ [a, b[7→ σ(ℓ) = R′(ℓ)

R(ℓ)/(L)and where Γ is an analyti ontinuation over
C

+
0 ={s∈C | ℜe(s)>0} of the positive square-root of

Γ(s)2 =
(s

c

)2

+ Υ. (7)Conneting a sequene of Υ-onstant segments(Υ(ℓ)=Υn on ℓ∈ [ℓn−1, ℓn[ for 1≤n≤N) is ahievedby preserving the pressure and the air �ow ontinuityat juntions, so that XℓN
(s)=TℓN ,ℓ0(s)Xℓ0(s) with

TℓN ,ℓ0 = TℓN ,ℓN−1
TℓN−1,ℓN−2

. . . Tℓ1,ℓ0 . (8)(P2a) Beause of ℓ and (P1a), equations 6-8 exatly regen-erates the standard results for both straight segments (ℓ ≡ z,
R(ℓ+n−1)=R(ℓ−n ), σℓ =LR′(ℓ)/R(ℓ)=0) and onial segments(ℓ≡r, σ(ℓ+n−1)=σ(ℓ−n )).
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n,n+1(s) and loadtransfer funtions at boundaries [13, 14, 15℄.Propagators are delays Dn(s) = exp(−τns) with
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c0
in ases aO- bO (Υn = 0), ombined withthe dispersion funtion Wn/Dn (of a ausal stableoperator [16℄). They monitor some travelling wavesinside the pipe. Juntion quadripoles monitor there�etions and transmissions of these travelling wavesat juntions ℓ = ℓn. A nie property [17, 18, 15, 14℄for reduing omputation load in sound synthesis is:(P2b) When the geometrial smoothness regularity allowedby pieewise desriptions aO- O is maximal, that is, dison-tinuous for aO, ontinuous for bO and C1-regular for O, eahquadripole Qj(s) an be realized by using only one re�etiontransfer funtion Rn,n+1(s) and three sums: this gives rise tothe so-alled Kelly-Lohbaum struture realled in Figure 3.Kelly-Lohbaum struture has been originallyestablished in ase aO, leading to the auto-regressive (AR) �lters whih are quite used tomodel the voal trat [19℄. Nevertheless, suh ARmodels su�er from rough approximations. A quitesevere one is that AR models are based on frequeny-independent radiation impedanes. A seond one isthat they ignore viso-thermal losses, whih an beritial for wind musial instruments. A third oneis that loal-in-spae bore disontinuities involveinstantaneous (loal-in-time) re�etions whih makethe impulse response (IR) of immittanes (inputimpedane, transmittane, et) omposed of Dirapulses rather than the expeted smooth responses.Improving the �rst two points (addressed in �4-5)regularizes these impulse responses: they oneal thethird one from a mathematial point of view. But,from the aousti point of view, preserving the boreregularity is of main importane, espeially when seg-ments lengths are not short enough.This is why the spae disretization δz is usuallyhosen as c0Fs where Fs is sampling frequeny: thissynhronization with the wave elerity removes ar-tifats due to disontinuities sine, in impulse re-sponses, no zeros appear between eah Dira pulse.A more aurate alternative onsists in inreasingthe smoothness of the pieewise approximations. Tothe end, onial bore segments �rst, and C1-regular
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27. June - 1. July, Aalborgonstant-�ared segments seond, have been onsid-ered. What order of regularity of impulse responsesare these desriptions able to preserve ?3.3. Regularity analysisConsider a bore loaded by a frequeny-independentimpedane radiation or an in�nitely long last seg-ment. For ases aO- bO, propagators are delays so that:(P2) The regularity of immittane impulse responses are�xed by that of the re�etion funtions (see R1,2 in Figure 3).This is still true for ase O sine W1(s)/D1(s)does not preserve regularity: as s → +∞ in C
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s2),whih ontains a diret unit gain.Table I realls re�etion funtion formula and il-lustrates the ariatural approximation of the ref-erene R† on ℓ ∈ [0.3, 0.5[ with two segmentsdelimited by ℓ0 = 0.3, ℓ1 = 0.4, ℓ2 = 0.5.For the ase aO, R
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s4 )as s → +∞, so that from the initial value theorem,
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+) = limx→+∞ xR1,2(x) = 0 and r′1,2(0
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2 (C0 but not C1 IR).In onlusion, onsidering a target smooth pro�le:(R2) C1-regular juntions of Υ-onstant segments de�ne the�rst pieewise-approximation whih preserves the IR ontinu-ity, independently of the segment number. Nearly-ontinuousIR an be obtained by inreasing the segment number so thatthe mesh is re�ned and the oe�ients αn,n+1 = c0

(
R′(ℓ−n ) −

R′(ℓ+n )
)
/
(
2R(ℓn)

) beome small enough.A onjeture for higher ontinuity degrees is that a
Ck-regular pro�le orresponds to a Ck−1-regular IR.Note that, in the ases aO- bO, de�ning N segmentsfrom a target pro�le R is simplify obtained by evalu-ating R at hosen absissa ℓn=0,...,N . On the ontrary,deriving a C1-regular pieewise Υ-onstant deompo-sition is not easy. A tool whih is speially dediatedto optimize ase O is used in this paper (see [20℄).4. Radiation impedanes for hornsThe radiation impedane balanes the energy whih ison�ned inside the pipe (a) and the radiated part (b).In the frequeny ranges where the behaviour (a)largely dominates, the resonanes quality is high(making self-osillations and note emissions easier).Tuning the trade-o� between resonanes qualityand the radiated sound power (espeially for moderninstruments) makes the radiation impedane studyruial. Several models, ompatible with straight
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ka = (2πf/c0)a (the wave number k maps to theimaginary Laplae variable s = 2ι̇πf = ι̇kc0/a).Typial hoies for Z̃ are (see Figure 4): a ariat-ural real onstant impedane Z0 ≥ 0, a �anged pis-ton Z1 = 1− 2J1(2ka)
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2ka (J1 and H1 are theBessel and Struve funtion of �rst order), a �angedpipe Z2 [21, (9)℄, an un�anged pipe Z3 [22, (V.16)℄.Nevertheless, radiation impedanes of straightpipes are not well-adapted to �ared horns. To takeaount of spherial wavefronts, a orretion fator de-dued from the energy and the mass onservation beenproposed in [23℄ so that it reovers an exat result on
ℜe(Z4) when f → 0. It yields yields Z4 = sin2θ0

2(1−cos θ0)
Z3where θ0≈59.2 is the slope angle of R† at z=z⋆.To enhane the latter result, a model based on aportion S0 of a sphere S with radius r0, pulsatingwith a uniform veloity V0, has been proposedin [24℄ (see Figure 5). To be ompatible with theurvilinear horn model, the pressure is averaged on

S0, whih yields a losed-form formula [24, (23)℄ ofthe load impedane. In this model, it is observed that:(P4) The ripples in straight pipe radiation impedanes disap-pear for �ared horns, if θ0 is larger than about 55◦. Radiationimpedanes are lower for spherial ases than for planar ones.In this on�guration typial of many brass in-struments, the impedane is aurately approximatedby the seond order model (the error is negligiblew.r.t. to that due to the average) [24, (31)℄,
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r1,2(t) = k1,2 δ(t) α1,2 exp(α1,2t) 1t≥0 no losed-form solutionJump at t = 0 in�nite (k1,2δ
′) α1,2 0IR regularity Dira type disontinuous ontinuous (C0)
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(
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)2 , (10)with ξ(θ0) = 0.0207θ4
0−0.144θ3

0 +0.221θ2
0 +0.0799θ0+

0.72, α(θ0)=
[
0.1113θ5

0− 0.6360θ4
0+1.162θ3
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0+

1.083θ0+0.8788]−1 and νc(θ0)=
[
−0.198θ5

0+0.2607θ4
0−

0.424θ3
0−0.07946θ2

0+4.704θ0+0.022]−1 (θ0 is in radians).5. Viso-thermal lossesKirhho�, �rst, has introdued thermal ondution ef-fets, extended the Stoke's theory and derived somebasi solutions in the free spae and in a pipe. He gavethe exat general dispersion relation for a ylinder foraxisymmetri problems [25℄ (a generalized formula fornon symmetri versions is given in [26, eq. (56)℄).Simpli�ed models have also been proposed: sep-arated visous and thermal boundary layers (byZwikker and Kosten [27, p.210℄, see [28, 29℄ for va-lidity onditions), and the Cremer's equivalent walladmittane for plane waves [30℄ (whih oinides withthe Kirhho�'s result for retangular waveguides suhthat the boundary layer thikness is muh lower thanthe retangle lengths).Plane wave equations inluding these models havebeen derived, whih inlude a damping term involv-ing a frational time derivative (see the Lokshin equa-tion [31℄ and [32℄). Exat solutions of the Lokshinequation have been derived in [33℄.Adapting hypothesis (H1) in � 2 to the ase of wallswith a Cremer's wall admittane, a perturbed urvi-linear version of (3) is obtained [12℄. It is given by(
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t −
2ε(ℓ)
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3
2

∂
3
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t

)
p(ℓ, t) = 0,(11)where ∂
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2

t is a frational time derivative [33℄ and
ε(ℓ) = κ0

√
1−R′(ℓ)2

R(ℓ) quanti�es the viso-thermal ef-fets (κ0 =
√

l′v +(γ−1)
√

lh ≈ 3×10−4 m1/2 in theair). This equation is sometimes alled the �Web-ster (ase ε = 0)-Lokshin (ase R′ = 0)� equation.Considering Υ-onstant segments on whih ℓ 7→
ε(ℓ) is approximated by its mean value, results ob-tained in � 3 are generalized by replaing equation 7by (for segment number n)
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) 3
2

+ Υn. (12)

no losses: ε=0 [33, Fig. 5.5℄ losses: ε=0.25 [33, Fig. 6.7b℄
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c0t/L (adim. time)hFigure 6. Pressure transmission IR (p(L, t)=h∗tp(0, t)) fora straight pipe loaded with a positive impedane at z=L.Moreover, it has been proved that, even for onstantpieewise pro�les [33℄ (ase aO in Table I):(P4) The frational derivative in equation 11 regularizes theimpulse response of the input impedane, global re�etion andtransmission. It also makes long memory responses appear(deays slower than any dereasing exponential): Dira pulsesare transfromed in C∞-pulses whih inrease fastly �rst anddeay with long memory response (see Figure 6).6. Appliation and resultsIn this setion, results due to �2-5 are ompared to areferene, that is, a measured trombone bell. In Fig-ure 7 aO, C1-regular Υ-onstant deompositions of themeasured pro�le are aurately optimized [20℄ with5 segments for z- and ℓ- models (juntion loaliza-tions ◦ orrespond to ℓ∈{0.2; 0.4; 0.48; 0.55} in m).In Figure 7 bO, the input impedane (Mref) mea-sured by the set up detailed in [1℄ is ompared tothe re�ned model (RM) based on the urvilinear

C1-regular, pieewise Υ-onstant, lossy propagationmodel onneted to the radiation impedane Z5. Toexhibit the ontribution of eah re�nement, modi�-ations are introdued separately on (RM): (ZM) useof (z,R
) rather than (

ℓ,R
); (FP) use of Z1 (�angedpiston) rather than Z5; (NL) no losses (κ0 =0). Mod-els (ZM) and (FP) yield signi�ant peak deviationson amplitudes and frequenies for f > 600Hz, and(NL) emphasizes the peak amplitudes as expeted.Finally, Figure 7 O orroborates results (R1) and(R2): : the pieewise onial approximations eventu-ally reover the auray of (RM) when re�ning themesh (here, for 40 ones).
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