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e.SummaryDue to the simple properties of plane waves, non lossy straight pipes and their 
on
atenation havebeen extensively used to 
ompute a
ousti
 transfer fun
tions from bore pro�les of wind instruments(input impedan
e, transmittan
e, et
). This is also the 
ase for real-time simulations: introdu
ingtravelling waves has led to the well-known digital waveguides formalism. Nevertheless, su
h dis
on-tinuous 
on
atenations involve impulse responses 
omposed of pulse trains of Dira
 measures, whi
hare stru
turally unrealisti
 for smooth bores. Similarly, 
ontinuous but non smooth approximationsbased on 
oni
al segments involve dis
ontinuous pulse trains of damped exponentials. This invitedpaper presents an overview of results that have been elaborated to weaken su
h artifa
ts and in-
rease realism, while preserving most of the worthwhile properties of straight pipes. The key stepsare based on the use of: (1) a re�ned 1D wave equation (
urvilinear horn equation) based on an isobarmap re
ti�
ation; (2) smooth (C1-regular) jun
tions of 
onstant-�ared a
ousti
 pipes; (3) a radiationmodel whi
h is 
ompatible with (1); (4) vis
o-thermal losses. It allows to re
over a standard matrixformalism to 
ompute impedan
es and transmittan
es of smooth bore parts that yield a

urate re-sults. It still make de�nitions of travelling waves and digital waveguide-like stru
tures possible for thesimulation. Finally, by representing smooth bores by very few �ared segments (
ompared to manystraight or 
oni
al pipes), su
h des
riptions (with a few parameters) are an interesting alternative tooptimize wind instrument bores w.r.t. some 
riteria (target shape or impedan
e, harmoni
ity, et
).PACS no. 43.75.Fg, 43.75.Ef, 43.20.Mv1. Introdu
tionThis paper fo
uses on some possible re�nements of1D a
ousti
 models in order to 
ompute a

urate in-put impedan
es for wind instrument resonators, andespe
ially, smooth horns. It is organized as follows.In se
tions 2 to 5, we re
all some appropriate modelsand investigate on the in�uen
e of (� 2) the 
hoi
eof the wave-shape assumption in the horn equation,(� 3) the geometri
 regularity at jun
tions in pie
e-wise segment modelling, (� 4) the radiation impedan
eand (� 5) vis
o-thermal losses. These studies are illus-trated on an a
ademi
 horn pro�le. Se
tion 6 presentsresults on a trombone bell, the pro�le and the inputimpedan
e of whi
h have been measured.(
) European A
ousti
s Asso
iation

Along all this paper, physi
al 
onstants are the airmass density ρ0 = 1.18Kg.m−3 and the sound 
eler-ity c0 = 346.63, dedu
ed from the 
alibration of theimpedan
e sensor [1℄ for the measured trombone bell.The a
ademi
 �ared pro�le R† used in se
tions 2-5 is 
hosen su
h that boundaries 
oordinates (z,R)mat
hes with those of the trombone bell (z0 =0, R⋆
0 =

10.4 × 10−3m, z⋆ =568 × 10−3m, R⋆ =110 × 10−3m),with a null slope at z=0. A simple polynomial modelwhi
h satis�es these properties is given by
R† : z ∈ [0, z⋆] 7→ R0 +

(
R⋆ − R0

) ( z

z⋆

)10

. (1)2. Horn equation and isobars2.1. Uni-dimensional models and geometryThe �rst uni-dimensional model of the lossless a
ous-ti
 propagation in axisymmetri
 pipes with pro�le
z 7→ R(z) is due to [2, 3℄. It is usually 
alled �hornequation� or �Webster equation� [4℄ and is given by
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p(z, t)=0, (2)

(
∂2

z−Υ(z)− 1

c2
0

∂2
t

)[
R(z)p(z, t)

]
=0, with Υ=

R′′

R
,(3)or also a 
onservative form, using the identity

1
A(z) ∂z

[
A(z) ∂zp(z, t)

]
=

[
∂2

z + 2R′(z)
R(z) ∂z]p(z, t) inequation 2 (A = πR2 is the bore se
tion area).This model whi
h assumes planar waves has beenextensively investigated [5℄ and its hypotheses peri-odi
ally revised: spheri
al wavefronts orthogonal tothe bore are assumed in [6, 7℄, the quasi-spheri
ity isexperimentally 
on�rmed in the low frequen
y rangefor horns in [8℄, ellipsoidal wavefronts are proposedin [9℄. Moreover, it has been proved in [10℄ that everyone-parameter a
ousti
 �elds obey a horn equation forsome adapted spa
e variables.For many wind instruments, transverse modes [11℄only appear as small perturbations on a signi�
ant fre-quen
y range. So, re�ning horn equations makes senseand 
an apply to the derivation of a

urate 
hara
ter-isti
 immittan
es (input impedan
e, transmittan
e,et
) and real-time sound synthesis purposes.2.2. Quasi-spheri
ity and 
urvilinear abs
issaIn this paper, we 
onsider the model detailed in [12℄,based on an exa
t isobar wave equation (step aO)from whi
h an assumption on isobar shapes (quasi-spheri
ity at order 2) is inferred and used (step bO).Step aO For axi-symmetri
 problems, writing thewave equation [

∂2
r − 1

r ∂r +∂2
z − 1

c2 ∂2
t

]
p(z, r, t) = 0 ina re
ti�ed isobar map, by using a 
oordinate trans-formation z = f(s, u, t), r = g(s, u, t) su
h that

p(f(s, u, t), g(s, u, t), t) = p̃(s, t) does not depend on
u (s indexes isobars Is,t, 
f. Figure 1 aO)), yields theisobar wave equation [

α∂2
s+β∂s+γ∂s∂t− 1

c2
0

∂2
t

]
p̃(s, t) = 0where α, β, γ depend on f, g and their derivatives.The 
hange of 
oordinates 
an be 
hosen su
h that:(i) u and s are orthogonal; (ii) f(s,−u, t)= f(s, u, t),

g(s,−u, t) =−g(s, u, t) (symmetry w.r.t. the axis de-s
ribed by u=0); (iii) u=1 maps to the (motionless)bore pro�le des
ribed by known (time-invariant) fun
-tions f(s, u = 1, t) = W(s), g(s, u = 1, t) = R(s).
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Figure 2. Comparisons on the referen
e pro�le.Using (iii), 
omputations yield α(s, 1, t) =√(
W ′(s)

)2
+

(
R′(s)

)
)2, γ(s, 1, t) = 0. But β(s, 1, t)
annot be evaluated from the bore pro�le (W,R)alone: it requires an additional information on the�rst variations of the �eld lines near the bore (∂ufand ∂ug at (s, u = 1, t)). Thus, β is responsible forthe 
oupling between the propagation of the pressurelevel of isobars and their geometry.Step bO An assumption providing this de
ouplinginformation is looked for, preserving the properties:(P1a) Isobars are (i) planes in straight pipes, (ii) spheri
alin 
ones, (iii) orthogonal to the wall, (iv) quasi-spheri
al inhorns [8℄, and (v) are not required to be time-invariant.The simplest 
hoi
e is given by (
f. Figure 1 bO):(H1) Near the wall (u =1), an isobar deviates from its tan-gent spheri
al approximation slower than a parabola, that is,

∂k
uζ(s, 1, t)=0 for k=0 (
onta
t), k=1 (tangen
y) and k=2(assumption) for the relative deviation ζ(s, u, t)= ρ(s,u,t)

ρ⋆(s) −1.This yields β(s, 1, t) = 2α(s, 1, t)R
′(s)

R(s) . As a result:(R1) Under hypothesis (H1), horn equations 2-3 are re
overedwith (
s,R(s)

) in pla
e of (
z,R(z)

), if α(s, 1, t) = 1, that is,if s=ℓ is the 
urvilinear abs
issa measuring the pro�le length:
ℓ = L(z) =

∫ z

0

√
1 +

[
R′(z)

]2
dz, R(ℓ)=R

(
L−1(ℓ)

)
. (4)Similarly, Euler equation for plane waves is re
overed in whi
h

z is repla
ed by ℓ (
f. [12, (53)℄):
ρ0∂tv = −∂ℓp (v is the parti
le velo
ity). (5)2.3. Comparisons between z- and ℓ-modelsChanging the spa
e variable in the horn equa-tion makes some substantial di�eren
es appear.Additionally to (P1a), straightforward properties are:(P1b) (i) travel lengths are in
reased for the 
urvilinearhorn model 
ompared to the original one (
f. Figure 2);(ii) |R′(ℓ)| ≤ 1 (sin
e R′

(
L(z)

)
= R′(z)√

1+R′(z)2
); (iii) R′(ℓ) = 1
orresponds to a verti
al slope in the z-spa
e; (iv) if a pro�le

z 7→ R(z) ends with an in�nite derivative, the 
urvilinear hornequation operates a natural 
onne
tion with spheri
al waves.
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h a

ounts for
urvature be
omes Υℓ = R′′

R
rather than Υz = R′′

R . It
an be mapped to a lo
al-in-spa
e 
uto� frequen
y
f⋆ = c0

2π

√
Υ (
aseΥ ≥ 0), below whi
h travellingwaves be
ome evanes
ent [8℄. Figure 2 exhibits that:(P1
) The 
urvilinear ℓ-model makes Υ and f⋆ lower than forthe axial z-model. It also modi�es their variation in spa
e.Finally, 
onsidering ℓ-models rather than z-modelsmodi�es (1) the equivalent pipe length, (2) the valuesof Υ, (3) the shapes of the pipe and Υ, and so, (4) theimmittan
es peak lo
ations, (5) the 
uto� frequen
y.3. Constant-�ared a
ousti
 pipesThe main interests of 1D propagation models are that:(1) immittan
es 
an be 
omputed using the transfermatrix method and (2) if a stable travelling wave de-
omposition is available, digital waveguides formalismmakes real-time sound synthesis possible.3.1. Transfer matrix methodConsider a bore segment governed by equations 5 and3 with 
onstant parameter Υ ≥ 0 on [a,b[ (Υ = 0 forstraight and 
oni
al pipes, Υ > 0 for �ared pipes).Denote L=b−a and Xℓ(s)=

[
P (ℓ, s) , U(ℓ, s)

]Twhere
P and U are Lapla
e transforms of signals t 7→ p(ℓ, t)and t 7→ πR(ℓ)2v(ℓ, t) (assumed to be zero for t < 0),respe
tively. Straightforward 
omputations lead to

Xb(s) = Tb,a(s)Xa(s), (6)where Tb,a has determinant one and is given by
Tb,a(s) = diag( L

R(b−) ,
πR(b−)

ρ0s

)
Mb,a(s) diag(R(a+)

L , ρ0s
πR(a+)

)
,and [Mb,a(s)]p,q =

(
Vp,q(s)

)T
Φ

(
LΓ(s)

) with Φ(z) =

[cosh z , sinh z
z ]T , V11 = [1 , σ(a+)]T , V12 = [0 , −1]T ,

V21(s) = [σ(b−)− σ(a+) , σ(a+)σ(b−) −
(
LΓ(s)

)2]T ,
V22 = [1 , −σ(b−)]T , with ℓ ∈ [a, b[7→ σ(ℓ) = R′(ℓ)

R(ℓ)/(L)and where Γ is an analyti
 
ontinuation over
C

+
0 ={s∈C | ℜe(s)>0} of the positive square-root of

Γ(s)2 =
(s

c

)2

+ Υ. (7)Conne
ting a sequen
e of Υ-
onstant segments(Υ(ℓ)=Υn on ℓ∈ [ℓn−1, ℓn[ for 1≤n≤N) is a
hievedby preserving the pressure and the air �ow 
ontinuityat jun
tions, so that XℓN
(s)=TℓN ,ℓ0(s)Xℓ0(s) with

TℓN ,ℓ0 = TℓN ,ℓN−1
TℓN−1,ℓN−2

. . . Tℓ1,ℓ0 . (8)(P2a) Be
ause of ℓ and (P1a), equations 6-8 exa
tly regen-erates the standard results for both straight segments (ℓ ≡ z,
R(ℓ+n−1)=R(ℓ−n ), σℓ =LR′(ℓ)/R(ℓ)=0) and 
oni
al segments(ℓ≡r, σ(ℓ+n−1)=σ(ℓ−n )).
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hbaum stru
turePie
ewise 
ylindri
al aO, 
oni
al bO and Υ-
onstant 
Obores 
an be des
ribed by digital waveguides stru
-tures 
omposed of pairs of travelling operators (also
alled propagators) Wn(s)=exp
[
− Γ(s)(ℓn − ℓn−1)

],jun
tion transfer quadripoles Qj
n,n+1(s) and loadtransfer fun
tions at boundaries [13, 14, 15℄.Propagators are delays Dn(s) = exp(−τns) with

τn = ℓn−ℓn−1

c0
in 
ases aO- bO (Υn = 0), 
ombined withthe dispersion fun
tion Wn/Dn (of a 
ausal stableoperator [16℄). They monitor some travelling wavesinside the pipe. Jun
tion quadripoles monitor there�e
tions and transmissions of these travelling wavesat jun
tions ℓ = ℓn. A ni
e property [17, 18, 15, 14℄for redu
ing 
omputation load in sound synthesis is:(P2b) When the geometri
al smoothness regularity allowedby pie
ewise des
riptions aO- 
O is maximal, that is, dis
on-tinuous for aO, 
ontinuous for bO and C1-regular for 
O, ea
hquadripole Qj(s) 
an be realized by using only one re�e
tiontransfer fun
tion Rn,n+1(s) and three sums: this gives rise tothe so-
alled Kelly-Lo
hbaum stru
ture re
alled in Figure 3.Kelly-Lo
hbaum stru
ture has been originallyestablished in 
ase aO, leading to the auto-regressive (AR) �lters whi
h are quite used tomodel the vo
al tra
t [19℄. Nevertheless, su
h ARmodels su�er from rough approximations. A quitesevere one is that AR models are based on frequen
y-independent radiation impedan
es. A se
ond one isthat they ignore vis
o-thermal losses, whi
h 
an be
riti
al for wind musi
al instruments. A third oneis that lo
al-in-spa
e bore dis
ontinuities involveinstantaneous (lo
al-in-time) re�e
tions whi
h makethe impulse response (IR) of immittan
es (inputimpedan
e, transmittan
e, et
) 
omposed of Dira
pulses rather than the expe
ted smooth responses.Improving the �rst two points (addressed in �4-5)regularizes these impulse responses: they 
on
eal thethird one from a mathemati
al point of view. But,from the a
ousti
 point of view, preserving the boreregularity is of main importan
e, espe
ially when seg-ments lengths are not short enough.This is why the spa
e dis
retization δz is usually
hosen as c0Fs where Fs is sampling frequen
y: thissyn
hronization with the wave 
elerity removes ar-tifa
ts due to dis
ontinuities sin
e, in impulse re-sponses, no zeros appear between ea
h Dira
 pulse.A more a

urate alternative 
onsists in in
reasingthe smoothness of the pie
ewise approximations. Tothe end, 
oni
al bore segments �rst, and C1-regular
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onstant-�ared segments se
ond, have been 
onsid-ered. What order of regularity of impulse responsesare these des
riptions able to preserve ?3.3. Regularity analysisConsider a bore loaded by a frequen
y-independentimpedan
e radiation or an in�nitely long last seg-ment. For 
ases aO- bO, propagators are delays so that:(P2
) The regularity of immittan
e impulse responses are�xed by that of the re�e
tion fun
tions (see R1,2 in Figure 3).This is still true for 
ase 
O sin
e W1(s)/D1(s)does not preserve regularity: as s → +∞ in C

+
0 ,

W1(s)/D1(s)=exp
(
− (Γ1(s)− s

c )cτ1

)
=1+

c2
0Υ1 τ1

2
1
s + O( 1

s2),whi
h 
ontains a dire
t unit gain.Table I re
alls re�e
tion fun
tion formula and il-lustrates the 
ari
atural approximation of the ref-eren
e R† on ℓ ∈ [0.3, 0.5[ with two segmentsdelimited by ℓ0 = 0.3, ℓ1 = 0.4, ℓ2 = 0.5.For the 
ase aO, R
aO

1,2 (s) = A1−A2

A1+A2
= k1,2 and

r
bO

1,2 (t) = k1,2 δ(t) (Dira
 pulse). For bO, R
bO

1,2 (s) =

α1,2

s−α1,2
and r

bO
1,2 (t) = α1,2 exp(α1,2t) 1t≥0 where

α1,2 = c0

2

(
R′(ℓ−

1
)−R′(ℓ+

1
)

R(ℓ1)

) (dis
ontinuous IR). For 
O,
R


O
1,2 (s)= Γ1(s)−Γ2(s)

Γ1(s)+Γ2(s)
= Υ1−Υ2

(Γ1(s)+Γ2(s))2
= Υ1−Υ2

4(s/c)2 + O( 1
s4 )as s → +∞, so that from the initial value theorem,

r1,2(0
+) = limx→+∞ xR1,2(x) = 0 and r′1,2(0

+) =

limx→+∞ x2R1,2(x) = Υ1−Υ2

2 (C0 but not C1 IR).In 
on
lusion, 
onsidering a target smooth pro�le:(R2) C1-regular jun
tions of Υ-
onstant segments de�ne the�rst pie
ewise-approximation whi
h preserves the IR 
ontinu-ity, independently of the segment number. Nearly-
ontinuousIR 
an be obtained by in
reasing the segment number so thatthe mesh is re�ned and the 
oe�
ients αn,n+1 = c0

(
R′(ℓ−n ) −

R′(ℓ+n )
)
/
(
2R(ℓn)

) be
ome small enough.A 
onje
ture for higher 
ontinuity degrees is that a
Ck-regular pro�le 
orresponds to a Ck−1-regular IR.Note that, in the 
ases aO- bO, de�ning N segmentsfrom a target pro�le R is simplify obtained by evalu-ating R at 
hosen abs
issa ℓn=0,...,N . On the 
ontrary,deriving a C1-regular pie
ewise Υ-
onstant de
ompo-sition is not easy. A tool whi
h is spe
ially dedi
atedto optimize 
ase 
O is used in this paper (see [20℄).4. Radiation impedan
es for hornsThe radiation impedan
e balan
es the energy whi
h is
on�ned inside the pipe (a) and the radiated part (b).In the frequen
y ranges where the behaviour (a)largely dominates, the resonan
es quality is high(making self-os
illations and note emissions easier).Tuning the trade-o� between resonan
es qualityand the radiated sound power (espe
ially for moderninstruments) makes the radiation impedan
e study
ru
ial. Several models, 
ompatible with straight
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2Figure 5. Flared horn radiation approximation, impedan
eaveraged on S0 (. . . ) and se
ond order model Z5 (-).pipes (with radius a), have been established and 
om-pared (see e.g. [21℄). They are usually des
ribed by

PL

VL
= Zrad = ρc0 Z̃ (9)where Z̃ is dimensionless and given as a fun
tion of

ka = (2πf/c0)a (the wave number k maps to theimaginary Lapla
e variable s = 2ι̇πf = ι̇kc0/a).Typi
al 
hoi
es for Z̃ are (see Figure 4): a 
ari
at-ural real 
onstant impedan
e Z0 ≥ 0, a �anged pis-ton Z1 = 1− 2J1(2ka)
2ka − ι̇ 2H1(2ka)

2ka (J1 and H1 are theBessel and Struve fun
tion of �rst order), a �angedpipe Z2 [21, (9)℄, an un�anged pipe Z3 [22, (V.16)℄.Nevertheless, radiation impedan
es of straightpipes are not well-adapted to �ared horns. To takea

ount of spheri
al wavefronts, a 
orre
tion fa
tor de-du
ed from the energy and the mass 
onservation beenproposed in [23℄ so that it re
overs an exa
t result on
ℜe(Z4) when f → 0. It yields yields Z4 = sin2θ0

2(1−cos θ0)
Z3where θ0≈59.2 is the slope angle of R† at z=z⋆.To enhan
e the latter result, a model based on aportion S0 of a sphere S with radius r0, pulsatingwith a uniform velo
ity V0, has been proposedin [24℄ (see Figure 5). To be 
ompatible with the
urvilinear horn model, the pressure is averaged on

S0, whi
h yields a 
losed-form formula [24, (23)℄ ofthe load impedan
e. In this model, it is observed that:(P4) The ripples in straight pipe radiation impedan
es disap-pear for �ared horns, if θ0 is larger than about 55◦. Radiationimpedan
es are lower for spheri
al 
ases than for planar ones.In this 
on�guration typi
al of many brass in-struments, the impedan
e is a

urately approximatedby the se
ond order model (the error is negligiblew.r.t. to that due to the average) [24, (31)℄,
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tion fun
tions involved in Kelly-Lo
hbaum stru
tures w.r.t. the geometry regularity.Approximation of R†
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′) α1,2 0IR regularity Dira
 type dis
ontinuous 
ontinuous (C0)

Z5 : ν =
kr0

2π
7−→

ι̇α ν
νc

−
(

ν
νc

)2

1 + 2ι̇ξ ν
νc

−
(

ν
νc

)2 , (10)with ξ(θ0) = 0.0207θ4
0−0.144θ3

0 +0.221θ2
0 +0.0799θ0+

0.72, α(θ0)=
[
0.1113θ5

0− 0.6360θ4
0+1.162θ3

0−1.242θ2
0+

1.083θ0+0.8788]−1 and νc(θ0)=
[
−0.198θ5

0+0.2607θ4
0−

0.424θ3
0−0.07946θ2

0+4.704θ0+0.022]−1 (θ0 is in radians).5. Vis
o-thermal lossesKir
hho�, �rst, has introdu
ed thermal 
ondu
tion ef-fe
ts, extended the Stoke's theory and derived somebasi
 solutions in the free spa
e and in a pipe. He gavethe exa
t general dispersion relation for a 
ylinder foraxisymmetri
 problems [25℄ (a generalized formula fornon symmetri
 versions is given in [26, eq. (56)℄).Simpli�ed models have also been proposed: sep-arated vis
ous and thermal boundary layers (byZwikker and Kosten [27, p.210℄, see [28, 29℄ for va-lidity 
onditions), and the Cremer's equivalent walladmittan
e for plane waves [30℄ (whi
h 
oin
ides withthe Kir
hho�'s result for re
tangular waveguides su
hthat the boundary layer thi
kness is mu
h lower thanthe re
tangle lengths).Plane wave equations in
luding these models havebeen derived, whi
h in
lude a damping term involv-ing a fra
tional time derivative (see the Lokshin equa-tion [31℄ and [32℄). Exa
t solutions of the Lokshinequation have been derived in [33℄.Adapting hypothesis (H1) in � 2 to the 
ase of wallswith a Cremer's wall admittan
e, a perturbed 
urvi-linear version of (3) is obtained [12℄. It is given by(
∂2

ℓ +2
R′(ℓ)

R(ℓ)
∂ℓ −

1

c2
∂2

t −
2ε(ℓ)

c
3
2

∂
3
2

t

)
p(ℓ, t) = 0,(11)where ∂

3
2

t is a fra
tional time derivative [33℄ and
ε(ℓ) = κ0

√
1−R′(ℓ)2

R(ℓ) quanti�es the vis
o-thermal ef-fe
ts (κ0 =
√

l′v +(γ−1)
√

lh ≈ 3×10−4 m1/2 in theair). This equation is sometimes 
alled the �Web-ster (
ase ε = 0)-Lokshin (
ase R′ = 0)� equation.Considering Υ-
onstant segments on whi
h ℓ 7→
ε(ℓ) is approximated by its mean value, results ob-tained in � 3 are generalized by repla
ing equation 7by (for segment number n)

Γ(s)2 =
(s

c

)2

+ 2εn

(s

c

) 3
2

+ Υn. (12)

no losses: ε=0 [33, Fig. 5.5℄ losses: ε=0.25 [33, Fig. 6.7b℄
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15PSfrag repla
ements
c0t/L (adim. time)hFigure 6. Pressure transmission IR (p(L, t)=h∗tp(0, t)) fora straight pipe loaded with a positive impedan
e at z=L.Moreover, it has been proved that, even for 
onstantpie
ewise pro�les [33℄ (
ase aO in Table I):(P4) The fra
tional derivative in equation 11 regularizes theimpulse response of the input impedan
e, global re�e
tion andtransmission. It also makes long memory responses appear(de
ays slower than any de
reasing exponential): Dira
 pulsesare transfromed in C∞-pulses whi
h in
rease fastly �rst andde
ay with long memory response (see Figure 6).6. Appli
ation and resultsIn this se
tion, results due to �2-5 are 
ompared to areferen
e, that is, a measured trombone bell. In Fig-ure 7 aO, C1-regular Υ-
onstant de
ompositions of themeasured pro�le are a

urately optimized [20℄ with5 segments for z- and ℓ- models (jun
tion lo
aliza-tions ◦ 
orrespond to ℓ∈{0.2; 0.4; 0.48; 0.55} in m).In Figure 7 bO, the input impedan
e (Mref) mea-sured by the set up detailed in [1℄ is 
ompared tothe re�ned model (RM) based on the 
urvilinear

C1-regular, pie
ewise Υ-
onstant, lossy propagationmodel 
onne
ted to the radiation impedan
e Z5. Toexhibit the 
ontribution of ea
h re�nement, modi�-
ations are introdu
ed separately on (RM): (ZM) useof (z,R
) rather than (

ℓ,R
); (FP) use of Z1 (�angedpiston) rather than Z5; (NL) no losses (κ0 =0). Mod-els (ZM) and (FP) yield signi�
ant peak deviationson amplitudes and frequen
ies for f > 600Hz, and(NL) emphasizes the peak amplitudes as expe
ted.Finally, Figure 7 
O 
orroborates results (R1) and(R2): : the pie
ewise 
oni
al approximations eventu-ally re
over the a

ura
y of (RM) when re�ning themesh (here, for 40 
ones).
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Figure 7. Results on a measured trombone bell.7. CONCLUSIONSThe use of C1-regular jun
tions of Υ-
onstant seg-ments governed by the 
urvilinear Webster-Lokshinmodel 
onne
ted to the radiation impedan
e of a pul-sating portion of a sphere proves to be relevant forthe 
omputation of the input impedan
e of smoothbores. This is the result of the 4 re�nements proposedin se
tions 2 to 5 (in the sense that removing one ofthem yields worse results). Compared to the 
ontin-uous pie
ewise 
oni
al segments, the C1-regular jun
-tions of Υ-
onstant segments allow to signi�
antly re-du
e the number of segments (other te
hniques 
anbe found in [34℄). This is not a 
riti
al point for theinput impedan
e predi
tion from a pro�le, but it be-
omes the 
ase for e.g. impedan
e optimization toolsor sound synthesis purposes.A
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