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Summary

Due to the simple properties of plane waves, non lossy straight pipes and their concatenation have
been extensively used to compute acoustic transfer functions from bore profiles of wind instruments
(input impedance, transmittance, etc). This is also the case for real-time simulations: introducing
travelling waves has led to the well-known digital waveguides formalism. Nevertheless, such discon-
tinuous concatenations involve impulse responses composed of pulse trains of Dirac measures, which
are structurally unrealistic for smooth bores. Similarly, continuous but non smooth approximations
based on conical segments involve discontinuous pulse trains of damped exponentials. This invited
paper presents an overview of results that have been elaborated to weaken such artifacts and in-
crease realism, while preserving most of the worthwhile properties of straight pipes. The key steps
are based on the use of: (1) a refined 1D wave equation (curvilinear horn equation) based on an isobar
map rectification; (2) smooth (Cl-regular) junctions of constant-flared acoustic pipes; (3) a radiation
model which is compatible with (1); (4) visco-thermal losses. It allows to recover a standard matrix
formalism to compute impedances and transmittances of smooth bore parts that yield accurate re-
sults. Tt still make definitions of travelling waves and digital waveguide-like structures possible for the
simulation. Finally, by representing smooth bores by very few flared segments (compared to many
straight or conical pipes), such descriptions (with a few parameters) are an interesting alternative to
optimize wind instrument bores w.r.t. some criteria (target shape or impedance, harmonicity, etc).

PACS no. 43.75.Fg, 43.75.Ef, 43.20.Mv

Along all this paper, physical constants are the air
mass density pg = 1.18 Kg.m~ and the sound celer-
ity ¢p = 346.63, deduced from the calibration of the
impedance sensor [1] for the measured trombone bell.

The academic flared profile R used in sections 2-

1. Introduction

This paper focuses on some possible refinements of
1D acoustic models in order to compute accurate in-
put impedances for wind instrument resonators, and

especially, smooth horns. Tt is organized as follows.
In sections 2 to 5, we recall some appropriate models
and investigate on the influence of (§2) the choice
of the wave-shape assumption in the horn equation,
(§3) the geometric regularity at junctions in piece-
wise segment modelling, (§ 4) the radiation impedance
and (§5) visco-thermal losses. These studies are illus-
trated on an academic horn profile. Section 6 presents
results on a trombone bell, the profile and the input
impedance of which have been measured.

(¢) European Acoustics Association

5 is chosen such that boundaries coordinates (z, R)
matches with those of the trombone bell (z0=0, Rf=
10.4 x 107%m, 2* =568 x 107 3m, R*=110 x 10~ 3m),
with a null slope at z=0. A simple polynomial model
which satisfies these properties is given by
10
Ri:z€[0,2] Ro+ (B = Ro) (=) . (1)

z*
2. Horn equation and isobars

2.1. Uni-dimensional models and geometry

The first uni-dimensional model of the lossless acous-
tic propagation in axisymmetric pipes with profile
z +— R(z) is due to [2, 3]. It is usually called “horn
equation” or “Webster equation” [4] and is given by
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(@ isobar map rectification  (b) quasi-spherical approximation|

Figure 1. Isobar map rectification and approximation

2 R(z) Lo
(8Z +2 o) d, — %at)p(z,t)ZO, ) (2)
(63—'1‘(,2)—C%@f)[R(z)p(z,t)] =0, with T:%,(i%)
0

or also a conservative form, using the identity
a5 0-[A(2) 0.p(z,1)] = [02 + 25 0.]p(z, 1) in
equation 2 (A = wR? is the bore section area).

This model which assumes planar waves has been
extensively investigated [5] and its hypotheses peri-
odically revised: spherical wavefronts orthogonal to
the bore are assumed in [6, 7], the quasi-sphericity is
experimentally confirmed in the low frequency range
for horns in [8], ellipsoidal wavefronts are proposed
in [9]. Moreover, it has been proved in [10] that every
one-parameter acoustic fields obey a horn equation for
some adapted space variables.

For many wind instruments, transverse modes [11]
only appear as small perturbations on a significant fre-
quency range. So, refining horn equations makes sense
and can apply to the derivation of accurate character-
istic immittances (input impedance, transmittance,
etc) and real-time sound synthesis purposes.

2.2. Quasi-sphericity and curvilinear abscissa

In this paper, we consider the model detailed in [12],
based on an ezact isobar wave equation (step (@)
from which an assumption on isobar shapes (quasi-
sphericity at order 2) is inferred and used (step (B)).

Step (@ For axi-symmetric problems, writing the
19, +0% - C%af}p(z,r, t) =0 in
a rectified isobar map, by using a coordinate trans-
formation z = f(s,u,t), r = g(s,u,t) such that
p(f(s,u,t),g(s,u,t),t) = p(s,t) does not depend on
u (s indexes isobars Z; ¢, cf. Figure 1(@))), yields the
isobar wave equation [aagwasﬂasat—c%aﬂ p(s,t) =0
0
where «a, (3, v depend on f, g and their derivatives.
The change of coordinates can be chosen such that:
(i) w and s are orthogonal; (ii) f(s, —u,t)= f(s,u,t),
g(s,—u,t)=—g(s,u,t) (symmetry w.r.t. the axis de-
scribed by w=0); (iii) =1 maps to the (motionless)

bore profile described by known (time-invariant) func-
tions f(s,u = 1,t) = W(s), g(s,u = 1,t) = R(s).

wave equation [(93 -
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Figure 2. Comparisons on the reference profile.

Using (iii), computations yield «f(s,1,t) =

VOV() + (R/()))2, 7(s,1,8) = 0. But B(s,1,1)
cannot be evaluated from the bore profile (W, R)
alone: it requires an additional information on the
first variations of the field lines near the bore (9, f
and 0,9 at (s,u = 1,t)). Thus, § is responsible for
the coupling between the propagation of the pressure
level of isobars and their geometry.

Step B An assumption providing this decoupling
information is looked for, preserving the properties:

(P1a) Isobars are (i) planes in straight pipes, (ii) spherical
in cones, (iii) orthogonal to the wall, () quasi-spherical in
horns [8], and (v) are not required to be time-invariant.

The simplest choice is given by (cf. Figurel(®)):

(H1) Near the wall (u=1), an isobar deviates from its tan-
gent spherical approzimation slower than a parabola, that is,
0FC(s,1,6)=0 for k=0 (contact), k=1 (tangency) and k=2

(assumption) for the relative deviation (s, u,t)= (ps (us)t) 1.

This yields ((s,1,t) = 2a(s,1,t)77€2((;)). As a result:

(R1) Under hypothesis (H1), horn equations 2-8 are recovered
with (S,R(s)) in place of (z,R(z)), if a(s,1,t) =1, that is,
if s={ is the curvilinear abscissa measuring the profile length:

2) = /0 it R e “R(LNY). ()

Similarly, Euler equation for plane waves is recovered in which
2 is replaced by £ (cf. [12, (53)]):

podyv = —0gp (v is the particle velocity). (5)

2.3. Comparisons between z- and /-models

Changing the space variable in the horn equa-
tion makes some substantial differences appear.
Additionally to (P1a), straightforward properties are:

(P1b) (i) travel lengths are increased for the curvilinear
horn model compared to the original one (cf. Figure 2};

(ii) [R'(£)] < 1 (since R (L(2)) = \/%) (iii) R'(¢) =

corresponds to a vertical slope in the z-space; (iv) if a profile
2 — R(z) ends with an infinite derivative, the curvilinear horn
equation operates a natural connection with spherical waves.
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For the /-model, parameter T which accounts for
curvature becomes Y, = %/ rather than T, = %/. It
can be mapped to a local-in-space cutoff frequency
f* = £VT (caseT > 0), below which travelling

waves become evanescent [8]. Figure 2 exhibits that:

(P1c) The curvilinear (-model makes Y and f* lower than for
the azial z-model. It also modifies their variation in space.

Finally, considering ¢-models rather than z-models
modifies (1) the equivalent pipe length, (2) the values
of T, (3) the shapes of the pipe and T, and so, (4) the
immittances peak locations, (5) the cutoff frequency.

3. Constant-flared acoustic pipes

The main interests of 1D propagation models are that:
(1) immittances can be computed using the transfer
matrix method and (2)if a stable travelling wave de-
composition is available, digital waveguides formalism
makes real-time sound synthesis possible.

3.1. Transfer matrix method

Consider a bore segment governed by equations 5 and
3 with constant parameter YT > 0 on [a,b[ (T = 0 for
straight and conical pipes, T > 0 for flared pipes).
Denote L=b—a and X,(s)=[P((,s), U(C, s)]TWhere
P and U are Laplace transforms of signals ¢ — p(¢, t)
and t — R(£)%v(¢,t) (assumed to be zero for t < 0),
respectively. Straightforward computations lead to

Xo(s) = Tp,a(s) Xa(s), (6)

where T, has determinant one and is given by
Ty s) = dia (L "R“”))M (s) dia (RW) pos )
ba\8) = G R0 ~pps b,d S\ 7L R )
T .

and [Myq(s)], , = (Vpq(s))” ®(LT(s)) with ®(z) =
[COShZ, %]T, V]_]_ = [1, a(a+)]T, V12 = [O, —1]T,
29T

Vai(s) = [o(b7) —o(a), o(a®)o(d) — (LT(s))7] ",

_ . v

Vag = [1, —o(b7)]T, with £ € [a,b]— o(f) = %
and where I' is an analytic continuation over
Cl ={s€C|Re(s)>0} of the positive square-root, of

S

I(s)? = (7)2 'y (7)

c

Connecting a sequence of T-constant segments
(Y)=",, on Le[l,_1,L,] for 1<n<N) is achieved
by preserving the pressure and the air flow continuity
at junctions, so that Xy, (s)=Tr, ¢, (s) Xy, (s) with

Tonto =Tonin s Ton ytn o oo Toygg- (8)

(P2a) Because of ¢ and (Pla), equations 6-8 exactly regen-
erates the standard results for both straight segments ({ = z,
R(6S_)=R(L;), 0p=LR'({)/R(£)=0) and conical segments
((=r, o(ly_y)=0(t;)).

Figure 3. Kelly-Lochbaum structure for segments 1 and 2.

3.2. Kelly-Lochbaum structure

Piecewise cylindrical @), conical ® and Y-constant ©
bores can be described by digital waveguides struc-
tures composed of pairs of travelling operators (also
called propagators) W,,(s)=exp [ — T'(s)(ln — ln-1)],
junction transfer quadripoles Qfmﬂ(s) and load
transfer functions at boundaries [13, 14, 15].
Propagators are delays D, (s) = exp(—7,s) with

In=to1 1 cases @-® (Y, =0), combined with

Tn = 3

the disp(é)rsion function W,,/D,, (of a causal stable
operator [16]). They monitor some travelling waves
inside the pipe. Junction quadripoles monitor the
reflections and transmissions of these travelling waves
at junctions ¢ = £,. A nice property [17, 18, 15, 14]
for reducing computation load in sound synthesis is:

(P2b) When the geometrical smoothness reqularity allowed
by piecewise descriptions @)-€) is mazimal, that is, discon-
tinuous for @), continuous for © and Ct-regular for ©), each
quadripole Q7 (s) can be realized by using only one reflection
transfer function Ry, ,41(s) and three sums: this gives rise to
the so-called Kelly-Lochbaum structure recalled in Figure 3.

Kelly-Lochbaum structure has been originally
established in case®), leading to the auto-
regressive (AR) filters  which are quite used to
model the vocal tract [19]. Nevertheless, such AR
models suffer from rough approximations. A quite
severe one is that AR models are based on frequency-
independent radiation impedances. A second one is
that they ignore visco-thermal losses, which can be
critical for wind musical instruments. A third one
is that local-in-space bore discontinuities involve
instantaneous (local-in-time) reflections which make
the impulse response (IR) of immittances (input
impedance, transmittance, etc) composed of Dirac
pulses rather than the expected smooth responses.

Improving the first two points (addressed in §4-5)
regularizes these impulse responses: they conceal the
third one from a mathematical point of view. But,
from the acoustic point of view, preserving the bore
regularity is of main importance, especially when seg-
ments lengths are not short enough.

This is why the space discretization dz is usually
chosen as ¢oFs where F; is sampling frequency: this
synchronization with the wave celerity removes ar-
tifacts due to discontinuities since, in impulse re-
sponses, no zeros appear between each Dirac pulse.

A more accurate alternative consists in increasing
the smoothness of the piecewise approximations. To
the end, conical bore segments first, and C'-regular



FORUM ACUSTICUM 2011
27. June - 1. July, Aalborg

On the 1D wave propagation in wind instruments with a smooth profile

constant-flared segments second, have been consid-
ered. What order of regularity of impulse responses
are these descriptions able to preserve ?

3.3. Regularity analysis

Consider a bore loaded by a frequency-independent
impedance radiation or an infinitely long last seg-
ment. For cases @-®), propagators are delays so that:

(P2c) The regularity of immittance impulse responses are
fized by that of the reflection functions (see Ry o in Figure 3).

15
— o
< | L ST T — -
S P
< o5 B
= =
—
o . ; ; ;
0 500 1000 1500 2000 2500
15
< e [ = T
N L — 2=
= B - 7
£ os — Z
e} Zs
o . ; ; n
0 500 1000 1500 2000 2500
f (in Hz)

This is still true for case© since Wi(s)/Di(s)
does not preserve regularity: as s — +oo in Cg,
Wi(s)/D1(s)=exp (= (T1(s)= 2)ers) =1+ S5 1 + O(Y),
which contains a direct unit gain.

Table I recalls reflection function formula and il-
lustrates the caricatural approximation of the ref-
erence Rt on ¢ € [0.3,0.5] with two segments

delimited by fo = 0.3, fl = 0.4, fz = 0.5.
For the case®@, Ri5(s) = ﬁi;ﬁg = k12 and

r@(t) = k120(t) (Dirac pulse). For®, R@(s) =

1,2
S—Q,2

arp =% (M) (discontinuous IR). For ©,

R(C1)
R (s) = Late)rate) = 1798 +OGh)

2V T Ta(s)+T2(s) — (Ta(s)+T2(s))?
as s — 400, so that from the initial value theorem,

r1,2(07) = lim, 4o xR12(x) = 0 and 71 ,(0%) =

lim, 4 oo 2Ry 2(2) = T15%2 (C° but not C' IR).

In conclusion, considering a target smooth profile:

and r@(t) = 2 exp(aq ot) 1;>0 where

Ti—"o

Figure 4. Tmpedance radiation comparisons for R at z*.

Re (Z5)

Principle

(R2) C'-reqular junctions of Y-constant segments define the
first piecewise-approzimation which preserves the IR continu-
ity, independently of the segment number. Nearly-continuous
IR can be obtained by increasing the segment number so that
the mesh is refined and the coefficients oy, ny = co (R’(E;) -
R'(05))/(2R(£y)) become small enough.

A conjecture for higher continuity degrees is that a
Ck-regular profile corresponds to a C*~!-regular IR.

Note that, in the cases @-®), defining N segments
from a target profile R is simplify obtained by evalu-
ating R at chosen abscissa ¢,,—¢,....n. On the contrary,
deriving a Cl-regular piecewise Y-constant decompo-
sition is not easy. A tool which is specially dedicated
to optimize case (© is used in this paper (see [20]).

4. Radiation impedances for horns

The radiation impedance balances the energy which is
confined inside the pipe (a) and the radiated part (b).
In the frequency ranges where the behaviour (a)
largely dominates, the resonances quality is high
(making self-oscillations and note emissions easier).
Tuning the trade-off between resonances quality
and the radiated sound power (especially for modern
instruments) makes the radiation impedance study
crucial. Several models, compatible with straight

Figure 5. Flared horn radiation approximation, impedance
averaged on Sy (...) and second order model Z5 (-).

pipes (with radius a), have been established and com-
pared (see e.g. [21]). They are usually described by

P ~
vﬁ = ZLyrad = PCO Z (9)

where Z is dimensionless and given as a function of
ka = (27f/cp)a (the wave number k maps to the
imaginary Laplace variable s = 2inf = ikco/a).
Typical choices for 7 are (see Figure 4): a caricat-
ural real constant impedance Zy > 0, a flanged pis-
ton Z; =1— z‘hsza) 7£2H§,(€2aka) (J1 and H; are the
Bessel and Struve function of first order), a flanged
pipe Zs [21, (9)], an unflanged pipe Z3 [22, (V.16)].
Nevertheless, radiation impedances of straight
pipes are not well-adapted to flared horns. To take
account of spherical wavefronts, a correction factor de-
duced from the energy and the mass conservation been
proposed in [23] so that it recovers an exact result on

Re(Zs) when f— O Tt yields yields Z, = 5% 7

where §,~59.2 is the slope angle of R at z=2*.

To enhance the latter result, a model based on a
portion Sy of a sphere & with radius rg, pulsating
with a uniform velocity Vj, has been proposed
in [24] (see Figure 5). To be compatible with the
curvilinear horn model, the pressure is averaged on
Sp, which yields a closed-form formula [24, (23)] of
the load impedance. In this model, it is observed that:

(P4) The ripples in straight pipe radiation impedances disap-
pear for flared horns, if 0y is larger than about 55°. Radiation
impedances are lower for spherical cases than for planar ones.

In this configuration typical of many brass in-
struments, the impedance is accurately approximated
by the second order model (the error is negligible
w.r.t. to that due to the average) [24, (31)],
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Table I. Regularity of the reflection functions involved in Kelly-Lochbaum structures w.r.t. the geometry regularity.

oos
- - ‘arger‘:_/ — — target: R' ool | = — target: RT
@ plecewise plecewise z plecewise
. . = = om
Approximation of R g 3
= o001
o o o
03 0.35 0.4 0.45 05 03 0.35 0.4 0.45 05 03 0.35 0.4 0.45 05

Profile regularity discontinuous (straight pipes)

continuous (C”) (conical pipes)

Smooth (CT) (Y-constant)

— A A- a2 T1(s)—-Ta(s)
Ra2(s) Fi2= 354 oz Py () TT2(s)
ri2(t) = k1,2 0(t) a2 exp(agat) 1i>o no closed-form solution
Jump at t =0 infinite (k1,26") 1,2 0
IR regularity Dirac type discontinuous continuous (C”)

.y v\ 2
kro ol — ()
sy i V=——1+— < s,
2 14206 — (&)
with £(6y) = 0.020763 —0.144603 4+0.22162 +0.079960 +
0.72, a(fp) = [0.111365 — 0.636063+1.162603 —1.242603+
1.0830,+0.8788] ! and v.(6p) = [—0.19805+0.26076;—
0.42463-0.07946024+4.70405+0.022] 1 (6, is in radians).

(10)

5. Visco-thermal losses

Kirchhoff, first, has introduced thermal conduction ef-
fects, extended the Stoke’s theory and derived some
basic solutions in the free space and in a pipe. He gave
the exact general dispersion relation for a cylinder for
axisymmetric problems [25] (a generalized formula for
non symmetric versions is given in [26, eq. (56)]).

Simplified models have also been proposed: sep-
arated viscous and thermal boundary layers (by
Zwikker and Kosten [27, p.210], see [28, 29| for va-
lidity conditions), and the Cremer’s equivalent wall
admittance for plane waves [30] (which coincides with
the Kirchhoff’s result for rectangular waveguides such
that the boundary layer thickness is much lower than
the rectangle lengths).

Plane wave equations including these models have
been derived, which include a damping term involv-
ing a fractional time derivative (see the Lokshin equa-
tion [31] and [32]). Exact solutions of the Lokshin
equation have been derived in [33].

Adapting hypothesis (H1)in § 2 to the case of walls
with a Cremer’s wall admittance, a perturbed curvi-
linear version/ of (3) is obtained [12]. It is given by

R'(¢ 1 2e(l) 3
(az + 273((@)8@ - 507 - i )ag>p(£, £) = 0,(11)
where aﬁ is a fractional time derivative [33] and
E(f) = Iio%/)(l02
fects (ko = /I, +(y—1)VI, = 3x10"*m'/? in the
air). This equation is sometimes called the “Web-
ster (case € = 0)-Lokshin (case R’ = 0)” equation.

Considering T-constant segments on which ¢ —
g(¢) is approximated by its mean value, results ob-
tained in §3 are generalized by replacing equation 7
by (for segment number n)

I(s)? = (2)2 42, (Z) T, (12)

C

quantifies the visco-thermal ef-

no losses: e=0 (33, Fig. 5.5] Tosses: €=0.25  [33, Fig.6.7b]

LM

cSt/L Eadim‘. tim;)

I L1,

(‘,061‘, / r (a(’lﬂim .utixrrr‘)

Figure 6. Pressure transmission IR (p(L, t) =hx*,p(0,t)) for
a straight pipe loaded with a positive impedance at z=L.

Moreover, it has been proved that, even for constant
piecewise profiles [33] (case (@) in Table I):

(P4) The fractional derivative in equation 11 reqularizes the
impulse response of the input impedance, global reflection and
transmission. It also makes long memory responses appear
(decays slower than any decreasing exponential): Dirac pulses
are transfromed in C*-pulses which increase fastly first and
decay with long memory response (see Figure 6).

6. Application and results

In this section, results due to §2-5 are compared to a
reference, that is, a measured trombone bell. In Fig-
ure 7@), C!-regular T-constant decompositions of the
measured profile are accurately optimized [20] with
5 segments for z- and ¢- models (junction localiza-
tions o correspond to £€{0.2;0.4;0.48;0.55} in m).
In Figure 7(b), the input impedance (Mref) mea-
sured by the set up detailed in [1] is compared to
the refined model (RM) based on the curvilinear
Cl-regular, piecewise Y-constant, lossy propagation
model connected to the radiation impedance Z5. To
exhibit the contribution of each refinement, modifi-
cations are introduced separately on (RM): (ZM) use
of (z, R) rather than (¢,R); (FP)use of Z; (flanged
piston) rather than Zs; (NL) no losses (ko =0). Mod-
els (ZM) and (FP) yield significant peak deviations
on amplitudes and frequencies for f > 600Hz, and
(NL) emphasizes the peak amplitudes as expected.

Finally, Figure 7(c) corroborates results (R1) and
(R2): : the piecewise conical approximations eventu-
ally recover the accuracy of (RM) when refining the
mesh (here, for 40 cones).
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Figure 7. Results on a measured trombone bell.

7. CONCLUSIONS

The use of Cl'-reqular junctions of Y-constant seg-
ments governed by the curvilinear Webster-Lokshin
model connected to the radiation impedance of a pul-
sating portion of a sphere proves to be relevant for
the computation of the input impedance of smooth
bores. This is the result of the 4 refinements proposed
in sections 2 to 5 (in the sense that removing one of
them yields worse results). Compared to the contin-
uous piecewise conical segments, the C!-regular junc-
tions of Y-constant segments allow to significantly re-
duce the number of segments (other techniques can
be found in [34]). This is not a critical point for the
input impedance prediction from a profile, but it be-
comes the case for e.g. impedance optimization tools
or sound synthesis purposes.
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