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Abstract
This paper addresses the source-filter separation problem in the
context of causal/anticausal linear filter model of voice produc-
tion. An algorithm based on standard signal processing tools is
proposed for the class of quasi-periodic signals (voiced sounds
with quasi-stationary pitch). At first, a one-period frame of
an equivalent stationary infinitely periodic signal is built. A
particular attention is given to the problems of windowing and
temporal aliasing. Secondly, an exact pole decomposition of
this signal is computed within the class ofT0-periodic sig-
nals. Finally, the glottal closure instant (GCI) and the causal-
anticausal factorization of the initial frame are jointly estimated
from the latter decomposition.The performance of this algo-
rithm on synthetic signals is demonstrated and the performance
on real speech is discussed.In conclusion, application of this
new algorithm in a complete voice analysis-synthesis system is
discussed.
Index Terms: speech analysis, source-filter separation, causal-
anticausal decomposition

1. Introduction
The source-filter model of voice production, based on acous-
tic theory (see for example [1]), is composed of a source -the
glottal flow-, a filter corresponding to the vocal tract and a filter
corresponding to the radiation at the lips. Generally, in signal
processing applications, the radiation filter is a “derivative” fil-
ter and can be combined to the source signal. The source-filter
model is then reduced to thepair derivative glottal flow signal
model and vocal tract filter model.

The literature presents a wide variety of models for the
derivative glottal flow. One can read [2] or [3] for a re-
cent overview of these models. Most source models are tem-
poral parametric models, the most common one being the
Liljencrants-Fant (LF) model [4]-[5]. However, the glottal
source can also be modelled by a linear filter. In this case the
glottal flow is considered to be the response of the glottal filter
to an excitation made of Dirac pulses. In our study, we focus
on this family of models. As for the vocal tract model, most
models can be expressed as an all-pole filter.

As it exists a wide variety of parametric and non-parametric
source-filter models of voice production, it also exists a wide
variety of estimation methods. [1] and [6] present a quick
overview of such methods. The most common approach to esti-
mate the parameters of an all-pole model is the linear prediction
analysis [7].

In this paper, we investigate an approach to perform
an exact source-filter deconvolution based on an all-pole

causal/anticausal model, inside the spaceΠ of T0-periodic
signals. The model and the projection operatorP onΠ is pre-
sented in section2. Then, we introduce an operatorH which
converts poles into zeros onΠ (for the Z-transform). In sec-
tion 3, operatorH ◦ P is used as a first step of an algorithm
to estimate the full set of (non parametric) poles, from which a
subset of significant poles is selected jointly to the GCI estima-
tion. The exact reconstruction is verified on synthetic signals in
section4. Finally, in section5, after an illustration on real sig-
nals, we give perspectives to build a robust method based one
this approach.

2. Causal/anticausal model
2.1. Source model

The CALM model [8] describes the glottal source as an all-pole
filter, composed of one pair of complex conjugate anticausal
poles and one real causal pole. The anticausal part ofthe CALM
filter impulse response, which corresponds to the open phase, is
an exponentially increasing sinusoid.The causal part, which
corresponds to thereturnphase, is a decreasing exponential.

In our study, we consider the Z-transform of the glottal filter

H(z) =
1

(1− az−1)(z − b)(z − b̄)
, (1)

wherea (|a| < 1) is the real causal pole and{b, b̄} (|b| > 1) is
the pair of complex conjugate anticausal poles.

2.2. Vocal tract model

The vocal filter model considered here is composed of pairs of
complex conjugate causal poles.As usualin source-filter anal-
ysis (see for instance [7]), we choose the order of the vocal filter
such as the number of pair of complex conjugate polescorres-
pondsto the the Shannon frequency divided by1000. In other
words, the filter response contains one pair of poles (one for-
mant) for every1000Hz.

In our study, we write the Z-transform of the vocal filter

V (z) =
1∏K

k=1(1− αkz−1)
. (2)

In the following,ũ(z) stands for the Z-transform ofu(n).

2.3. Complete model

As we consider only infinitelyT0-periodic signals (spaceΠ),
the Z-transform of the complete signal model can be written

S(z) = GV (z)H(z)X̃T0,ti(z) , (3)



whereXT0,ti(n) stands for the Dirac combof periodT0 cen-
tered on timeti, andG is the gain.ti defines the location of the
commonly called glottal closure instants (GCIs).V (z)H(z) is
an all-polez function withK+3 poles and can be decomposed
into its causal and anticausal part

1

(1− az−1)
∏K

k=1(1− αkz−1)
and

1

(z − b)(z − b̄)
.

The parameters of the complete model are

θ = [G, a, b, {αk}k∈[1,K],K, T0, ti]
T
. (4)

3. An algorithm for all-pole
causal/anticausal decomposition

Our goal is to retrieve parametersθ that best describe a finite-
length extract of a speech signal in the sense of the model de-
scribed in section2. We suppose that this extract is quasi-
stationary, meaning we work on shortframesof speechon
which we can consider that glottal source and vocal filter pa-
rameters are invariant, typically20 ms segments. Here is the
description of the algorithm we developed for this problem.The
performances of this algorithm will be discussed in section4.

3.1. General description of the algorithm

The main difficulty of poles estimation comes from the infinite-
length of the support of pole-type signals. Finite-length sig-
nals have all-zeros Z-transforms. Hence, as we work in prac-
tice with finite-length signals, poles estimation seems doomed
to fail. Another way of seeing the problem is that, as it has been
highlighted in [9] and [10], windowing the signal has a drastic
influence on the Z-transform that is extremely difficult to study
analytically. The algorithm we propose offers a way to solve
this problem by transforming poles into zeros in the class of
periodic signals, making the support length finite.

The first step is to build an infinitely periodic signals from
the original extract.The second step is to turn the poles into
zeros with an appropriate operatorH. The third step is to fac-
torize the Z-transform ofH[s] to compute its zeros, which are
the poles of the Z-transform ofs. Then, a selection of the
meaningful zeros is performed. Finally, we can extract from
the factorization an estimation of the parameterti. A schematic
representation of this algorithm is presented in Figure1.
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Figure 1: General scheme of the all-pole causal/anticausalde-
composition algorithm

3.2. ClassC of infinitely periodic signals

In order to build an infinitely periodic signals(n), we need to
know the periodicity of the inputsignaly(n). This can be done
with the autocorrelation technique or any otherf0 estimation
algorithm. In the actual version of the algorithm, we consider
only integer periodsT0 (expressed in samples).

Signals(n) of classC is defined fromy by

s(n) = P [y](n) =
def

(y(n)×wT0
(n)

)
∗XT0,ν(n) (5)

where∗ stands for the convolution operator andν is a chosen
instant representing the beginning of one period.wT0

(n) is a
window that can be chosen to “mean” several periods of the
signaly(n) but must verify the property

+∞∑

k=−∞

wT0
(n− kT0) = 1 ∀n ∈ Z . (6)

This property ensures that, ify(n) is an truncated version of
an infinitely periodic signal,s(n) retrieves the exact original
infinitely periodic signal. For example, one can choose

(W1) wT0
(n) = 1[ν,ν+T0−1](n) or

(W2) wT0
(n) = cos2

(
(n−ν)π

2T0

)
1[ν−T0,ν+T0−1](n) .

Note that (W1) selects one period of the signal beginning at the
instantν, (W2) averages two periods of the signal around the
instantν.

3.3. Turning poles into zeros

Turning poles into zeros can be done using the operator

H : s ∈ Π 7→ DFT
−1

(
1

DFT (s)

)
∈ Π (7)

wheres is the infinitely periodic signal (5), DFT stands for
the Discrete Fourier Transform andDTF−1 for its inverse.It
is obvious thatH̃[s](z) is the inverse of̃s(z). Hence, poles of

s̃(z) are the zeros of̃H[s](z) and vice versa.

3.4. Extracting the desired poles

Computing the zeros of the signalH[s](n) is possible with nu-
merical methods. As we do not want that the periodicity of the
signals(n) interfere with the poles research, we simply have
to factorize the Z-transform of one period ofH[s](n), noted

H̃[s](z). In practice,H[s] is computed over one period ofs(n)
using the FFT algorithm. The resulting signalH[s](n) is then
factorizedwith a numerical roots finder to compute its zeros.
These zeros are the poles ofs̃(z).

The only question left is how to select the poles. The com-

plete factorization ofH̃[s](z) givesT0 − 1 poles. However,
the model we proposed hasK + 3 poles. Three methods are
proposed to reduce and/or impose the number of poles.

(M1) The factorization isperformedon K + 4 consecutive

coefficients inH̃[s](z). The selection of theseK + 4
coefficients is done by minimizing the reconstruction er-
ror, which is defined as the 2-norm of the difference be-
tween the complex spectra of the original signal and the
reconstructed signal.



(M2) The factorization isperformedon K + 4 consecutive
coefficients inH̃[s](z) (consecutive in the sense of circu-
lar permutations), ensuring to retrieveK + 3 poles. The
selection of theseK + 4 coefficients is done by mini-
mizing the norm (n-norm, n ∈ N̄

∗) of the unselected

coefficients inH̃[s](z). This method amounts to select
the most influential coefficients.

(M3) The factorization isperformedon the wholeH̃[s](z).
TheK + 3 poles with the maximum residues are selec-
ted, whichamounts to select the most influential poles.

Note that (M2) and (M3) gives us the liberty to let the algo-
rithm decide the number of poles. It simply needs to replace
the minimization of the remaining coefficients (or residues) by
thresholding the remaining coefficients (or residues).

Finally, the separation between the causal and the anticausal
component is automaticallyachievedby selecting the pole in-
side the unit circle for the causal component and outside the
unit circle for the anticausal component. Hence, it is possible to
separate the anticausal part of the glottal source from the rest of
the signal.

3.5. Estimating the parameterti

Estimating the parameterti amounts to detecting the position
of the unique GCI inside the period ofs(n). It appears that
this is automatically done by the algorithm in the previous step.
The factorization of̃H[s](z) givesMc causal poles (of absolute
value smaller than one) andMa anticausal poles (of absolute
value greater than one). Usingthe definition of the causality,
we can recoverti,

ti = ν + dopt +Ma , (8)

whereν is the window position chosen in section3.2anddopt is
the position of the first coefficient selected by the (Mx) method
in section3.4.

3.6. General remarks on the algorithm

As we’ll see on section4, this algorithm lets us exactly recover
the parameters for signals corresponding to the model,in the
“ideal case”. Moreover, one can easily show that, in this case,
the algorithm results is independent of the choice of

• wT0
as long as it verifies (6),

• ν as long as the support ofy contains the support ofwT0
.

However, these choices (and the choice between (M1), (M2)
and (M3)) can be very importantin other cases. In particular,
we observed that (M1)gives the best resultsbut it’s also the
most resources-consuming method. It is interesting to highlight
that in the ideal case,̃s(z) is precisely the same asGV (z)H(z)
(for the right choice ofν). Another way of saying this is that
one period ofs(n) is a periodic summation of the impulse re-
sponse to the filterGV (z)H(z) and then contains the whole
information about the filter.

4. Tests on synthetic signals
We build an “almost ideal case” by filtering a very long Dirac
comb of periodT0 and thenextracta few periods in the middle
of the filtered signal. This ensures that the part of the infinite-
response of the filter which is not taken into account is negligi-
ble. The glottal source and filter parameters are chosen within
classic human speech values. Complex conjugate pairs of poles

are generated from frequency and Q factor values. Figure2 il-
lustrates the behaviour of the algorithm with choices

• ν set at the half of the length of signaly,

• (W2),

• (M2) with 2-norm,

on a synthetic signal with the parameters

• Fs = 10 kHz, f0 = 200 Hz,G = 1, K = 2× 4

• a = 0.8, fb = 300 Hz,Qb = 3,

• {fk} = {0.9, 1.2, 3, 4} kHz, {Qk} = {5, 15, 40, 15}.
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Figure 2: Illustration of the algorithm. From top to bottom:10
periods of an “almost ideal case” signal with GCIs (x) and the
choice ofν (|), y(n).wT0

(n) with the choice (W2), one period
of s(n), H[s](n) with the optimal choice ofK+3 coefficients.

Results of the algorithm are presented on Figure3. One can
see that the reconstruction is perfect for this almost idealcase.
Poles are exactly estimated and the signal is very preciselyre-
constructed. Note that the GCIs are perfectly estimated.

The algorithm is working perfectly in the ideal case, we
tested the algorithmwith slight shifts from the ideal case. Still
in synthetic speech, we tested the influence of

• a bad estimation of the fundamental periodT0,

• the presence of noise in the signal,

• the number of estimated poles.

Unfortunately, the two first bring drastically down the perfor-
mances of the algorithm. A slight error in theT0 estimation
makes the poles estimations far from the truth. Introducing
some noise in the signal makes the reconstructed signal tend
to a flat-spectrum signal. As for the last point, the algorithm
can’t reconstruct the signal if the the number of estimated poles
is smaller than the real number of poles but gives perfect results
if the number of estimated poles is greater than the real number
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Figure 3: Results of the algorithm. From top to bottom: signal
y(n) (-) and reconstructed signalŷ(n) (- -) along with GCIs (x)
and estimated GCIs (+), poles of the model (x) and estimated
poles (+).

of poles. In thislattercase, the algorithm finds some poles that
are not in the original signal but with either very small abso-
lute value or very small residue, so that their influence on the
reconstruction is negligible.

5. Discussion on robustness
As one can guess given the results with non ideal cases, our al-
gorithm is still very uncertain for real speechsignals. We tested
it on sustained vowels pronounced by a male speaker in a low
register. Figures4 and 5 present results of the analysis on a
segment of a vowel /e/ with a fundamental frequency of73 Hz.
Figure4 presents the results obtained using a model with 33
poles and Figure5 presents the results obtained using a model
with 13 poles. This latter corresponds to the classic choicede-
scribed in section2. If the performances are globally poor, we
can observe several informative behaviours of the algorithm. At
first, with a low order model, the causal/anticausal decomposi-
tion tends to correspond to a low frequency / high frequency de-
composition, which is globally coherent with the glottal/source
decomposition. Then, we can observe that the glottal formant
frequency seems to be well estimated in each case. Finally, we
can observe that the reconstruction is much better for the low
frequencies than for the high frequencies. This is probablydue
to the sensibility of the algorithm to the noise.

6. Conclusion and perspectives
We presented a new algorithm forparametric causal/anticausal
decomposition of speech signals. We demonstrated that the
algorithm is perfectly effective for signalsof classC. This
algorithm led us to define a new operator onC: operatorH
which turns poles into zeros and is easy to implement.Unfortu-
nately, we saw that the algorithm is severely sensitive to noise
and errors on theT0 estimation. However, some regularization
techniques are under consideration and may improve the per-
formances of this algorithm. Firstly, the operatorH could be
computed using a Wiener deconvolution to decrease the sensi-
tivity to noise. Another perspective to make the method more
robust would consist of regularizingH ◦ P by considering a
model with a reduced number of poles from the beginning. At
last, a variant of this algorithm taking into account the noise in
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Figure 4: Results of the algorithm for real speech with high
order model. Top: Spectrum of original (-) and reconstructed
signal (- -). Middle: Spectrum of causal (- -) and anticausal (-)
components. Bottom: estimated poles.
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Figure 5: Results of the algorithm for real speech with low order
model. See Fig.4.

the signal and using a likelihood minimization on the complex
cepstrum is currently being developed.
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