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Abstract

This paper addresses the source-filter separation probléme i
context of causal/anticausal linear filter model of voicedurc-
tion. An algorithm based on standard signal processing tigol
proposed for the class of quasi-periodic signals (voicechds
with quasi-stationary pitch). At first, a one-period framie o
an equivalent stationary infinitely periodic signal is builA
particular attention is given to the problems of windowingla
temporal aliasing. Secondly, an exact pole decompositfon o
this signal is computed within the class @¥-periodic sig-
nals. Finally, the glottal closure instant (GCI) and theszdu
anticausal factorization of the initial frame are jointhtienated
from the latter decompositionThe performance of this algo-
rithm on synthetic signals is demonstrated and the perfocma
on real speech is discusselh conclusion, application of this
new algorithm in a complete voice analysis-synthesis gysse
discussed.

Index Terms: speech analysis, source-filter separation, causal-
anticausal decomposition

1. Introduction

The source-filter model of voice production, based on acous-
tic theory (see for examplel]), is composed of a source -the
glottal flow-, a filter corresponding to the vocal tract andtefi
corresponding to the radiation at the lips. Generally, gnal
processing applications, the radiation filter is a “denetfil-

ter and can be combined to the source signal. The source-filte
modelis then reduced to thgair derivative glottal flow signal
model and vocal tract filter model

The literature presents a wide variety of models for the
derivative glottal flow. One can rea®][or [3] for a re-
cent overview of these models. Most source models are tem-
poral parametric models, the most common one being the
Liljlencrants-Fant (LF) model4]-[5]. However, the glottal
source can also be modelled by a linear filter. In this case the
glottal flow is considered to be the response of the glottarfil
to an excitation made of Dirac pulsetn our study, we focus
on this family of models. As for the vocal tract model, most
models can be expressed as an all-pole filter.

As it exists a wide variety of parametric and non-parametric
source-filter models of voice production, it also exists @ewi
variety of estimation methods. 1] and [6] present a quick
overview of such methods. The most common approach to esti-
mate the parameters of an all-pole model is the linear ptiedic
analysis 7].

In this paper, we investigate an approach to perform
an exact source-filter deconvolution based on an all-pole
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causal/anticausal model, inside the spateof Ty-periodic
signals. The model and the projection operd®oon II is pre-
sented in sectio?. Then, we introduce an operatéf which
converts poles into zeros di (for the Z-transform). In sec-
tion 3, operatorH o P is used as a first step of an algorithm
to estimate the full set of (non parametric) poles, from \ukac
subset of significant poles is selected jointly to the GChesst
tion. The exact reconstruction is verified on synthetic algin
sectiond. Finally, in sectiorb, after an illustration on real sig-
nals, we give perspectives to build a robust method based one
this approach.

2. Causal/anticausal model
2.1. Source model

The CALM model B] describes the glottal source as an all-pole
filter, composed of one pair of complex conjugate anticausal
poles and one real causal pole. The anticausal p#ned€ALM
filter impulse responsevhich corresponds to the open phase, is
an exponentially increasing sinusoidhe causal partwhich
corresponds to theeturnphase, is a decreasing exponential.

In our study, we consider the Z-transform of the glottal filte
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wherea (Ja| < 1) is the real causal pole ad@, b} (|b] > 1) is
the pair of complex conjugate anticausal poles.

2.2. Vocal tract model

The vocal filter model considered here is composed of pairs of
complex conjugate causal poless usualin source-filter anal-
ysis (see for instancé]), we choose the order of the vocal filter
such as the number of pair of complex conjugate poteses-
pondsto the the Shannon frequency divided 1300. In other
words, the filter response contains one pair of poles (one for

mant) for everyl000 H z.
In our study, we write the Z-transform of the vocal filter
1
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In the following, (=) stands for the Z-transform af(n).
2.3. Complete model

As we consider only infinitelylv-periodic signals (spacH),
the Z-transform of the complete signal model can be written

S(z) = GV (2)H (2)x, 1, () , 3)



whereIllz, ¢, (n) stands for the Dirac combf period7; cen-
tered on time;, andG is the gain.; defines the location of the
commonly called glottal closure instants (GCI8)(z) H (z) is
an all-polez function with K + 3 poles and can be decomposed
into its causal and anticausal part
1 1
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The parameters of the complete model are

9 - [G7 a, b7 {ak}ke[l,K]7 K7 TOyti]T .

(4)

3. An algorithm for all-pole
causal/anticausal decomposition

Our goal is to retrieve parametefghat best describe a finite-
length extract of a speech signal in the sense of the model de-
scribed in sectior?. We suppose that this extract is quasi-
stationary, meaning we work on shdramesof speechon
which we can consider that glottal source and vocal filter pa-
rameters are invariant, typicalB0 ms segments. Here is the
description of the algorithm we developed for this probl&ie
performances of this algorithm will be discussed in section

3.1. General description of the algorithm

The main difficulty of poles estimation comes from the innit
length of the support of pole-type signals. Finite-lengt s
nals have all-zeros Z-transforms. Hence, as we work in prac-
tice with finite-length signals, poles estimation seemsnaked
to fail. Another way of seeing the problem is that, as it haasnbe
highlighted in P] and [10], windowing the signal has a drastic
influence on the Z-transform that is extremely difficult todst
analytically. The algorithm we propose offers a way to solve
this problem by transforming poles into zeros in the class of
periodic signals, making the support length finite.

The first step is to build an infinitely periodic signafrom
the original extract.The second step is to turn the poles into
zeros with an appropriate operatdr The third step is to fac-
torize the Z-transform of{[s] to compute its zeros, which are
the poles of the Z-transform of. Then, a selection of the
meaningful zeros is performed. Finally, we can extract from
the factorization an estimation of the parameterA schematic
representation of this algorithm is presented in Figure
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Figure 1: General scheme of the all-pole causal/anticalesal
composition algorithm

3.2. ClassC of infinitely periodic signals

In order to build an infinitely periodic signaln), we need to
know the periodicity of the inpusignaly(n). This can be done
with the autocorrelation technique or any othfgrestimation
algorithm. In the actual version of the algorithm, we coesid
only integer periodd, (expressed in samples).

Signals(n) of classC is defined fromy by

s(n) =Pll(n) = (y(n) x wr,(n)) * Uz, v (n) ~ (5)

def
wherex stands for the convolution operator ands a chosen
instant representing the beginning of one periag, (n) is a

window that can be chosen to “mean” several periods of the
signaly (n) but must verify the property
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This property ensures that, 4f(n) is an truncated version of
an infinitely periodic signals(n) retrieves the exact original
infinitely periodic signal. For example, one can choose

(W1) wry(n) = Lp,psy—11(n) OF
(W2) wr,(n) = cos® (%) Lp—19,0+19-11 (1) -

Note that (W1) selects one period of the signal beginninpeat t
instantv, (W2) averages two periods of the signal around the
instanty.

3.3. Turning poles into zeros

Turning poles into zeros can be done using the operator

1
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where s is the infinitely periodic signalg), DF'T stands for
the Discrete Fourier Transform a7’ F~* for its inverse. It
is obvious thatH[s](z) is the inverse of(z). Hence, poles of

5(z) are the zeros of{[s](z) and vice versa.

3.4. Extracting the desired poles

Computing the zeros of the sign#l[s](n) is possible with nu-
merical methods. As we do not want that the periodicity of the
signal s(n) interfere with the poles research, we simply have
to factorize the Z-transform of one period ®f[s](n), noted
H[s](2). In practice H[s] is computed over one period 8fn)
using the FFT algorithm. The resulting sigrid(s](n) is then
factorizedwith a numerical roots finder to compute its zeros.
These zeros are the polesigf).

The only question left is how to select the poles. The com-
plete factorization ofH[s](z) givesTy — 1 poles. However,
the model we proposed hdé + 3 poles. Three methods are
proposed to reduce and/or impose the number of poles.

(M1) The factorization igperformedon K + 4 consecutive

coefficients inH[s](z). The selection of thes& + 4
coefficients is done by minimizing the reconstruction er-
ror, which is defined as the 2-norm of the difference be-
tween the complex spectra of the original signal and the
reconstructed signal.



(M2) The factorization isperformedon K + 4 consecutive

coefficients ir{[s](z) (consecutive in the sense of circu-
lar permutations), ensuring to retrief&+ 3 poles. The
selection of thesd< + 4 coefficients is done by mini-

mizing the norm ¢-norm, n € N*) of the unselected

coefficients inH[s](z). This method amounts to select
the most influential coefficients.

The factorization isperformedon the Wholeﬁg](z).
The K + 3 poles with the maximum residues are selec-
ted whichamounts to select the most influential poles.

Note that (M2) and (M3) gives us the liberty to let the algo-
rithm decide the number of poles. It simply needs to replace
the minimization of the remaining coefficients (or resigusg
thresholding the remaining coefficients (or residues).

Finally, the separation between the causal and the anéitaus
component is automaticallgchievedby selecting the pole in-
side the unit circle for the causal component and outside the
unit circle for the anticausal component. Hence, it is daedo
separate the anticausal part of the glottal source frometbteof
the signal.

(M3)

3.5. Estimating the parametert;

Estimating the parametéf amounts to detecting the position
of the unique GCI inside the period efn). It appears that
this is automaticall)@ne by the algorithm in the previoteps

The factorization of{[s](z) gives M. causal poles (of absolute
value smaller than one) antl, anticausal poles (of absolute
value greater than one). Usitige definition of the causality,
we can recovet;,

ti:V+dopt+Ma7 (8)
wherev is the window position chosen in sectiBr2andd.,: is
the position of the first coefficient selected by the (Mx) noeth
in section3.4.

3.6. General remarks on the algorithm

As we'll see on sectiod, this algorithm lets us exactly recover
the parameters for signals corresponding to the madehe
“ideal case”. Moreover, one can easily show that, in thigcas
the algorithm results is independent of the choice of

e wr, as long as it verifiesd),
e v aslong as the support gfcontains the support @, .

However, these choices (and the choice between (M1), (M2)
and (M3)) can be very importai other casesIn particular,

we observed that (M1yives the best resultisut it's also the
most resources-consuming method. It is interesting toligigh
that in the ideal casé(z) is precisely the same &8V (z) H(z)

(for the right choice ofv). Another way of saying this is that
one period ofs(n) is a periodic summation of the impulse re-
sponse to the filteGGV (z) H(z) and then contains the whole
information about the filter.

4. Tests on synthetic signals

We build an “almost ideal case” by filtering a very long Dirac
comb of periodl, and therextracta few periods in the middle
of the filtered signal. This ensures that the part of the itgini
response of the filter which is not taken into account is igegli
ble. The glottal source and filter parameters are choserirwith
classic human speech values. Complex conjugate pairs@$ pol

are generated from frequency and Q factor values. Figiire
lustrates the behaviour of the algorithm with choices

e v set at the half of the length of signg|
o (W2),
e (M2) with 2-norm,
on a synthetic signal with the parameters
e ['s=10kHz, fo =200Hz,G =1, K =2 x4
e a=0.8, fo =300 Hz,Q = 3,
o {fr} =1{0.9,1.2,3,4} kHz, {Qx} = {5, 15,40, 15}.
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Figure 2: lllustration of the algorithm. From top to bottod0
periods of an “almost ideal case” signal with GC!$ &nd the
choice ofv (|), y(n).wr, (n) with the choice (W2), one period
of s(n), H[s](n) with the optimal choice ofs + 3 coefficients.

Results of the algorithm are presented on FigBireOne can
see that the reconstruction is perfect for this almost idaaé.
Poles are exactly estimated and the signal is very precisely
constructed. Note that the GCls are perfectly estimated.

The algorithm is working perfectly in the ideal case, we
tested the algorithrwith slight shifts from the ideal casé&till
in synthetic speech, we tested the influence of

e a bad estimation of the fundamental periGd
e the presence of noise in the signal,
e the number of estimated poles.

Unfortunately, the two first bring drastically down the poeff
mances of the algorithm. A slight error in tHg estimation
makes the poles estimations far from the truth. Introducing
some noise in the signal makes the reconstructed signal tend
to a flat-spectrum signal. As for the last point, the algonith
can't reconstruct the signal if the the number of estimat#dg

is smaller than the real number of poles but gives perfecites

if the number of estimated poles is greater than the real Bumb
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Figure 3: Results of the algorithm. From top to bottom: signa
y(n) (-) and reconstructed signgain) (- -) along with GCls {)
and estimated GClst|, poles of the modelx) and estimated
poles ().

of poles. In thidattercase, the algorithm finds some poles that
are not in the original signal but with either very small abso
lute value or very small residue, so that their influence @n th
reconstruction is negligible.

5. Discussion on robustness

As one can guess given the results with non ideal cases,-our al
gorithm is still very uncertain for real speesignals We tested

it on sustained vowels pronounced by a male speaker in a low
register. Figuregl and5 present results of the analysis on a
segment of a vowel /e/ with a fundamental frequencypHz.
Figure4 presents the results obtained using a model with 33
poles and Figur& presents the results obtained using a model
with 13 poles. This latter corresponds to the classic chd&e
scribed in sectior2. If the performances are globally poor, we
can observe several informative behaviours of the algoritht

first, with a low order model, the causal/anticausal dec@ipo
tion tends to correspond to a low frequency / high frequerey d
composition, which is globally coherent with the glottalisce
decomposition. Then, we can observe that the glottal forman
frequency seems to be well estimated in each case. Finadly, w
can observe that the reconstruction is much better for tive lo
frequencies than for the high frequencies. This is probedhby

to the sensibility of the algorithm to the noise.

6. Conclusion and perspectives

We presented a new algorithm fparametric causal/anticausal
decomposition of speech signaldVe demonstrated that the
algorithm is perfectly effective for signalsf classC. This
algorithm led us to define a new operator Gn operatorH
which turns poles into zeros and is easy to implementortu-
nately, we saw that the algorithm is severely sensitive iseno
and errors on th&, estimation. However, some regularization
technigues are under consideration and may improve the per-
formances of this algorithm. Firstly, the operatdrcould be
computed using a Wiener deconvolution to decrease the-sensi
tivity to noise. Another perspective to make the method more
robust would consist of regularizing o P by considering a
model with a reduced number of poles from the beginning. At
last, a variant of this algorithm taking into account theseain
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Figure 4: Results of the algorithm for real speech with high
order model. Top: Spectrum of original) @and reconstructed
signal ¢-). Middle: Spectrum of causatl {) and anticausal-{
components. Bottom: estimated poles.
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Figure 5: Results of the algorithm for real speech with lodesr
model. See Figd.

the signal and using a likelihood minimization on the comple
cepstrum is currently being developed.
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