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Abstract

The glottal shape parameter Rd provides a one-
dimensional parameterisation of the Liljencrants-Fant
(LF) model which describes the deterministic component
of the glottal source. In this paper we first propose to esti-
mate the Rd parameter by means of extending a state-of-
the-art method based on the phase minimization criterion.
Then we propose an adaption of the standard Rd param-
eter regression which enables us to coherently assess the
normal and the upper Rd range. By evaluating the confu-
sion matrices depicting the error surfaces of the involved
different Rd parameter estimation methods and by objec-
tive measurement tests we verify the overall improvement
of one new method compared to the state-of-the-art base-
line approach.
Index Terms: glottal excitation source, shape parameter,
voice quality, confusion matrices, Rd regression

1. Introduction
The voice quality of human speech production is related
to the glottal source, that is the vibration mode of the vo-
cal folds. The convolution of the glottal excitation wave-
form with the impulse responses of the vocal-tract filter
(VTF) and the filters defining the radiation at the lips and
nostrils level results in the human speech signal. Much
effort has been conducted by the speech research commu-
nity to establish a reliable, robust and efficient method to
extract the deterministic source from a recorded speech
signal. Various algorithms have been proposed for this
challenging task, as summarized in [1]. Due to the com-
plexity of the problem, the robust estimation of the glottal
source is still an open research question.

Similar to the minimum/maximum-phase decompo-
sition paradigm, like Complex Cepstrum (CC) [2] or
Zeros of the Z-Transform (ZZT) [3], we exploit the
different properties of the phase spectra of the glottal
source and vocal tract filter models. We propose three
phase minimization methods extending the method pro-
posed in [4, 5] to estimate the glottal shape parameter
Rd [6] describing the parameters of the glottal source
model LF [7]. The first two proposed methods extent
the phase minimization paradigm by applying different
differentiation-integration schemata. The third proposed
method achieves a more robust estimation of the glottal
shape parameter Rd by means of superimposing the eval-

uation errors calculated by the different phase error meth-
ods. The objective of this paper is to identify the methods
achieving the most reliable Rd estimation. For the usage
of the normal and upperRd range we propose to adapt the
equations defining the predicted waveshape R∗p param-
eter set for the regression of the glottal shape parameter
Rd. Additionally be propose to extent the Rd parameter
range. The experimental findings show that the methods
are as well beneficial to estimate Rd for abducted phona-
tions to describe with the upper Rd range breathy voice
qualities at word or speaking pause boundaries.

The article is organized as follows. In Section 2 the
model for the human speech production is introduced. It
is utilized in Section 3 in which the baseline and the dif-
ferent proposed extentions for the glottal pulse parameter
estimation methods are explained. The adaptation and
extention of the Rd parameter regression is explained in
Section 4. The confusion matrices of the different phase
minimization methods are evaluated in Section 5. Section
6 presents an objective evaluation validating the improve-
ment for one method.

2. Voice production model
The human voice production model S(ω) as in [5]
consists of the acoustic excitation at the glottis level
G(ω), the resonating filter of the vocal tract C(ω), the
nasal and lip radiation L(ω) and the harmonic excita-
tion H(w, f0, D) parameterized by the fundamental fre-
quency f0 and the delay between pulse sequence and
frame center in terms of the phase delay D of the fun-
damental:

S(ω) = G(ω) · C(ω) · L(ω) ·H(w, f0, D) (1)

Following Eq. 1, we contruct a discrete spectrum Sk
of a single period as in [4] with each bin k represent-
ing a single quasi-harmonic sinusoidal partials k. These
partials are estimated from a Fourier transform of a win-
dowed speech signal. The voice production model of the
deterministic component of the speech signal is expressed
by:

Sk = ejkφ ·GRdk · Ck− · Lk (2)
The linear-phase term ejkφ defines the time position

of the glottal pulse in the period. GRdk represents the LF
glottal model, parameterized by the Rd parameter. The
vocal-tract filter Ck− is assumed to be minimum-phase.
The term Lk represents the radiation at the lips and nos-



trils level. According to [8] the filter Lk can be approxi-
mated by a time derivative and is thus set to Lk = jk.

The VTF can be expressed with respect to the shape
parameter Rd of the glottal model by division in the fre-
quency domain:

CRdk = E−
(

Sk
GRdk · jk

)
(3)

The operator E−(.) is the minimum-phase realization
of its argument, calculated by using the real cepstrum [9].

3. Glottal shape parameter estimation
The VTF expression CRdk of Eq. 3 is inserted into the
voice production model of Eq. 2 to form the mathematical
basis for the definition of the convolutive residual R(θ,φ)

k
in Eq. 4. The shape of the glottal pulse is denoted by
θ, while φ refers to the position of the glottal pulse with
respect to the fundamental period in the time domain [5].

R
(θ,φ)
k =

Sk
ejkφ ·Gθk · jk · E−(Sk/Gθk · jk)

(4)

The division of Sk, Gθk and jk by their respective
minimum-phase versions flattens their amplitude spec-
trum. The remaining convolutive residual R(θ,φ)

k is thus
all-pass for any chosen glottal model. Its modulus is of
unit amplitude: |R(θ,φ)

k | = 1 ∀ k, θ, φ. Therefore, a mis-
match of the model parameters to describe the observed
speech signal affects only the phase spectrum of R(θ,φ)

k .
The result is that the better the estimate of the fitted voice
model Sk, the closer is the convolutive residual R(θ,φ)

k
to a Dirac delta function with a flat amplitude and zero
phase spectrum. Hence, the smaller the phase spectrum
of R(θ,φ)

k the closer is the Rd value utilized to synthesize
the glottal model Gθk to the true glottal shape contained
in the observed signal [5]. This solution is unique as long
as the glottal pulse that is present in the speech signal is
covered by the Rd parameter space.

The main problem with the convolutive residual
R

(θ,φ)
k is its dependency on the pulse position φ. As

shown in [4] we can remove this dependency by means
of applying a 2nd order difference operator

∆2∠Xk = ∠
Xk+1 ·Xk−1

X2
k

(5)

centered on each of the harmonics k of the convolutive
residual in the complex plane. This removes the linear-
phase component of the observed phase spectrum and re-
moves therefore the dependency to φ. Only the deviation
from a linear phase trend remains. To find the optimal
Rd parameter the phase of the convolutive residual can
be compared to the optimal target value 0.

Note, however, that the difference operator of Eq. 5
not only removes the linear phase. It also applies a high-
pass filter to the phase difference that will be used to de-
termine the optimal Rd parameter. To compensate this
high-pass filter a phase integration can be applied

∆−1Xk = ∠
k∏

n=1

Xk (6)

that invertes the high-pass filter without re-establishing
the linear phase trend. The main objetive of the follow-
ing experimental investigation is to determine the number
of integration steps to be performed that creates the ob-
jective function leading to the most reliableRd estimates.

For this we compare setups with L integrations with
L being in the set [0,1,2]. These objective functions
will be denoted MSPDaIb with a being the number of
differentiations and b representing the number of inte-
grations. The different objective functions described as
[MSPD2I0, MSPD2I1, MSPD2I2] present a different and
not necessarily correlated error surface.

The phase slope is set to zero for each method as a re-
sult of the preceeding differentiation operations in order
to be independent to the position of the glottal pulse with
respect to the window position in time. Each integration
step leads to a different weighting of the phase errors of
the convolutive residual. The emphasis of the phase dis-
tortion by the shape error optimizes the shape parameter.

Objective function MSPD2I0: The objective func-
tion to minimize the results of Eq. 5 is the proposed new
method MSPD2I0:

MSPD2I0(θ,N) =
1
N

N∑
k=1

(
∆2∠Rθk

)2
(7)

Objective function MSPD2I1: An anti-difference
operation (∆−1)

∆−1∆2∠Xk = ∠
k∏

n=1

Xn+1 ·Xn−1

X2
n

(8)

applied to the second order phase difference of Eq. 5
performs an integration according to Eq. 6 to retrieve
again the first order frequency derivative representation.

The results of Eq. 8 are evaluated by the correspond-
ing objective function named MSPD2 in [4, 5]. In this
study we refer to this state-of-the-art baseline method by
MSPD2I1 to be consistent with our naming convention:

MSPD2I1(θ,N) =
1
N

N∑
k=1

(
∆−1∆2∠Rθk

)2
(9)

Objective function MSPD2I2: Applying two anti-
difference operators (∆−2) to the second order phase dif-
ference of Eq. 5 computes the twice differentiated and
twice integrated phase term:

∆−2∆2∠Xk = ∠
k∏

n=2

k∏
n=2

Xn+1 ·Xn−1

X2
n

(10)

The corresponding objective function to minimize the
results of Eq. 10 is the proposed new method MSPD2I2:

MSPD2I2(θ,N) =
1
N

N∑
k=1

(
∆−2∆2∠Rθk

)2
(11)

MSPD2I2 is the most selective and most distinctive
among the different phase minimization methods and
weights slight differences of the matched glottal model
to the observed glottal source the most.

Objective function MSPD2IX: It might be benefi-
cial to combine error surfaces of different objective func-
tions by means of



MSPD2IX(w0,w1,w2) = w0 ·MSPD2I0 +
w1 ·MSPD2I1 + w2 ·MSPD2I2 (12)

In this paper we will demonstrate that the weighting
w0=w1=w2=1/3 slightly improves the robustness of the
method. Not presented are the results of an investigation
showing that more refined variations of the weighting se-
quence do not lead to major improvements. Therefore we
will present only results obtained with equal weighting
and denote this objective function as MSPD2IX.

4. Rd regression adaptation and extention
The derivation of the predicted waveshape R∗p parame-
ter set as in [6] describes the LF model from the glottal
shape parameter Rd by means of a statistical regression.
To derive the predicted waveshape R∗p parameters from
an estimatedRd value we consider equations 2 to 4 of [6]
for the normalRd rangeRd<2.7 and equations 8 to 11 for
the upper Rd range Rd>2.7 of [10]. However, follow-
ing the proposed equations defining the waveshape R∗p
parameter set for the upper Rd range and joining them
at the interconnection point Rd=2.7 with the waveshape
R∗p parameter set for the normal Rd range results in a
discontinuity and does not derive the expected contour
of the waveshape parameters Rkp and Rgp as shown in
Fig. 2 of [6]. Our proposed set of equations to define the
adaptation of the waveshape parameter regression of Rd
for an extended Rd range of [0.01 6] is:

Rap =


0 ∀ Rd<0.21
(−1 + 4.8 ·Rd)/100 ∀ 0.21≤Rd≤2.70
(32.3/Rd) /100 ∀ Rd>2.70

(13)

OQupp = 1− 1/(2.17 ·Rd) ∀ Rd>2.7 (14)

Rkp =

{
(22.4 + 11.8 ·Rd)/100 ∀ Rd≤2.70
(2 ·Rgp ·OQupp)− 1.04 ∀ Rd>2.70

(15)

Rgp =


0.25·Rkp

0.11·Rd
0.5+1.2·Rkp

−Rap

∀ Rd≤1.85

0.00935 + 596·10−2

7.96−2·OQupp
∀ Rd>1.85

(16)

5. Rd confusion matrices
To understand the properties of the different objective
functions we will show and discuss examples of their Rd
parameter confusion matrices [5] which show the sensi-
tivity of the objective functions with respect to the vari-
ation of Rd over its complete range. According to [11]
the robustness of the Rd estimate depends mainly on the
fundamental frequency f0, the first formant F1 and the
glottal formant Fg . As experimental setup we simulate
the first formant F1 by convolving the synthetic glottal
pulses GRd with a 2-pole filter having a pole position at
800 Hz and radius 0.98, with f0 set to 80 Hz.

We build as in [5] a confusion matrix to detect ambi-
guities of the functions for phase minimization by calcu-
lating each Rd value on a grid against all other Rd values

on the same grid. The resulting error surface constitutes
a proof-of-concept of how well the method under investi-
gation is able to distinguish between the shape of a fitting
or mismatching glottal formant of the synthetic model,
under the influence of the first formant.
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Figure 1: Rd confusion matrices for N=7 partials

An ideal error surface would have a tiny black error
valley at the matching diagonal axis with the rest of the
error surface in clear white colour indicating a complete
mismatch. Since it is not predictable how many stable
sinusoidal partials are observable from the speech signal
for each frame, we present due to space constraints only
the case of 7 partials as a realistic expectation before the
harmonic content is masked by noise. Note that for other
numbers of partials the results are qualitatively the same.

By visual inspection of Fig. 1 one can observe that
each integration step leads to a more tiny error valley
(black) being delimited by broader error hills (white).
Broader error valleys appear more at the upper Rd range
Rd>2.7 and may lead to unnatural broad steps when es-
timating Rd especially at word or pause boundaries of
a continuous speech signal. MSPD2I1 may suffer from
ambiguities from the additional error valleys for low Rd
values Rd<0.5 versus higher Rd values Rd>3 at the up-
per left and lower right, while MSPD2I2 may be mislead
by several appearing side minima. The combinatorial er-
ror surface of MSPD2IX exhibits the least ambiguities, a
quasi-ideal small error valley and not any significant sim-



ilarity for two or more Rd values.

6. Evaluation
6.1. Synthetic f0 and noise test

We conduct a similar test setup as in [4] by synthesizing
16 synthetic vowels using Maeda’s digital simulator [12]
at 10 different f0 values within the range [80 293] Hz.
Each vowel is convolved with a glottal formant parame-
terized by an Rd value within the range [0.1 6] and on a
grid of step size 0.1. We add 5 Gaussian noise levels be-
tween -50 to -30 dB as glottal source noise nσg [n] and as
environmental noise nσe [n] to the voiced signal to sim-
ulate acoustic turbulences present in real speech signals.
A possible error introduced by different positions of the
window with respect to the period in time is simulated by
synthesizing each parameter set on a grid of 4 different
delays φ∗ covering the range [−0.5 · T 0.5 · T ].
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Figure 2: Rd estimation evaluation on f0 and noise

MSPD2IX with a solid line in Fig. 2 exhibits the
overall lowest error and is just slightly less perfor-
mant for middle frequencies around 180 Hz compared
to MSPD2I1. MSPD2I2 in dotted lines outperforms
MSPD2I1 in dash-dotted lines only for lower frequen-
cies up to 150 Hz. MSPD2I0 performs in general worse.
Minimizing only the combination of equations 9 and
11 does not perform better because the improvement by
MSPD2IX is not achieved by adding up the different fail-
ures present but by suppressing the occuring side minima.

6.2. Spectral distortion effect

An explanation of theRd estimation errors is given by the
fact that the complete VTF cannot always be observed be-
cause some sinusoidal partials may be covered by noise.
The evaluation shown in Fig. 3 examines how many sta-
ble sinusoidal partials Nharms from the harmonic model
are required to reliably construct the minimum-phase
spectrum of the first N bins of Sk. We choose N=7, vary
the amount of Nharms and measure the mean error of the
Rd estimation. For Nharms=11 the error function is al-
ready reasonably attenuated because the boundary effects
that are introduced at the spectral border have sufficiently
diminished.
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Figure 3: Rd estimation error by no. of harmonics

7. Conclusions
The results of Section 5 demonstrate a promising proof-
of-concept which have partially been validated by the ob-
jective evaluation in Section 6. This leads us to believe
that the proposed objective function MSPD2IX improves
the state-of-the-art Rd estimation method based on the
phase minimization schemata. In general it can be stated
that the higher f0 the more difficult is to evaluate the
minimum-phase property of the vocal tract filter within
a single fundamental period and accordingly the system-
atic errors of the Rd estimator will increase with f0.
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