Managing large sound databases using Mpeg?7

Max Jacob®
! Institut de Recherche et Coordination Acoustique/Musique (IRCAM), place Igor Stravinsky 1, 75003, Paris, France

Correspondence should be addressed to Max Jacob (max.jacob@ircam.fr)

ABSTRACT

Sound databases are widely used for scientific, commercial and artistic purposes. Nevertheless there is yet
no standard way to manage them. This is due to the complexity of describing and indexing audio content
and to the variety of purposes a sound database might address. Recently there appeared Mpeg?7, a standard
for audio/visual content meta-data that could be a good starting point. Mpeg7 not only defines a set of
description tools, but is more generally an open framework allowing to host specific extensions for specific
needs in a common environment. This is crucial since there would be no way to freeze in a monolithic
definition all the possible needs of a sound database. This paper tries to line out how the Mpeg?7 framework
can be used, how it can be extended and how all this can fit into an extensible database design, gathering
three years of experience during the CUIDADO and SemanticHIFT projects at TRCAM.

1. AN OVERVIEW ON MPEG7 bedded, managing relations, content segmentation,
Mpeg7 is a standard (ISO/IEC 15938) for audio- semantic descriptions and so on.

visual content description. It’s purpose is to provide
a common way multimedia content can be described,
allowing better interchanges between people and ap-
plications and setting the basis for richer content re-
trieval techniques.

In order to design multimedia content descriptors, 2. STORING MPEG7 PART I: THEORY
Mpeg7 has specified a Descriptor Definition Lan- To store XML is at first sight a very trivial issue.
guage (DDL), which has actually been used to de- ~ You can simply use a file system and store Mpeg7
Sign all the standard Mpeg? descriptors_ The Mpeg7 descriptions as text files. This is of course possible,
DDL is basically the XML Schema language [1], and also completely satisfying from a pure informa-
what means that Mpeg7’s descriptors are defined tional point of view. But unfortunately the manage-
as XML Schema types and Mpeg7 descriptions are ment of a large Mpeg7 database implies some more
XML documents [2]. For this reason many questions constraints, which are mainly the following:

about storing and indexing Mpeg?7 involve more gen-

erally questions about storing and indexing XML. e validation

The audio and video descriptors are mainly numer-
ical values, while the MDS defines complex, object
oriented data structures. For this reason they raise
quite different problems.

The XML Schema of Mpeg?7 is mainly divided in four e management of very large Mpeg7 documents
parts. The first one adds some numerical type ex-
tending those already built in the XML Schema lan-
guage, such as vectors, matrices and a few others.
The other three parts are called audio, video and
Multimedia description schemes (MDS). The first ~ 2.1. Mpeg7 validation

two define a set of descriptors specific for audio and Usually an XML document is subjected to syntac-
video content. The MDS instead defines the frame- tical and structural constraints defined by a Docu-
work where audio and video descriptors can be em- ment Type Definition (DTD) or, as for Mpeg?7, by

o cfficient searches

We will have a look on them.

AES 25T INTERNATIONAL CONFERENCE, LONDON, UNITED KINGDOM, 2004 JUNE 17-19
1

JACOB

an XML Schema. The process that ensures a single
XML document meets such a specification is called
validation.

But although XML Schema is a very powerful lan-
guage, there are some aspects of the Mpeg?7 specifi-
cation it is not able to represent, as, for example, the
consistency between the dimension of a matrix and
its content etc. For this reason a real Mpeg7 val-
idator should do a few things more than a standard
XML Schema validator does.

2.2. Management of large Mpeg7 documents
Of course an Mpeg7 database should not only store
descriptions but also allow to modify them or parts
of them. For example you might want to rewrite the
textual annotations about a music piece, or add a
tempo value. And of course each of these operations
must ensure the document still remains valid.

The easiest way to perform validation on insert
and updates is to parse each time the whole doc-
ument, update it if you are updating, pass every-
thing through a validator and re-dump it to the
database. This can be fine if you are talking about
small documents. But during the CUIDADO project
at IRCAM, I had once to load inside the database a
document of 28 Mb with roughly 450.000 nodes. It
was the description of a large sound collection, with
about 20.000 sounds organized in 16 sub-collections.
With a powerful computer it is possible to parse such
a monster in memory. But what if you want to cor-
rect a type error on a title of one of those 20.000
sounds? Imagine an application where, just to re-
type a twenty character long text, it can take you
several hours.

So unfortunately the re-parse and dump approach
can not be adopted for a professional solution. The
system must be smart enough to manipulate and
validate small pieces inside the whole document sep-
arately. This means, from a technical point of view,
that you can not store each Mpeg7 document as a
whole but that you will have to decompose it into
nodes.

2.3. Efficient searches

The W3C consortium has developed a language
called XPath [3] that is a simple but very powerful
way to address nodes in an XML tree. I believe that
with XPath, especially with XPath 2.0, it is possi-
ble to do more or less all searches you might want

Managing large sound databases using Mpeg?7

to perform on an Mpeg7 database. But this is true
only from a formal point of view. The reality is a
bit harder.

To perform fast searches, DBMSs (Database Man-
agement Systems) relay on indices which are special
storage techniques beside the normal table approach,
focusing on a particular search task. And of course
also searches in an Mpeg7 database will need in-
dices, but they might not follow exactly the same
logic than in traditional relational databases.

As already said, a part of the Mpeg7 standard,
mainly the MDS, defines complex object oriented
data structures. To do this, it takes advantage on
the XML schema inheritance mechanism (see [1]).
As it happens in object oriented programming lan-
guages (like C++ or Java), you can define gen-
eral data types that are specialized by other more
specific types recursively. Each type inherits data
structures (and possibly behaviors) from its ances-
tor types. For example, in Mpeg7, we have the
SegmentType that is specialized (among others) by
the AudioSegmentType and the VideoSegmentType.
According to the XML Schema specification, where
a SegmentType is required, you can instantiate also
any of its descending types. Of course segments have
all some common feature, for example they can have
sub-segments. I can manage this segment decom-
position in a general way, regardless on the actual
segment type, maintaining, for example, an index
that links the sub-segments to the root segment, in-
creasing the performance on some operation. Once
i have defined this index, i don’t want to re-define
it for each child type of the SegmentType but would
expect the system to be smart enough to apply it
automatically.

This is crucial especially for managing Mpeg7 ex-
tensions. As many meta-data sets, Mpeg7 is exten-
sible in order to allow a single application to use
the standard adding some application-specific fea-
ture. The XML Schema type mechanism provides
a very clean way to build new descriptors on top
of the existing Mpeg7 types, and an Mpeg7 enabled
database should support this possibility. If for exam-
ple you define new specialization of the SegmentType
you should not only be allowed to use it wherever a
SegmentType occurs, but also have all associated in-
dices working properly.

AES 25T INTERNATIONAL CONFERENCE, LONDON, UNITED KINGDOM, 2004 JUNE 17-19

2

JACOB

3. STORING MPEG7 PART II: PRAXIS
Now the question is: is there already a software on
the market that does all we have seen till now?

The answer is unfortunately: not yet.

Let’s see what is the state of the art for each point:

validation There are DBMSs that support XML
Schema validation, but we had many troubles
in loading the very complex Mpeg7 schema into
some of them. Furthermore the validation pro-
cess should be customizable in order to add
MpegT7 specific validation logic, and we did not
find this feature anywhere.

large documents Some DBMSs can store XML
decomposing it into nodes, which is the pre-
requisite for large documents management. On
these systems it would probably also be possible
to add the Mpeg?7 specific validation using trig-
gers, but only if they support XML Schema val-
idation as well. And this is only partially true,
if true at all, on all systems we have checked
out.

searches On many systems it would be hard to im-
plement customized indices at all. In any case
there seem to be no system allowing to index
data in a way that can be understood by the
XPath processor. And no system seems to be
type-centric enough to allow something like in-
dex inheritance.

So far the bad news. The good news are that there
are lots of tools and libraries that you can use (and
customize if needed), providing XML parsing and
validation. Furthermore there are lots of DBMSs
with a nice API (Application Programming Inter-
face) allowing you to write extensions. And this is
what we actually did for the CUIDADO project at
IRCAM.

4. THE CUIDADO MPEG7 DATABASE

During the European project CUIDADO (2001-
2003) I was in charge at IRCAM for the develop-
ment of an Mpeg7 based database system for Mpeg7
based applications. So I had to address all the prob-
lems we have seen in the previous chapters. After a
lot of investigations and trials on existing software

Managing large sound databases using Mpeg?7

Fig. 1: Streamed XML loading

_>

SAX Parser Document Handler

Character stream Node stream

({0

Mpeg7 file Database

we finally decided to adopt an open source database
system (PostgreSQL [4]) having a well documented
C API and providing lots of advanced features, like
views, transactions and a procedural language inter-
preter.

4.1. Streaming document loading

XML documents are loaded into the database us-
ing a SAX (Simple API for XML) parser. This is an
event based parser, who reads the XML file and noti-
fies a document handler each time it finds structural
entities, like a start tag, an end tag or character
data. This makes it possible to process the docu-
ment while it is read, without any need to load it
all in memory. So at least from this point of view
there is no size limit for XML documents that can
be loaded.

Each element of the XML tree is stored separately
in the database, in order to dump data to disk while
they are processed. This completes the streaming
process as shown in figure 1.

A further benefit of storing each XML element sepa-
rately in the database, is that you can move, update
or remove it in a quite easy way and independently
on the size of the document it belongs to.

4.2. Event handlers

We have also set up a trigger mechanism that allows
to associate event handlers (or triggers) to database
operations on the XML documents. These handlers
are associated to either an element type or an el-
ement name or both and are called automatically
by the system taking into account the XML Schema
inheritance logic. The handled events are:

After insert Called after the insertion of an ele-
ment.

AES 25T INTERNATIONAL CONFERENCE, LONDON, UNITED KINGDOM, 2004 JUNE 17-19

3

JACOB

Before remove Called before the removal of an el-
ement.

Before move Called before an element is moved
on another tree or to another place in the same
tree.

After move Called after an element has been
moved.

Before update Called before an element is up-
dated.

After update Called after an element has been up-
dated.

The event handlers allow the creation and maintain-
ing of indices. Indices are in this case tables where
data are stored in a more database friendly way, al-
lowing fast searches and easy retrieval of some par-
ticular data the application needs without having to
browse the whole XML tree. Event handlers can be
written in C or in the database procedural language,
but we always used the latter since it is much easier
and most times almost as fast as C.

Since the trigger system takes into account
type inheritance, it is possible to safely extend
Mpeg7 with a new type specializing the standard
ReferenceType: the validating event handler will
still be called also on instances of the new custom

type.

4.3. Validation

The standard XML Schema definitions are stored in
a set of database tables allowing to verify for each
inserted element whether it complies the schema def-
inition or not. This operation is performed by the
SAX document handler during the document inser-
tion or update, as well as at move and remove op-
erations.

This validation process is also important since it pro-
vides type detection. In an XML document the type
declaration of each element can be omitted where the
context allows to infer it. The validating process has
to analyze the context and detect the actual type of
each element, which is crucial at least for consistent
trigger calls.

But, as said, Mpeg7 requires some validation rule
that is not included in the XML Schema definition.

Managing large sound databases using Mpeg?7

Fig. 2: The insertion and update process

Mpeg7

Insert or update |

Trigger definition tables

| SAX Parser | ¢

--- Tri Il
| l I- -' rigger caller
| SAX handler |

Trigger handler

XML Schema definition tables

Data tables

Index table

This additional validation stage is, once again, per-
formed by the triggers. For example the mpeg7
ReferenceType, which is supposed to point to an ex-
isting element, has an associated after insert trigger
that checks this condition and throws an exception
if it is fails.

Figure 2 gives an overview on what happens when
XML data are inserted or updated.

4.4. Extraction rules

When an XML document, or a branch of a docu-
ment, is extracted from the database, an extraction
engine browses the corresponding XML tree calling
for each element an extraction rule (see figure 3).
By default this rule rebuilds the corresponding XML
code, but you can associate to each type customized
extraction rules. We have found out that this mecha-
nism is very useful for applications, since they might
need the XML data packed in a different way than
the Mpeg7 source code.

For example an application might need the XML
data of a collection including its sub-collections, but
without the contained audio entities (sounds), in or-
der to display a file-system like tree. In this case the
mechanism is not only useful, but even crucial, since
a collection might contain thousands of sounds. An-
other example is on referenced elements. In Mpeg7
you can reference an element, for example, by its
identifier. In this case the XML code would contain

AES 25T INTERNATIONAL CONFERENCE, LONDON, UNITED KINGDOM, 2004 JUNE 17-19

4

JACOB

Fig. 3: The extraction process

Mpeg7 |
1

1
Extraction rule

Extraction engine

!

data base

only the identifier of the referenced element, while
an application will want to display something like a
label or a title. All this can be managed directly in
the database with customized extraction rules.

5. TOWARDS AN MPEG7 QUERY LANGUAGE
Mpeg?7 defines a meta-data model, but it does not
specify how an Mpeg7 database should be queried.
And this is quite understandable, since such a logic
is closely related to the purposes of each single ap-
plication. And there can be huge differences. An
application might perform statistical analysis on low
level descriptors, another one could be a sound file
management system, or an on line music store and
SO on.

The most natural hypothesis for a kind of Mpeg7
query language seems something relying on XPath,
which is general enough to provide a large spec-
trum of possible uses. Such a language would make
sure different Mpeg7 databases behaving exactly the
same way (although performing differently) even if
they was conceived for different purposes, allowing
different applications to really interoperate.

Anyway this is very far from being a trivial issue.
An implementation of such a system should not only
provide a query language parser, but also a dedi-
cated index definition mechanism the query inter-
preter understands. For the moment this does not
exist even for standard XML + XPath, so we will
probably have to wait for a while.

Managing large sound databases using Mpeg?7

An alternative to an XPath based query language
would be a dedicated Mpeg7 query language focus-
ing on known use cases. An Mpeg7 database could
just implement a part of the language. This would
not allow any Mpeg7 based application to exchange
data with any other, but ensures they can as long
as they was built for similar purposes, which seams
quite reasonable. During the CUIDADO project we
have also conceived and implemented a query lan-
guage that covers our use cases, and perhaps this
could be further developed. This topic is still quite
undefined but we hope to get some interesting re-
sult during the continuation of the SemanticHIFI
project.

6. REFERENCES

[1] XML Schema.
http://www.w3c.org/XML/Schema

[2] Extensible Markup Language (XML) 1.0.

http://www.w3.org/TR/REC-xml

[3] XML Path Language (XPath).

http://www.w3.org/TR /xpath

[4] The PostgreSQL web site.

http://www.postgresql.org

AES 25T INTERNATIONAL CONFERENCE, LONDON, UNITED KINGDOM, 2004 JUNE 17-19

5

