
Enriched Score Access
for Computer Assisted Composition in PWGL

Mika Kuuskankare

Sibelius Academy, Department for Doctoral Studies in Music and Research,
Helsinki, Finland

STMS : IRCAM/CNRS/UPMC, Paris, France
mika.kuuskankare@siba.fi

Abstract. PWGL is a visual composition environment that can be used
to, among other things, solve musical constraints problems. The con-
straints system within PWGL, PWGLConstraints, allows us to write
rules using a special pattern-matching language. Typically, the assign-
ments use as a starting point a score prepared with the help of Expres-
sive Notation Package (ENP). In this paper we present an extension
to the PWGLConstraints pattern-matching language which allows us to
access information from ENP to assist with the compositional process.
ENP provides a rich library of standard and user-definable expressions
called ENP-expressions. They range from standard articulation markings
(such as staccatos and slurs) to fully interactive multi-purpose graphical
expressions. A special syntax is developed which allows us to retrieve
information about and contained by the expressions. In this paper, the
syntax and the present state of the system are illustrated using a working
example.

Keywords: constraint-based computer-assisted composition, visualiz-
ing musical constraints, computer-assisted music notation.

1 Introduction

There exists a wide range of general-purpose rule-based systems that have been
used to solve musical constraint satisfaction problems, such as Situation [1],
Arno [2], OMClouds [3], and Strasheela [4]. PWGLConstraints [8] is a rule-based
pattern-matching language within PWGL [5] which can be used to solve musical
problems. The main advantage of our system when compared to the aforemen-
tioned systems is that PWGLConstraints is closely integrated with a flexible
music notation front-end, the Expressive Notation Package, or ENP [6]. Typi-
cally, the PWGLConstraints assignments use as a starting point a score skeleton
prepared with the help of ENP. ENP allows us to enrich scores with additional
attributes called ENP-expressions [7], which are Lisp-based multipurpose graph-
ical objects that can be used to represent different kinds of information as part
of a musical texture. The traditional expression markings, such as articulations
and dynamic markings, form a subset of ENP-Expressions. The extension of



2 Enriched Score Access for Computer Assisted Composition in PWGL

PWGLConstraints presented in this paper allows us to access the information
about and contained by the ENP-expressions, using a simple but powerful syn-
tax. The new syntax can be seen as a supplement to the existing accessor scheme
reported in [8]. However, it allows us to write rules that access the score infor-
mation in a completely new manner. Throughout this paper we will refer to the
PWGLConstraints syntax which will not be presented here in detail. Instead,
the reader is advised to study [8] for more information.

2 The New Expression Access Scheme

Access to the information contained by the expressions is provided through a
new primitive called e. It takes as an argument a score object and a collection of
keywords (for example, :pos, :first?, :last?, :sample, :at, :id) and finally returns
either an object or a property or a list of objects or properties.

Example 1 shows the basic syntactic components of the system (the symbol
?1 represents a single note object in the score). The form (e ?1 :accent) is of
interest here. It is a condition stating that the rule is executed only if there is
an accent present in the note referenced by ?1.

Example 1: A rule executed only for accented notes. The ellipsis denotes the rule part
where the user defines the actual constraints.

(* ?1 (e ?1 :accent) (?if ...))

The e-syntax also allows us to “sample” an expression at any given point
in time (obviously the ENP-expression in question has to contain time-varying
information, such as a breakpoint function). In Example 2 an expression is sam-
pled and the melodic movement is matched against the values retrieved from
the expression using the combination of two keywords :sample and :at. The
keyword :at defines the point in time that we want to sample. The argument
can either be absolute time in seconds or a score object. Thus, :at ?1 means
that we want to access the value contained by the expression at exactly the
onset-time of the note ?1.

Example 2: A rule forcing the melody to follow :object3 exactly.

(* ?1 (?if (let ((ref-pitch (e ?1 :object3 :sample :at ?1)))

(= (m ?1) ref-pitch))))

3 An Example of Basic Expression Access

In this section we provide a concise example using our new access scheme. Here,
contrasting texture profiles are defined with the help of accents and slurs. Slurred
texture uses small intervals and the accented texture, in turn, uses leaps larger
than an octave. To make the example more interesting, we also use a collection
of supplementary rules where, for example, the pitches inside each beat (i.e.,



Enriched Score Access for Computer Assisted Composition in PWGL 3

non-interleaving four note groups) must result in a pitch-class set 4-7. However,
due to space limitations these rules are not discussed here. The resulting score
can be seen in Fig. 1.

Fig. 1. contrasting textures created with the help of ENP-expressions: the slurred notes
use small intervals and the accented ones use large intervals.

The two expression access rules (Examples 3 and 4) are used to define the two
contrasting textures. The variables ?1 and ?2 in the pattern-matching part (line
1) give access to every two consecutive note objects in the score. The form (and
(e ?1 :accent) (e ?2 :accent)), in turn, is a condition indicating that the
rule is executed only if there is an accent on both of the notes. Finally, the rule
simply states that the absolute value of the interval between the notes must be
greater than an octave (12 semitones).

Example 3: Use big leaps on accented notes.

(* ?1 ?2

(and (e ?1 :accent) (e ?2 :accent))

(?if (> (abs (- (m ?1) (m ?2))) 12)))

Our second rule (Example 4) is almost identical to the first one but, instead
of the :accent keyword, uses the :slur keyword to indicate that the rule is to
be executed only on slurred passages. In the rule part, we specify that all of the
intervals inside the slurred passages must be between the minor second and the
major third intervals (the intervals must also be descending).

Example 4: Small descending intervals on slurred notes.

(* ?1 ?2

(and (e ?1 :slur) (e ?2 :slur))

(?if (<= 1 (- (m ?1) (m ?2)) 4)))

Finally, Example 5 defines the transition from one texture to another. Here,
we indicate (lines 2-3) that this rule is active only when we are going from an
accented note to a slurred one (line 2), or vice versa (line 3). In both cases, the
interval between the two sections is constrained in such a way that it is either a
minor or a major second (see line 4).

Note, that without this rule, the interval between the two contrasting textures
would be random, since, by default, there is no rule that would be applied in
this case.



4 Enriched Score Access for Computer Assisted Composition in PWGL

Example 5: When going from one texture to another use a stepwise movement.

(* ?1 ?2

(or (and (e ?1 :accent) (e ?2 :slur))

(and (e ?1 :slur) (e ?2 :accent)))

(?if (<= 1 (abs (- (m ?1) (m ?2))) 2)))

4 Conclusions

This paper presents a new scheme which allows us to access score information
for the purposes of computer-assisted composition in the visual programming
language PWGL. ENP, the music notation system of PWGL, is used to pre-
pare the starting point of the search. The scores can be enriched with standard
or user-definable markings called ENP-expressions. The information about and
contained by the ENP-expressions can then be used by our rule-based compo-
sitional system to guide the search process. The underlying expression system
itself is quite powerful and also user-extendable. Basically, any expression can
be given an arbitrary meaning by the user. The scheme described in this paper
is capable of expressing and solving highly sophisticated musical problems.

Acknowledgments

The work of Mika Kuuskankare has been supported by the Academy of Finland
(SA137619).

References

1. Rueda, C., Lindberg, M., Laurson, M., Bloch, G., Assayag, G.: Integrating con-
straint programming in visual musical composition languages. In: ECAI 98 Work-
shop on Constraints for Artistic Applications. Brighton (1998)

2. Anders, T.: Arno: Constraints programming in common music. In: Proceedings of
the International Computer Music Conference (2000)

3. Truchet, C., Assayag, G., Codognet, Ph.: OMClouds, a heuristic solver for musi-
cal constraints. In: MIC03 Metaheuristics International Conference, Kyoto, Japan
(2003)

4. Anders, T.: Composing Music by Composing Rules: Design and Usage of a Generic
Music Constraint System. Ph.D. thesis, Queen’s University, Belfast (2007)

5. Laurson, M., Kuuskankare, M., Norilo, V.: An Overview of PWGL, a Visual Pro-
gramming Environment for Music. Computer Music Journal 33(1), 19–31 (2009)

6. Kuuskankare, M., Laurson, M.: Expressive Notation Package. Computer Music
Journal 30(4), 67–79 (2006)

7. Kuuskankare, M., Laurson, M.: ENP-Expressions, Score-BPF as a Case Study. In:
Proceedings of International Computer Music Conference. pp. 103–106. Singapore
(2003)

8. Laurson, M., Kuuskankare, M.: Extensible Constraint Syntax Through Score Ac-
cessors. In: Journées d’Informatique Musicale. pp. 27–32. Paris, France (2005)


