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Perceptive approach for sound synthesis by physical modelling  

 

Vicky LUDLOW 

Department of Civil and Environmental Engineering 

Division of Applied Acoustics 

Room Acoustics Group 

Chalmers University of Technology 

Abstract 

This study is part of the European project CLOSED (Closing the Loop Of Sound 

Evaluation and Design, [http://closed.ircam.fr]). The CLOSED project aims at 

providing new tools to develop a methodology able to create and evaluate sound 

design products. 

Among these tools, a set of sound synthesis models based on physical parameters have 

been developed so as to encourage sound creation. These models comprise for instance 

solid contact models (impact, friction...) and liquid models (bubbles...). 

The goal of this master thesis is to contribute to the design of a perceptive interface for 

these sound synthesis models. It focuses on impact models and on material perception 

(more specifically on the four following classes: wood, metal, plastic and glass). The 

aim is then to perform a perceptive classification of synthesised impact sounds 

according to the material category in order to achieve a mapping between the physical 

space (the model parameters) and the perceptive space (the four material classes). 

The many physical dimensions of the synthesis model and thus the infinity of possible 

sounds represent a challenge for this approach. Actually, classical perceptive 

experiment methods are not adapted to deal with such a large sound corpus. A 

possible field of investigation is active learning techniques that may solve this problem 

by reducing the required amount of sounds to define the boundaries between the 

material classes. 

This report presents a study on a reduced parameter space, on which both classical 

perceptive method and active learning techniques can be carried out, so as to evaluate 

the latter method. Subsequently to this validation phase, a new experimental protocol 

driven by active learning procedures would allow achieving perceptive experiment on 

larger sound corpus. 

 

 

Key words: material perception, psychoacoustic experiment, active learning, physical 

sound synthesis model, sound classification 
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1 Introduction 

This study is part of a European project named CLOSED (Closing the Loop of Sound 

Evaluation and Design) and aims at investigating a perceptive approach for sound 

synthesis by physical modelling, which would permit to control the physical 

parameters more intuitively. It contributes to the design of a perceptive interface for 

sound synthesis models. 

Previous researches done at IRCAM by Derio [24] and Dos Santos [25] aimed at 

building such a perceptive by a dimensional approach: the goal of these studies was 

to define perceptive dimensions related to acoustic descriptors such as brightness or 

resonance for instance, that would control the sound synthesis model. However, 

these studies are limited by the fact that they cannot take many parameters into 

account, and a sound synthesis model can therefore only be characterized by 2 or 3 

dimensions. Another possible approach is to consider perceptive classes. 

The goal of this study is to perform a mapping between the physical space (the 

sound synthesis model parameters) and the perceptive space (perceptive classes to 

be defined). It will focus on material perceptive classes and on impact model sounds.  

This approach meets obstacles. Actually, sound synthesis models incorporate many 

physical parameters and generate an infinite number of possible sounds. Classical 

perceptive experiments are not adapted to such a huge sound corpus because it 

demands to many sounds to scan the parameter space. 

Machine learning techniques will be investigated so as to define whether they can 

solve this scale problem. Machine learning techniques would be profitable in the 

sense that a psychoacoustic experiment should not last more than 1 hour, and the 

amount of sounds listened by the participant is thus limited. By cleverly choosing the 

points to be evaluated by participants, it could permit to perform perceptive 

classification on large sounds corpus within a reasonable amount of time. Figure 1.1 

makes this point explicit. 
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Figure 1.1: Machine learning techniques driving perceptive classification experiment. The points 

are sounds in the parameter physical space. The automatic algorithm will not test every 

sound, especially sounds between two encircled points (stars and moons data points). 

Actually, the algorithm assumes these points to be “encircled points” as well and will 

concentrate on unknown regions to define the boundary between circled points and 

crossed points.  

 

To evaluate machine learning technique performances, both classical and automatic 

experiments will be carried out on a restricted corpus. 

After having introduced the CLOSED project and detailed the main steps of the 

project, this report will present a literature review on material identification from 

impact sounds and then describe the sound synthesis physical models and the 

machine learning techniques. Results of both classical and automatic experiments 

will be reported. 

1.1 The CLOSED project 

The European CLOSED project is a three-year program that began on July 2006 and 

will be finished on June 2009. This project aims at providing a functional-aesthetic 

sound measurement tool that can be profitably used by designers. At one end, this 

tool will be linked with physical attributes of sound-enhanced everyday objects; at 

the other end it will relate to user emotional response. The measurement tool will be 

made of a set of easy-to-interpret indicators, which will be related to use in natural 

context, and it will be integrated in the product design process to facilitate the control 

of sonic aspects of objects, functionalities, and services encountered in everyday 

settings. The aim of the CLOSED project is to provide such concepts and tools, 

toward closing the loop of sound evaluation and design. 

The design process implies an iterative loop, which compares the quality of a sound 

with pre-defined specifications and which evaluates and refines the sound creation 

until those specifications may be adequately met. 
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Figure 1.2: Closing the Loop of Sound Evaluation and Design. The process implies an iterative loop 

which leads to the adequacy between the sound creation and pre-defined specifications.   

 

The CLOSED consortium incorporates four different expertises, ranging from 

physics and signal processing, design, acoustics and psychology of perception, to 

computer science. The four actors are:  

1. IRCAM, Sound Perception and Design team, Institut de Recherche et 

Coordination Acoustique/Musique, Paris, France. The IRCAM is the coordinator of 

the project. It works on the sound design and psychoacoutic aspects of the project. 

2. UNIVERONA, Vision, Image Processing and Sound laboratory, Dip. di 

Informatica, University of Verona, Verona, Italy. Univerona develops the physical 

sound synthesis models used in the CLOSED program. 

3. ZHdK, Zürcher Hochschule der Künste, Department of Design and 

Institute for Cultural Studies in Art, Media and Design, Zurich, Switzerland. ZHdK 

works on the sound product design research. 

4. NIPG, Neural Information Processing Group, Berlin University of 

Technology, Berlin, Germany. NIPG is the computer science section of the project; it 

develops active learning algorithms. 

The coming section explains with more details the interaction work between IRCAM 

and the different partners involved in the present study. 

1.2 Main steps of the study 

A synopsis of this study is presented on figure 1.3. After having chosen the 

perceptive classes of interest and the sound synthesis physical model, the physical 

parameters are restricted so as to obtain a reasonable sounds corpus.  

The classical perceptive experiment done on 20 participants results in labelled 

sounds: sounds (and thus the physical parameters of the sound synthesis model) are 

associated to perceptive classes (the materials: wood, glass, plastic or metal). This 
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result corpus is divided in groups: group 1 contains 70% of the results data for 

instance and group 2 contains 30% of the results data. 

A machine learning algorithm is composed of two phases (explained in chapter 4): 

the training phase and the generalisation phase. Group 1 data are used to train the 

algorithm: it knows the answers given by the 20 participants and draws boundaries 

between the material classes. The generalisation phase will test whether these 

boundaries are correct or not. For this purpose, the algorithm will fake a virtual 

participant: it will be provided group 2 data (sounds corresponding to physical 

parameters) and will have to decide to which class these sounds belong to. It does 

not know the answers of the 20 participants.  

The answers given by the algorithm for group 2 sounds (“group 2 relabelled”) will 

be compared with the answers of the 20 participants (“group 2 labelled”). This 

comparison will permit to evaluate the ability of machine learning techniques. If 

machine learning techniques turn out to be powerful, then new experimental 

methods based on machine learning techniques would permit to perform large-scale 

classification perceptive experiments. 
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Figure 1.3: Scheme of the master’s thesis project. After having chosen perceptive classes and a 

sound synthesis model, a classical perceptive experiment will be carried out on a 

restricted corpus. Some of resulting labelled sounds (group1) will be provided to the 

machine learning algorithm for its training. A comparison between the results of 

group2 sounds labelled by participants during the classical experiment and by the 

algorithm will permit to conclude on the validity of this method. 
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1.3 Choosing the perceptive classes 

Within the CLOSED project framework, G. Lemaître and O. Houix from the Sound 

Perception and Design team at IRCAM studied the perceptive organisation of 

everyday sounds. They investigated in [1] the results of four different studies 

concerning the classification of everyday sounds (Frédérique Guyot’s Ph. D. 

dissertation [2], Yannick Gérard’s Ph. D. dissertation [3], a paper by Michael Marcell 

and al. [4] and Nancy Vanderveer’s Ph. D. dissertation [5]). Bringing together the 

different subjects’ strategies, it appeared that people group sounds together because: 

� They share some acoustical similarities (same timbre, same duration, same 

rhythmic patterns)  

� They are made by the same kind of action / interaction / movement  

� They are made by the same type of excitation (electrical, electronical, 

mechanical)  

� They are produced by the same object (the same source)  

� They are produced by objects fulfilling the same (abstracted) function  

� They occur in the same place or at the same occasion  

This research led to the conclusions that environmental sounds can be grouped 

according to three types of similarity: 

� The similarity of acoustical properties: acoustical similarity. 

� The similarity of the physical event causing the sound: causal similarity. 

� The similarity of some kind of knowledge, or meaning, associated by the 

listeners to the identified object or event causing the sound: semantic 

similarity. 

For instance, a closing car door sound will be grouped together with a sound having 

the same brightness or the same sharpness if the classification occurs at an acoustical 

level. At a causal level, this same sound would be grouped together with an object 

falling on the floor, as both sounds arise from an impact. Finally, at a semantic level, 

this car door sound would be associated with a car motor sound, since both sounds 

relate to the car sounds. 

This study focuses on the sound classification at an event level. Within this type of 

classification, two subclasses defined by Carello can be distinguished [16]. The 

classification can first be performed regarding structural invariants. Structural 

invariants are invariants that specify the kind of object and its properties under 

change, for instance the material of the object. The classification can also be 

performed regarding transformational invariants, which are invariants that specify 

the change itself (as for instance crumpling, rolling etc).  

As for this study, structural invariants will be considered. It investigates the 

classification of impact sounds with respect to the material of the object that causes 

the sound. As seen in chapter 2, the materials selected are wood, metal, glass and 

plastic. 

Next chapter reviews some researches about material identification from impact 

sounds. 
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2 Literature review on material’s 

auditory perception  

This section presents some researches about the possibility of recovering object 

material properties from synthesized and natural impact sounds. The goal of this 

literature review is to point out the material classes studied in such researches, and to 

know which general classes are the best identified. Moreover, it will give information 

about some influencing parameters for the material recognition and provide some 

numerical values of these parameters. This will be useful to define the dynamic 

ranges of the model physical parameters. 

Wildes and Richards defined a mechanical parameter that was supposed to 

characterise the material of an object from an impact sound. This parameter, related 

to damping measures, depends on frequency and decay time. Further studies 

investigated how these two parameters influence material recognition from 

synthesized impact sounds.   

2.1 A mechanical parameter intrinsically related to the 

auditory perception of materials 

In 1988, Wildes and Richards carried out a research [6] that aimed at discovering a 

physical parameter of the sound following impact that is intrinsically related to 

material type. They considered a mechanical model of a standard anelastic linear 

solid composed of two Hookean springs and a Newtonian dashpot. They studied the 

steady-state and damped behaviour of the solid (i.e. they did not consider the attack), 

and deduced that from a physical point of view, materials can be characterized using 

the coefficient of internal friction tan(φ), which measures their degree of anelasticity. 

This parameter, which is supposed to be independent from the material, is defined 

by equation (2.1). 

 

 11
tan −== Q

tf eπ
φ  (2.1) 

 

 

Where f is the frequency of the signal, te is the time required for the vibration 

amplitude to decrease to 1/e of its initial value, and Q-1 the inverse of the quality 

factor.  
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The higher tan(φ),the greater the damping of the material and the faster the decay 

time decreases with increasing frequency. In ascending order of tan(φ), there is 

rubber, plastic, glass and metal.  

However, the shape independence of the tan(φ) coefficient is only an approximation. 

Moreover, the Wilde and Richards model assumes a simple relation of inverse 

proportionality between frequency and decay time. Further researches on struck bars 

and plates sounds found that the relationship between these two parameters is 

quadratic or even more complex than quadratic ([7] and [8] quoted in [9]).  

The next section reviews the studies made on synthesized impact sounds to study 

this tan(φ) parameter. 

2.2 Studies on synthesized impact sounds’ material 

identification 

2.2.1 Klatzky, Pai and Krotkov’s study [10] 

Klatzky and al studied in [10] the effects of damping measures on material 

identification on synthesized sounds. In order to distinguish the importance of 

frequency from the importance of and decay time in the material recovering process, 

they studied two parameters: the frequency and the Dτ  parameter, which is defined 

by equation (2.2). 

 

 

φπ
τ

tan

1=×= fteD  (2.2) 
 

 

This new parameter Dτ  is the exponential decreasing decay time scaled by a 

frequency factor and it is still assumed to be a shape-independent material property 

(as te). 

Twenty-five sounds were synthesised from five fundamental frequencies equally 

spaced in a logarithmic scale ranging from 100 Hz to 1000 Hz (and some partials), 

and from five Dτ  values, equally spaced on a logarithmic scale varying from 3 to 300.  

They were generated so as to correspond to an ideal bar, clamped at both ends, 

struck at a point 0.61 of its total length. The physical model was based on additive 

synthesis principles. 

The first two experiments consisted in judging the material similarity between two 

sounds, in terms of the strength of their feeling that the sounds could come from the 

same material. All possible pairs of sounds were considered, which means that the 

thirteen (experiment 1) and fourteen (experiment 2) participants judged 300 sounds 

combinations. The participants could listen to the stimulus as many times as they 
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wished. In the first experiment, the initial amplitude was equalized across sounds, 

which was not the case in the second experiment. The subjects for the two 

experiments were not the same.  

The results were quite identical for both experiments. This led to the conclusion that 

the signal amplitude does not determine the material recognition.  

The study showed that the decay parameter was more influent than the frequency 

for the material identification, by a factor of approximately two to one. This 

conclusion however might not be applied generally, as it might partly be due to the 

fact that the range of interstimulus differences (log scale) was greater for decay than 

for frequency. Moreover, the number of re-listening was only affected by the decay 

parameter and not frequency. 

In another experiment, Klatzky and al asked fifty participants to directly write down 

the material they identified. The four response classes were rubber, wood, glass and 

metal. The sounds were the same as in the previous experiments.  

It turned out that Dτ  is higher for glass and steel than for rubber and wood. They 

defined critical values of the decay parameter (logarithmic values) that would lead to 

half the subjects assigning an object in to a given category. Those values are reported 

in table (2.1). 

 

 Rubber Wood Metal Glass 

Critical log( Dτ ) value 0.46 0.5 2.10 2.65 
 

Table 2.1: Critical logarithmic values of the decay parameter for materials from Klatzky and al 

study [14] 

 

These results are consistent with Wildes and Richards study: te ( Dτ  scaled by a 

frequency factor) was in an increasing order for rubber, wood, glass and metal, with 

an inversion for metal and glass. 

The frequency was more convenient to discriminate the materials within the gross 

categories: glass was chosen for higher frequencies than metal, and wood for higher 

frequencies than rubber. 

The shape-invariant parameter defined by Wildes and Richards turned out to be a 

powerful determinant of the perceived material of an object, the time component 

being more influent than the frequency component. 

The frequency was more convenient to discriminate the materials within the gross 

categories: glass was chosen for higher frequencies than metal, and wood for higher 

frequencies than rubber.   

Other studies investigated the efficiency of the te parameter. The next subsection 

considers the study of Avanzini and Rocchesso, who got different conclusions.  
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2.2.2 Avanzini and Rocchesso’s study [11] 

Avanzini’s and Rocchesso’s experiment was similar to the third Klatzky’s 

experiment, though their physical model provides more realistic attack transient. 

This should affect the results, as the impact sound can give information of two 

objects simultaneously: the hammer and the resonator. This phenomenon is called 

phenomenical scission.  

The stimuli were synthesized with five equally log-spaced frequencies from 1000 Hz 

to 2000 Hz and twenty equally log-spaced quality factors varying from 5 to 5000 

(extreme values found for rubber and aluminium). The quality factor is defined 

by etfq 00 π= . Twenty-two subjects could listen to the 100 stimuli once only, and had 

to write down the identified material within these four categories: rubber, wood, 

glass and steel. 

Consistently to Wildes and Richards and Klatzky, the quality factor turned out to be 

the most determining factor, the frequency playing a minor role. q0  was in increasing 

order for rubber, wood, glass and steel. Here again, steel and glass are not in the 

same order as Wildes and Richards conclusion. As for frequency, glass remains more 

characterised by higher frequencies than metal’s frequencies, however wood was 

chosen for lower frequencies, in contrary to Klatzky’s conclusion. 

In this experiment, regions for rubber and wood appeared clearly whereas the results 

were more confused for metal and glass. This was partly explained by participants’ 

verbalisations reporting that “glass” was not clear to them because they could not 

guess the sound produced when striking a glass bar. Another explanation lies in the 

physical model: exponential decay envelopes might be a too poor approximation, 

explaining that materials characterized by longer decays were not correctly 

identified.  

2.2.3 Lutfi and Ho’s study [12] 

The goal of Lutfi and Ho’ study was to precisely determine what acoustic 

information was used by practiced participants to distinguish the material of 

synthesized struck-clamped bars. The listeners had to choose the sound object’s 

material regarding to three parameters: decay time, frequency and intensity. On the 

one hand they had to choose between iron and steel, and on the other hand between 

glass and crystal. The experiment was based on a correlation procedure: 2 stimuli 

varied according to one parameter, and the participants had to indicate which of 

these 2 sounds corresponded to a given material. It led to the results that the eight 

participants (experienced musicians) largely used the frequency parameters to 

discriminate the materials, decay time and amplitude having only a second role in 

the material discrimination. 
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However, the results showed a quite low performance in the material composition 

identification, mainly because they tended to give greater weight than warranted to 

the frequency changes. It thus turned out that frequency was not a significant 

predictor for the material within the gross categories.  

The next section presents Hermes’ research about decay time and frequency as sound 

material predictors. This study provided some rough material regions depending on 

these two parameters. 

2.2.4 Hermes’ study [13] 

The goal of Hermes’ study was to investigate the material perception of simple 

synthesized impact sound, with regard to two parameters: the centre frequency of 

the principal mode and the decay time. His study took place in an ecological context, 

and aimed at attesting whether listeners have a clear mental concept of the material 

that may have generated the sounds. The sounds consisted of exponentially decaying 

partials restricted to a limited frequency band. He tested the constancy of the listener 

by carrying out two experiments with a different set-up regarding the task of the 

listener and listening conditions.  

Hermes’ first experiment consisted in a free-identification material in which listeners 

were asked to write down the material of the object producing the sound. The fifteen 

listeners could listen to the sound over headphones as many times as they wanted to 

but once they had asked for the next sound they could not listen to the previous 

sound again.. The sounds had centre frequencies ranging from 100 Hz to 6.4 kHz 

(seven equidistant values on a logarithmic scale) and partials time constants varying 

from 6.25 to 50 ms (seven values as well). The physical model was based on additive 

synthesis principles.  The corpus was composed of these 49 sounds and of 9 practice 

stimuli covering the range of experimental stimuli.  

The most often named materials were wood, metal, glass, plastic and rubber/skin. 

The results showed that glass, metal and wood are well-defined perceptive 

categories; glass and wood sounds were more easily identified (the required less re-

listening). Glass and metal sounds turned out to have high frequencies, metal’s 

partials having a longer decay time than those of glass. Glass is recognised for 

frequencies higher than 1600 Hz and characterized by frequencies higher than 3kHz, 

metal by frequencies between 0.8kHz and 3 kHz. Wooden sounds have lower 

frequencies around 200 Hz and short decay times around 20 ms. Plastic and rubber 

sounds are distributed in lower frequencies, with a higher decay times that wood’s 

sounds. Rubber sounds have frequencies lower than 300 Hz. This experiment 

underlined an uncertainty region (the sounds were re-listened more often than 

average) around 30 ms for the decay time and around 0.2 kHz to 0.5 kHz for the 

centre frequency. 
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As for the second experiment, the thirteen new participants could only listen once to 

a sound and were under time pressure: the interval time between two stimuli was 

very short (3 seconds). The sounds were presented over two large loudspeakers, so 

that room acoustics was part of the stimuli. The listeners were asked to classify the 

sounds within the five most quoted categories in the first experiment, i.e. wood, 

glass, rubber, plastic, metal.  

For wood and glass, the results were about identical to those in the first experiment. 

The metal region got smaller in this second experiment: the mid frequencies were 

containing less metal answers. Metal is then classified somewhat less consistently 

than glass and wood. On the contrary, the rubber category was larger. The difference 

was considerable for plastic: it was classified in the middle frequencies, with a longer 

decay time: it actually fitted with the uncertainty region described in the first 

experiment.  

The results of this experiment are summarized in table2.2. It presents the frequency 

and decay time values characterising the five materials. 

 

 Frequency (Hz) Decay time (ms) 

Rubber < 300 15 � 40 

Plastic  tplastic > trubber 

Wood 200 � 1600 7 � 30 

Metal 800 � 3000 tmetal > tglass 

Glass > 3000 > 17 
 

Table 2.2: Hermes’ investigation on material perception of synthesized impact sound. 

 

As for Hermes’ study, frequency and decay time seemed to be relatively good 

predictors to discriminate the materials, even within the gross classes. However, 

these results are only tendencies, and constitute rough regions, which can largely 

overlap. 

The next section presents works in the material recognition from real impact sounds. 

2.3 Studies on real impact sounds’ material identification 

Some studies of real impact sounds material recognition showed that people could 

discriminate materials very successfully. 

Gaver, in [14], investigated on the material recognition of impacted length-varying 

steel and iron bars. They obtained very high performance between 96% and 99%. The 

bar length had no effect on the material identification.  

Kunkler-peck and Turvey [15] studied shape and material recognition in struck 

plates sounds. Listeners had to identify if the plate was made of steel, wood or 

plexiglass. Here again, very high performance recognition was found, with only a 
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secondary tendency to associate materials with shape.  

The differences between the almost perfect results of real impact sounds experiments 

and the results of synthesized impact sounds experiment were explained by Carello, 

Wagman and Turvey [16] by the lack of acoustical richness in the synthesized sounds 

signals, which were thus missing some convenient information for the material 

discrimination. 

Giordano and McAdams in [17] investigated the identification of the material of 

struck objects of variable size. Twenty-five participants had to judge 2-mm-thick 

square, struck plates of four different materials (plexiglas, glass, steel and wood) and 

five different surfaces.  

Gross categories, metal/glass on the one hand and plexiglas/wood on the other hand, 

were identified almost perfectly, independently of the geometry of the plates.  

Within each gross category, identifications were based on signal frequencies, glass 

and wood being associated to higher frequencies than, respectively, metal and 

plastic. This study concluded that only partials support for the perceptive relevance 

of tan(φ). Participants highly failed to identify the material within these gross 

categories. They tended to associate small plates with glass or wood, and large plates 

with metal or plexiglas. This observation confirms Lufti’s result but is not consistent 

with the perfect wood/Plexiglas discrimination of Kunkler-peck and al.  

Giordano and McAdams found a predictive model based on loudness and frequency, 

and proposed also an ecological explanation to these results: there may be an 

ambiguity between the sound of a glass or metal bar. But as listeners are not used to 

manipulate big glass objects, they associate big objects with metal, and small objects 

with glass. 

2.4 Conclusion of the literature review 

In all studies, the coefficient of internal friction tan(φ) turned out to be a powerful 

criterion with regards to the material recognition from synthesized impact sounds. 

Investigations on the relative importance of frequency and decay time led to different 

conclusions: Avanzini and Rocchesso, Klatzky and al showed that the decay time 

was the main influencing parameter whereas Lutfi and Oh proved the contrary. This 

disagreement has many probable causes. First, the physical models used to 

synthesize the sounds were different. Then, the experiment procedures were not the 

same, Lutfi and Oh using a correlation procedure and the others using a similarity 

procedure (this means that the participants had to identify the material). Moreover, 

the sampling rates were different for the parameters in each experiment: more space 

between the frequencies of the stimuli can enhance the role of this parameter for 

instance. 

Consistently to Giordano and McAdams conclusion, it seems that the participants 

show high performance to distinguish metal and glass on the one hand from plastic 

and wood on the other hand. Actually, the frequency ordering within these gross 
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categories is not the same in Klatzky’s and Avanzini’s investigations for example. 

Moreover, one can notice that the Dτ  values proposed by Klatzky and al were quite 

similar for rubber and wood on the one hand, and for metal and glass on the other 

hand. This parameter would then be efficient for a “gross” classification involving 

two gross classes: glass and metal on the one hand, wood and rubber on the other 

hand. 

As for this research, the selected materials are wood, plastic, metal and glass. Rubber 

is here considered as a plastic material. As frequency and decay time turned out to be 

very influencing parameters, they will be given a particular importance. Moreover, 

gross categories will be investigated. 
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3 The Sound Design Tool synthesis 

models 

The Sound Design Tool (SDT) package is developed by Univerona and includes the 

impact sound synthesis model implemented on the software MAX-MSP 4.6. The SDT 

package is the main software product of a project activity which begun in 2001 with 

the EU project SOb - the Sounding Object [9].  

The physically based sound design tools aims at providing perception-oriented and 

physically coherent tools. To achieve a very realistic simulation is not the goal of the 

SDT synthesis models. Actually, cartoonifications are of a high interest: 

simplifications of sounds that preserve and possibly exaggerate certain acoustic 

aspects are cheaper computationally speaking and may convey information more 

effectively.  This section presents the low level models, whose the studied impact 

model belongs to, and then gives an overview of the more complex synthesis models. 

3.1 Low-level models 

This part will first present the way solid contacts are modelled and then explain 

more precisely the modal impact models implementation. The models are not simply 

based on additive synthesis. They take the attack transient into account. More details 

can be found in [9] and [18]. 

3.1.1 Generalities about the contact models 

The models considered here apply to basic contact events between two solid objects. 

As the most relevant contact sound events in everyday life come down to impacts 

and frictions, the provided externals model these two kinds of interactions. The 

algorithms implemented share a common structure: two solid object models interact 

through (what is called here) an interactor (see Fig. 3.1).  

An interactor represents a contact model or, so to say, the “thing” between the two 

interacting objects. As for the impact model, it can be seen as the “felt” between the 

striking object and the struck object, while in the friction model it simulates friction 

as if the surfaces of the two rubbing objects would be covered with “micro-bristles”. 

As for impact sounds, the interactor can be implemented with a non-linear or a linear 

force. It receives the total compression (the difference of displacements of the two 

interacting objects at interaction point) and returns the computed impact force. The 

latter is made of the sum of an elastic component and a dissipative one. The elastic 
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component is parameterized by the force stiffness (or elasticity) and by a non-linear 

exponent that depends on the local geometry around the contact area. The 

dissipative component is parameterized by the force dissipation (or damping 

weight).  

 

 

Figure 3.1: The common structure underlying solid contact algorithms. The interactor represents 

the contact model between the striking object and the struck object. At each discrete 

time instant (sample) both objects send their internal states (displacement and velocity 

at the interaction point) to the interactor, which in turn sends the newly computed 

(opposite) forces to the objects. 

 

Three distinct object models are provided:  

� Modal object 

In the modal description, a resonating object is described as a system of a finite 

number of parallel mass-spring-damper structures. Each mass-spring-damper 

structure models a mechanical oscillator that represents a normal mode of resonance 

of the object. The oscillation period, the mass and the damping coefficient of each 

oscillator correspond respectively to the resonance frequency, the gain and the decay 

time of each mode. 

� Inertial object 

An inertial object simulates a simple inertial point mass. Obviously this kind of 

objects is useful solely as an exciter for other resonators. The only settable object 

property is its mass. 

� Waveguide object 

The digital waveguide technique models the propagation of waves along elastic 

media. In the one-dimensional case implemented here, the waveguide object models 

an ideal elastic string. 

Having a look at Fig. 3.1, the way two objects interact through an interactor appears 

evident: at each discrete time instant (sample) both objects send their internal states 

(displacement and velocity at the interaction point) to the interactor, which in turn 

sends the newly computed (opposite) forces to the objects. Knowing the new applied 
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forces, the objects are able to compute their new states for the next time instant. In 

other words, there’s a feedback communication between the three models. 

The SDT framework differs remarkably from the approach to physically based sound 

synthesis found in most existing implementations and literature. The SDT package 

takes advantage of a cartoonified approach in sound design and implements a 

feedback network within the interaction  

Object 1 ⇔⇔⇔⇔ Interactor ⇔⇔⇔⇔ Object 2 

with nonlinear characteristics of the interactor. This allows the accurate modelling of 

complex interactions (e.g. friction) and to output the sound of both the interacting 

objects. Besides, the continuous feedback approach adopted into the SDT is memory 

consistent: the system takes record of each previous state during the interaction and 

manipulation.  

3.1.2 Modal Impact models 

The sound synthesis model used in this study is an inertial-modal model: the striking 

object is inertial object and the struck object is modal object. This case is a particular 

case of a two modal resonator model. This section describes the continuous-time 

impact model between two modal resonators. The cartoonification approach of this 

model is schemed on Fig.3.2. The striking object (notified by h for hammer) and the 

struck object (notified by r for resonator) are characterised by a mass component, a 

damping component and a spring component.  

 

 

Figure 3.2: Cartoon impact between two modal resonators. The sound model is controlled through a 

small number of parameters, which are related either to the resonating objects or to the 

interaction force. 
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Modal objects are characterized by a frequency ω, a mass m and a damping factor g. 

The interactor parameters are the coefficient shape α that characterizes the surface 

contact, the elasticity coefficient k and the dissipative factor μ. 

The simplest possible representation of a mechanical oscillating system is a second-

order linear oscillator of the form: 

 

 

Where x(r) is the oscillator displacement, fext the external driving force, w(r) the 

oscillator center frequency, g(r) its damping coefficient and 1/m(r) controls the inertial 

properties of the system. 

As for the inertial – modal model, the hammer will be characterized by an inertial 

mass described with null frequency, zero spring constant and zero internal damping 

(infinite decay time). 

Putting N oscillators in parallel, one can get spectrally richer sounds including a set 

of N partials {ωl(r)} (l=1…N).  The system thus obtained is:  

 

 

where the matrices are given by 

 

 

This N-coupled equations system can often be diagonalized using the transformation 

matrix (3.4) to obtain N decoupled equations.  

 

 
T =

j,l=1

N

t jl{ }  (3.4)  

 

The new variables are generally referred to as modal displacement. At a given point 

j, the displacement xj and velocity vj of the resonator are given by: 
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Assuming that the contact area between the two colliding objects is small (it is ideally 

a point), Hunt and Crossley ([19] in [9]) proposed the collision model described in 

equation (3.6) to depict the interaction force. This interaction force depends on the 

felt compression x and on the compression velocity v. 

 

 
f x t( ),v(t)( )= k x(t)[ ]α + λ x(t)[ ]α ⋅ v(t)

0

 
 
 

x > 0

x ≤ 0
 

 

(3.6) 

 

The compression x is the difference between the displacement of the hammer and the 

resonator. This means that there is only compression for x>0 and that the two objects 

are not in contact for x ≤0. The k parameter is the force stiffness and the α coefficient 

characterises the local geometry of the contact area. For instance, its value is equal to 

1.5 when both objects are perfect spheres. As for a piano hammer impact, his value 

varies from 1.5 to 3.5. The parameter λ is the force damping weight, which is related 

to the viscoelastic characteristic µ by the formula (3.7). It has an influence on 

bouncing striking object. As for this study, this last parameter is not considered (only 

simple impacts are taken into account). 

 

 µ = λ
k

 (3.7) 
 

 

The continuous-time equations of the whole system are then: 
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Where the terms fe(h) and fe(r) represent external forces, N(r) and N(h) the number of 

modes for the resonator and the hammer. 

Considering that the striking object is an inertial object, the equations driving the 

impact model are then: 
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The time-continuous system is discretized using an impulse invariance transform, 

which means that the impulse response is the same (invariant) at the sampling 

instants. 

Figure 3.3 shows the MAX-MSP interface for the two modal-resonators impact 

model.  

 

 

Figure 3.2: Cartoon impact between two modal resonators. The sound model is controlled through a 

small number of parameters, which are related either to the resonating objects or to the 

interaction force. 

 

The remaining controlling parameters are, for the hammer: the hammer mass m and 

the external force, which is equal to zero (this means that there is no bouncing). As 

for the resonator, the parameters are the two modes frequencies, decay times and 

gains. The interactor parameters are the stiffness force, the α coefficient and the 

dissipation coefficient, which is not influent given that there is no bouncing. 
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For computational reasons, only one pick-up point is studied, the interaction point. 

This is not problematic given that there is no sound artefact.  

In the same view of limiting the number of parameters to be controlled (limitations of 

the machine learning algorithms), the hammer mass and the interactor stiffness and 

shape coefficient parameters will be settled. Actually, a listening working session 

reveals that these parameters are obviously not as influent as the resonator 

parameters for the output sound.  

3.2 Higher-level models 

The expression “higher level” indicates more complex and structured algorithms, 

corresponding to somewhat large-scale events, processes or textures. In a way, that 

matches the meaning of the expression “high-level” in Computer Science, where it 

often denotes languages similar to those of human beings. Of course, in order to 

achieve that, high-level languages are indeed more complex and structured than 

low-level ones.  

The higher-level algorithms here discussed implement temporal patterns or other 

physically consistent controls (e.g. external forces) superimposed to low-level 

models. The low-level used for higher level models is the inertial-modal model, that 

was chosen for this reason. 

3.3 Definition of presets 

A listening session of real wood, glass, metal and plastic impact sounds was 

organized with Stefano Delle Monache and Stefano Papetti from Univerona. Stefano 

Papetti is working on the physical sound synthesis algorithms, whereas Stefano Delle 

Monache is more involved in sound design, controlling the validity of the models. 

The sounds we found in an existing library (Cd Audio Soundscan V2 Vol.61 SFX 

Toolbox) were not simple impact sounds; there were more complex sounds recorded 

in the everyday life.  A spectral analysis on Audiosculpt (web link on 

http://forumnet.ircam.fr/691.html?L=1) permitted to isolate the main frequencies, 

decay times and gain patterns of the sounds. These parameter values were then 

implemented on the physical impact model. 

The goal of these presets were first to validate the impact model, then to study the 

dynamic ranges of the parameters in order to reduce them and finally to form the 

sound corpus. Actually, the presets served as a basis for the sound corpus formation. 

The values of the parameters of the presets are presented in table 3.1. 
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Table 3.1  Values of the parameters’ presets for every material samples and for each parameter. 

 

Roughly, glass sounds have higher frequency components than metallic sounds, and 

lower decay time. Wood impact sounds have low decay times and frequency 

relatively low frequencies. As for plastic impact, only one sample was available. 

However, it seems to be characterised by very low decay times. 

The dynamic ranges of the parameters were defined as follow: 

 

Parameter Dynamic range 

Frequency (Hz) [150 ; 5100] 

Decay Time (s) [ 0.001 ; 0.405 ] 

Gain ( ) [ 80 ; 110 ] 
 

Table 3.2  Dynamic ranges of the parameters of the sound synthesis models chosen to define the 

restricted corpus. 
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4 Basis of machine learning techniques 

Machine learning techniques build algorithms that allow machines to “learn”, i.e. 

algorithms able to improve their performance based on previous results. 

The final aim of this study is to evaluate whether a machine learning algorithm can 

drive a perceptive classification experiment. It would allow achieving perceptive 

experiment on larger sound corpus. This implies that the algorithm is capable of 

cleverly choosing the sounds (i.e. sets of physical parameters) to be presented to the 

listener with regards to the material classes boundaries. This ability to cleverly 

choose a point is called active learning.  

This chapter first explains the basic principles of machine learning techniques and 

then presents three different machine learning techniques implemented by Kamil 

Adiloglu and Robert Annies from NIPG: the active perceptron algorithm, support 

vector machines (SVM) and probabilistic generative models (PGM). SVM and 

probabilistic generative models are passive learning techniques. Their results were 

used as a comparison basis in order to estimate the active perceptron algorithm 

performance. 

More details about machine learning techniques can be found in Bishop’s book [20]. 

4.1 Basic structure of an active learning algorithm 

A typical artificial intelligence (AI) example is the recognition of hand-written digits. 

The goal is to build a machine that will take a hand-written digit as input 

(corresponding to a 28*28 pixel image for instance, i.e. a 784 real numbers vector) and 

that will produce the identity of the digit 0… 9 as output. 

A machine learning approach to this problem consists in two main steps.  

• First, the training phase, during which a large set of digits {x1,…,xn} called 

training set is used to tune the model parameters. The target vector t 

represents the identity of the digit. The training phase, or learning phase, 

consists in determining a function y(x) which takes a digit image x as input 

and that generates an output vector y, encoded in the same way as the target 

vectors. In this case, there is a target vector t for each digit image x. 

• The second step, called generalization, is the ability of the model to classify 

new digit images that differ from those used during the training phase.  

Most of the time, the original input variables are pre-processed in order to transform 

them into some new space of variables where the pattern recognition problem will be 
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easier solved and to speed up the computation as well. This is called feature 

extraction. 

There are two kinds of training: 

� Online learning: the adaptation of model parameters (the y function) is done 

by using one observation at a time, in consecutive steps. The order of 

presentation influences the training. This effect should be negligible with 

many observations. Online learning is used when the training data arrive 

during the training phase. Online learning is necessary for active learning. 

Actually, the algorithm has to re-evaluate the model at each step to cleverly 

choose the next point. 

� Batch learning: all observations from training set are applied at once to adapt 

the model parameters. There cannot be active learning with such a learning 

phase, but only passive learning: the sounds are not cleverly chosen. 

Online learning is characteristic of active learning. Actually, active learning chooses 

observations step by step and needs a model estimation at each step. This estimation 

influences the next point to be chosen. 

One can distinguish three machine-learning families. 

� Supervised learning problems deal with applications in which the training 

data are composed of input vectors along with their corresponding target. The 

problem is there to find a model that attribute the correct target value for a given 

input vector. This includes classification tasks in which the aim is to assign each 

input vector to one of finite number of discrete categories (as in the digit example) 

and regression tasks in which the desired output consists of one or more continuous 

variables. 

� As for Unsupervised learning problems, the training data consists of a set of 

input vectors x without any corresponding target values. Unsupervised learning 

problems count clustering tasks (the goal of such problems is to discover groups of 

similar examples within the data) as well as density estimation tasks (the goal is to 

determine the distribution of data within the input space) and visualization tasks 

(the aim is to project the data from high- dimensional space down to two or three 

dimensions for the purpose of visualization). 

� In Reinforcement learning problems, the machine can also produce actions 

that affect the state of the world and receive awards or punishment. The aim is to 

find suitable actions to take in a given situation in order to maximize rewards in the 

long term. The two components of such problems are exploration (trying new kinds 

of action) and exploitation (using actions that are known to yield a high reward). 

As for this study, the accurate machine learning family for the classification problem 

is supervised learning.  

Three supervised machine learning techniques were compared in this study: the 

perceptron algorithm, SVM and PGM. 
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4.2 The perceptron algorithm 

4.2.1 General algorithm 

The active learning program used in this study is based on the two-class linear 

discriminant model developed by Rosenblatt in 1962: the perceptron algorithm. The 

algorithm consists in finding the model ω that assigns an output value y~ to an input 

vector x. as for this study, x is a six-dimension vector (the two frequencies, the two 

decay times and the two gains). The output value is the material class. 

 

 

Figure 4.1: The perceptron algorithm. The model is defined by the weight vector ω. 

 

The input vector x is first transformed using a fixed nonlinear transformation to give 

a feature vector φ(x) (feature extraction to facilitate the classification task). The vector 

φ(x) is then used to construct a generalized linear model of the form:  

 

 ))(()( xwfxy Tφ=  (4.1) 
 

 

Where the nonlinear activation function f is given by a step function f(a). 
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Typically, the vector φ(x) includes a bias 1)(0 =xφ . The goal is then to find the weight 

vector w such that patterns xn in class C1 will have wTφ (xn) > 0 whereas patterns xn in 

class C2 will have wTφ (xn) < 0. Using the t ∈ {−1, +1} target coding scheme, the 

classification task is then to satisfy equation (4.3) for all patterns. 

 

 0)( >nn
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The error function for the classification task is defined by the perceptron criterion 

that associates zero error with any pattern that is correctly classified, whereas for a 

misclassified pattern xn it tries to minimize the quantity −wTφ (xn)tn. M denoting the 

set of all misclassified patterns, the perceptron criterion is therefore given by: 

 

 ∑
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If the training data are linearly separable, the perceptron algorithm guarantees a 

solution in a finite number of steps. However, the solution depends on the 

initialization of the parameters and on the order of presentation of the data points. 

The perceptron algorithm can only deal with two classes. To obtain the four-

materials classification, the one-versus-the-rest approach was used: one classifier for 

each material. Consequently, the algorithm answered the following question: is this 

sound in the plastic class or not?  

The perceptron algorithm has a simple interpretation: it cycles through the training 

patterns in turn, and for each pattern xn it evaluates the perceptron function 

presented in equation 4.1. If the pattern is correctly classified, then the weight vector 

remains unchanged, whereas if it is incorrectly classified, then for class C1 it adds the 

vector φ( xn) onto the current estimate of weight vector w while for class C2 it 

subtracts the vector φ( xn) from w. 

Figure 4.2 (extracted from [20]) illustrates how the perceptron algorithm converges. 

This algorithm is a linear classifier. 
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Figure 4.2: Illustration of the convergence of the perceptron learning algorithm, showing data 

points from two classes (circles and crosses) in a two-dimensional feature space 

(φ1, φ2). The top left plot shows the initial parameter vector w shown as a black 

arrow together with the corresponding decision boundary (black line), in which 

the arrow points towards the decision region which classified as belonging to the 

red class. The data point circled in green is misclassified and so its feature vector 

is added to the current weight vector, giving the new decision boundary shown in 

the top right plot. The bottom left plot shows the next misclassified point to be 

considered, indicated by the green circle, and its feature vector is again added to 

the weight vector giving the decision boundary shown in the bottom right plot for 

which all data points are correctly classified. Figure extracted from Bishop’s book 

[20]. 

 

4.2.2 Active perceptron algorithm 

NIPG added an “active” component to the perceptron algorithm. This means that the 

next sound to be chosen by the algorithm during the training phase will not be 

chosen randomly (which is the case for passive learning) but cleverly, i.e. so that it 

conveys new information. Hence, during the experiment, the algorithm will choose 

the next sound to be heard by the participant so that the classification can be 

performed with fewer sounds. 

Fig. 4.3 explains how the algorithm chooses the points to be studied. Vol (V) is the 

volume function. In the diagram it is the length of an arc on the circle (the bold read 
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and black line). In higher dimensions it is a part of the sphere surface and is quite 

difficult to estimate. 
 

The bold lines are version spaces. A version space is the subset of all hypotheses that 

are consistent with the observed training examples. This set contains all hypotheses 

that have not been eliminated as a result of being in conflict with observed data. The 

goal is then to reduce this version space, so as to obtain the best classifier. 

V is the version space after a learning iteration and V+ the version space after the 

next iteration (learning step), which should shrink the version space. On figure 4.5 

for instance, the circle point will be chosen because the weight vector cuts the version 

space. Depending on the label of the point (plus or minus) the next version space is 

selected (the V+ bold line).  

The cross point does not divide the previous version space: it does not convey 

information, and thus is not selected.  

To classify a data point, the formula (4.5) calculates for each class the probability that 

the point belongs to this class and just takes the greatest value out of the four 

classifiers.  
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Ambiguities can appear when 2 or more classifiers say to 100% (V+ = V) that the 

point belongs to their class.  
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Figure 4.3: Active learning algorithm. On the left figure, each point on the circle (in our case a 6-

dimensional sphere) represents a linear boundary: the dotted line. This boundary 

divides the circle in two halves. Data points on either side get the class label +1 and - 1 

respectively. The algorithm learns from a sample of labelled data points and has some 

idea where to put those dotted lines best, such that the learned data points get the 

correct labels. Since the sample is finite there will be always region between the data 

points where one can put several boundaries that would label the points equally correct, 

this is called the Version space and is depicted on the figure by the bold line on the 

circle. Anywhere inside one can find classifiers that are consistent with the training set. 

The target is to minimize the bold line as much as we can, by choosing points that are 

located such that the normal vector of the updated classifier (the arrow) falls inside the 

version space and divides it. Because the label of that training point is known the 

version space shrinks (see the right figure with the red bold line). The data point was 

'interesting' for the algorithm because it conveyed new information: the version space 

could be shrunk. The blue point (bottom plot) is not interesting: the resulting weight 

vector does not cut the version space. 
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4.3 Support Vector Machines 

Support Vector Machines (SVM) are passive learning techniques. They are based on 

batch training. SVM are a set of supervised learning techniques used for classification 

and regression.  

In a 2-classes SVM problem (for instance a sound has to be classified in the wood 

category or the glass category), a data point is viewed as a p-dimensional vector (a 

list of p numbers, in our case: a 6-dimensional vector); the goal is to separate and 

classify the data with a p − 1-dimensional hyperplane. Such a classifier is called a 

linear classifier. However, SVM can also deal with nonlinear boundaries. A 2-classes 

classification problem can be resolved by using linear models on a form presented in 

equation (4.6).  

 

 bxwxy T += )()( φ  (4.6) 
 

 

Here, φ(x) denotes a fixed feature-space transformation, b is an explicit bias and w is 

the weight vector (perpendicular to the hyperplane). The training data set comprises 

N input vectors x1…xN, with corresponding target values t1, . . . , tN where tn ∈ {−1, 1}, 

and new data points x are classified according to the sign of y(x). As seen on figure 

4.3, there are many possibilities to separate two classes. 

 

             

Figure 4.3 Many classifiers (black lines) to separate Class 1 (black points) from Class 2 (white 

points) in a 2-dimension space. 

 

In SVM, the decision boundary (the line that separate the two classes) is chosen to be 

the one for which the margin is maximized, the margin being defined as the 

perpendicular distance between the decision boundary and the closest of the data 

points (see Fig. 4.3 extracted from [20]). This allows getting the minimum probability 

of error relative to the learned density model. 
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Figure 4.4 Maximum margin boundary. The margin is defined as the perpendicular distance 

between the decision boundary and the closest of the data points, as shown on the left 

figure. Maximizing the margin leads to a particular choice of decision boundary (y=0 

line), as shown on the right. The location of this boundary is determined by a subset of 

the data points, known as support vectors, which are indicated by the circles. 

 

The maximum margin solution is found by solving the equation (4.7). 
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In the limit σ²�0 (σ² being the probability of error relative to the learned model) the 

optimal hyperplane is shown to be the one having the maximum margin. As σ² is 

reduced, the hyperplane is increasingly dominated by nearby data points relative to 

more distant ones. In the limit, the hyperplane becomes independent of data points 

that are not support vectors. 

This method assumes there is no overlapping i.e. that the classes are completely 

separated. In practice, however, the class-conditional distributions may overlap and 

in this case exact separation of the training data can lead to poor generalization. The 

SVM is modified so as to allow some training points to be misclassified. Data points 

are allowed to be on the “wrong side” of the margin boundary but with a penalty 

that increases with the distance from that boundary. The penalty is a linear function 

of this distance that introduces slack variables ξ. ξn=0 for data points that are on or 

inside the correct margin boundary and ξn = tn − y(xn )  for the other points. The 

problem to achieve the classification by soft maximum margin problem is then given 

by equation (4.8). 
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Where the parameter C > 0 controls the trade-off between the slack variable penalty 

and the margin. 
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SVM is fundamentally a two-class classifier. However, several methods were 

proposed for combining multiple two-class SVMs in order to build a multiclass 

classifier. 

One commonly used approach was developed by Vapnik, 1998 and is called the One-

versus-the-rest approach. One constructs K separate SVMs, in which the kth model 

yk(x) is trained using the data from class Ck as the positive examples and the data 

from the remaining K-1 classes as the negative examples. The problem of this method 

is that it can lead to inconsistent results, in which an input can be assigned to 

multiple classes simultaneously. Moreover, the training sets are unbalanced: if there 

are ten classes comprising an equal amount of training data, then the individual 

classifiers are trained on data sets comprising 90% negative examples and only 10% 

positive ones, the symmetry of the original problem is lost.                                                                                                               

The One-versus-one approach is another method to build a multiclass classifier. It 

consists in training K(K-1)/2 different 2-class SVMs on all possible pairs of classes, 

and then to classify test points according to which class has the highest number of 

“votes”. This method avoids the symmetry problem but more computation is 

required, and it can lead to ambiguities in the results. 

As for this study, the selected method is the one-versus-the-rest approach. Hence, 

four classifiers run parallel during the experiment: a first classifier wood/not wood, a 

second one metal/not metal etc... 

4.4 Probabilistic generative models (PGM) 

Probabilistic generative models are based on the assumption that the four materials 

likelihood functions respond to a Gaussian distribution (or normal distribution). 

A random variable follows the Gaussian distribution if its probability density 

function is 
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Where m is the expected value and σ is the standard deviation.  

From answers of the participants in the classical perceptive experiment, this model 

will calculate the mean and the standard deviation of the four materials in the 6-

dimensions physical space. Probabilistic generative models are thus batch learning 

techniques: the algorithm needs all the observations at the same time to define the 

mean and the standard deviation. Figure 4.5 illustrates this technique for a 2-

dimensions case. 
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Figure 4.5 Generative probabilistic models. Each  curve corresponds to a material gaussian’s 

distribution. 

 

After the training phase, for a given sound (a 6-dimensions point in the physical 

space), all material probabilities will be compared. The sound is assigned the 

material class that has the highest probability: 

 

 { })(maxarg k

k

Cxp  (4.10) 
 

 

Where )( kCxp  is the probability that sound x belongs to the class Ck. 

A Gaussian classifier can form quadratic discrimination borders, which is not the 

case of the SVM program used for the comparison, which can only form linear planes 

in the case considered in this study. 

4.5 Summary 

This study will thus compare the results of four machine learning techniques, as seen 

on Figure 4.6. Active and passive perceptron algorithms will be studied as well as 

SVM and PGM. The only method able to drive an experiment in real time is the 

active perceptron algorithm, as it is based on online learning. The other methods are 

used to better evaluate the active perceptron algorithm performances. 
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Figure 4.6 Machine learning techniques studied in this project. 
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5 The classical psychoacoustic 

perceptive experiment 

As for this classification experiment, 20 participants were asked to identify the 

material of the object creating the sound they heard. This was a 4 AFC experiment (4 

alternatives forced choice): the listener had to choose one of the four proposed 

materials. 

The objective of this experiment was to get significant labelled sounds, i.e. to 

associate each set of physical parameters {f1 f2 t1 t2 g1 g2} to the probability of this 

sound to belong to a material class among {wood, metal, plastic, glass}.  

Analysis of the results permitted to study the distribution of the material classes in 

the physical parameter space. 

The labelled sounds were then used to train and evaluate the perceptive experiment 

based on machine learning techniques.  

5.1 Composition of the sounds corpus  

The sounds corpus is composed of 372 sounds that were generated from the presets 

(c.f. section 3.3). Sounds were chosen so as to cover the dynamic ranges of all 

parameters and so that the four material classes are a priori well represented. Figure 

5.1 illustrates the distribution of the 372 sounds in the frequency space, the decay 

time space and the gain space. 

As one can notice, the sounds are not equally distributed over the dynamic ranges. 

This is explained by the fact that a listening working session revealed that many 

materials could be identified for instance in the lower frequencies domain. Thus, 

studying more sounds in this area would permit to define finer boundaries between 

materials. 

The sounds were not equalised in loudness. Actually, this research focuses on 

environmental sounds, and keeping the sounds at their natural level is important: 

when exciting objects of the same size and of different materials by the same exciter, 

there will be different sound levels. Thus, an assumption here is that every material 

has natural specificities and a normalisation of the sounds could spoil these 

specificities. Moreover, Giordano and McAdams showed in [17] that the loudness 

was an influencing factor for the perception of the materials: glass was not associated 

with loud sounds for instance. 
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Figure 5.1: Distribution of the sounds in the physical parameter spaces: the top left plot shows 

the distribution of the sounds in the frequency space, the top right in the gain space 

and the bottom plot, in the decay time space. 

5.2 Proceeding the experiment 

The experiment took place in a soundproof booth and the sounds were emitted by 

loudspeakers Yamaha MSP5. The experiment was implemented on psiexp, software 

developed at IRCAM, and running on a MAC Pro. The sounds were played through 

Max-MSP 4.6 software. 

12 women and 8 men individually participated on voluntary basis to the perceptive 

experiment. They all reported normal hearing. 

The experiment was composed of two steps. To get familiar with the computer 

interface, it begun with a training phase in which 5 randomly chosen sounds were 

presented to the listener. Then, the 372 sounds were presented in a random order. 

All the sounds were not presented to the listener before the experiment because of 

time reasons. Moreover, no example of natural sounds was given: there is no 

information about the geometry of the object causing the sound, and giving a natural 

sound would have biased the listeners.  
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Only one re-listening was possible to assure that the participant answered 

spontaneously. The experiment lasted approximately 45 minutes. 

5.3 Experiment interface 

Figure 5.2 presents the experiment interface. For each sound, the participant chooses 

among the four materials, and has to valid his answer to get to the following sound. 

To avoid a context effect due to the interface, the material labels had various 

positions depending on the participant. 

 

 

Figure 5.2: Classical perceptive experiment interface on psiexp. 

5.4 Results of the classical perceptive experiment 

5.4.1 Viewing data in 2-D spaces 

Figures 5.3 till 5.5 show the 372 labelled sounds in the frequency, decay time and 

gain spaces. Three participant’s results are provided for each space: participants 1,13 

and 14. There is good agreement between participants 1 and 13, and poor agreement 

between participants 13 and 14. 

In the frequency space (f1 vs. f2), one can observe that plastic and wood tend to have 

lower frequency than glass, but metal spreads over the frequency space.  
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Figure 5.3: Projected data results of the classical experiment in the frequency space {f1, f2} for 372 

sounds. 
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Figure 5.4: Projected data results of the classical experiment in the decay time  space {t1, t2} for 372 

sounds. 
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Figure 5.5: Projected data results of the classical experiment in the gain space {g1, g2} for 372 

sounds. 
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In the decay time space, plastic and wood are characterised by low values. Metal and 

glass are less well-defined, which confirms Avanzini and Rocchesso study that 

concluded that rubber (plastic) and wood are more defined regions. Depending on 

the participant, wood and plastic are not positioned in the same order.  As for the 

gain space, one can notice that no particular pattern can be derived. The data are 

kind of randomly spread over the space. 

Figure 5.6 shows the data projected in the best angle with regards to the classes’ 

separation. Linear discriminant analysis is used to obtain the most pertinent axis, 

which are linear combinations of the model’s physical parameters. 

In this space, the gross-class wood/metal is obvious: for all participants, the red and 

the yellow data points are mixed together. As for the gross class plastic/wood, data 

are more or less separated depending on the participant.  
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Figure 5.6: Data projected in the best separating-class space, calculated by Linear Discriminant 

Analysis, for three different subjects. 
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5.4.2 Degree of identification of sounds and agreement between 

participants 

Figure 5.7 represents the degree of identification of the 372 sounds. For each sound, 

the participants’ answers distribution over the four materials was calculated, and the 

maximum material percentage was defined as the identification degree of the sound.  

 

This graphic indicates that no sound was identified with a 100% score. 109 sounds 

were identified at 60%, and most sounds were recognized between 40% and 70%.  

The agreement between participants is given by the kappa coefficient. As this study 

considers 4 classes, the kappa were calculated with Cohen’s Kappa adapted to many 

raters by Fleiss [21]. Kappa is defined by relation 5.1 

 

 

 
(5.1) 

 

 

Where P0 is the observed agreement and Pe is the proportion of expected agreement. 

Kappa is comprises between -1 (complete disagreement) and +1 (total agreement).  

Table 5.1 gives the kappa values obtained for the 20 participants. Kappa represents 

the chance-corrected probability that 2 judges agree, i.e. that two participants choose 

the same material over.  

The results show fair global agreement, and slight agreement for wood. Best 

agreement is found for plastic, but its kappa remains low. 
 

 

Figure 5.7: Sounds degree of identification for the classical perceptive experiment. 
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The weak value of this kappa coefficient could be partly due to material confusion, 

i.e. to a good identification of gross categories. To calculate the material confusion of 

participants, the two maxima of the participants’ answers distribution over material 

were counted and summed up. Results are presented on graph 5.8. 

 

 

This graph underlines confusions between metal and glass, as in Girdano and 

McAdams’ paper ([17]). Actually, 182 sounds out of the 372 were identified by the 

participants as being either glass or metal. The other gross class is composed of 

plastic and wood and counts 112 sounds. Confusion is visible as well for wood and 

metal (59 sounds). These results are consistent with the literature, which highlighted 

the perception of the following gross classes: wood/plastic and metal/glass. The 

kappa coefficient for the two gross classes is  

 

Kappa_gross_classes = 0.55              (error: 2.9e-5) 

Global Kappa 0.23 (error: 6.8e-6) 

Kappa_wood 0.16 

Kappa_metal 0.22 

Kappa_plastic 0.32 

Kappa_glass 0.23 
 

Table 5.1  Kappa values for 20 participants, four material classes and 372 sounds. 

 

Figure 5.8: Material confusion: the x-axis shows all possible pairs of materials, and the y-axis 

indicates the number of sounds for which the two participants’ answer maxima 

correspond to the material pairs.  
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The identification of gross-classes material is thus characterised by moderate 

agreement. This value is better than the global kappa but remains somewhat weak. 

The physical model can explain these results. Actually, it relies on cartoonification 

principles, which involve very simple physical modelling algorithms. Thus, some 

sounds can be hardly identified, and the participants’ answers can be characterised 

by chance. The Chi-square test permits to identify these sounds. 

5.4.3 The Chi-square test 

The Chi-square test is a statistic test that permits to test the null hypothesis, i.e. in our 

case, to know whether a sound’s material was randomly chosen by the participants. 

The Chi-squared statistic is given by 

 

 ( )
∑

−=
m sfrequencieExpected

sfrequencieExpectedsfrequencieObserved 2
2χ  (5.2) 

 

 

Where m is an index for the material class. The expected frequency to test the null 

hypothesis is the random probability: 25% for four materials. If the Chi-square test is 

above a certain value defined by tables, depending in the number of classes and the 

desired precision, then the null hypothesis can be rejected. 

A Chi-square test is done for every sound. This implies 372 chi-square test. The 

probability that a sound is wrongly selected by the statistical test increases with such 

a huge number of sounds. Therefore, a correction has to be applied to the threshold. 

Benjamini [22] and Bonferroni [23] both proposed corrections. Table 5.2 gathers the 

results of the test. The significant sounds are sounds that reject the null hypothesis. 

 

 

Bonferroni’s correction is very conservative. Only 53 sounds are selected by this 

method. As for Benjamini’s correction, it selects 196 sounds having a fair agreement: 

the kappa value is equal to 0.3.  

 

Correction 
Number of 

significant sounds 

Kappa values for 

4 classes 

Kappa values for 

2 classes 

No correction 372 0.23 0.55 

Benjamini 196 0.30 0.63 

Bonferroni 53 0.45 
 

 

Table 5.2  Results of Kappa and Chi-square tests for different corrections and different classes. 
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Considering gross classes with the 196 selected sounds, the agreement among 

participants is very high. Actually, the kappa is then equal to  

 

Kappa_gross_classes = 0.63              (error: 1.8e-5) 
 

The gross classes are thus well identified. 

 

Agreement between participants reaches 0.45 for 4 classes and 53 sounds (selected by 

Bonferroni’s correction), which is a moderate agreement.  

The next section presents the projection in 2-D spaces of the sounds selected by 

Bonferroni’s correction. Classification patterns should be more visible on these 

values, as there is a better agreement between the participants. 

5.4.4 Selected data viewed in 2-D projections 

A first observation is that there are no many wood sounds: this means that wood is 

not well represented in the most significant sounds, and thus that it is not very well 

recognized (the answer percentage distribution is not high for wood sounds).  

Material regions clearly appear in the frequency space: with increasing frequencies, 

there are plastic, metal and glass. When wood is represented (participant 14), its 

frequency values are located between plastic’s and metal’s values. 

As for the decay time space, plastic and glass regions are visible. Plastic are identified 

for very low decay times, and glass for higher values. As for wood, participant 14 

locates it below plastic. Metal is not well defined in this domain. 

In the gain space, there is no particular pattern: the sounds are distributed all over 

the space. 
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Figure 5.9: Projected data results of the classical experiment in the frequency space {f1, f2} for 53 

sounds. 
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Figure 5.10: Projected data results of the classical experiment in the decay time space {t1, t2} for 53 

sounds. 
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Figure 5.11: Projected data results of the classical experiment in the gain space {g1, g2} for 53 

sounds. 
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5.4.5 Conclusions 

Some rough regions appear in the frequency and decay time spaces, especially for 

plastic and glass. Metal is better defined in the frequency space than in the decay 

time space. Wood got the worst agreement between participants, and was slightly 

characterised in both spaces. In increasing frequencies, the material ordering is 

plastic, wood, metal and glass and in increasing decay times, the order is wood, 

plastic and glass. These results are mainly consistent with the researches described in 

the literature part, with some inversions between wood and plastic and between 

metal and glass. 

However, the agreement between participants is not very strong. Actually, this study 

highlights confusions between wood and plastic on the one hand, and metal and 

glass on the other hand. These gross classes had been observed by Giordano and 

McAdams in [17]. 

For these two gross classes, the agreement among participants is much higher, 

especially with the 196 sounds rejecting the null hypothesis. 

Two sets of data will be tested in the next experiment based on machine learning 

techniques. On the one hand, noisy data composed of the 372 sounds (4 classes and 2 

classes), and on the other hand, more significant data composed of the 196 sounds 

selected by Benjamini’s correction 4 and 2 classes). These two sets will be used to 

train and evaluate the machine learning algorithms. 
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6 Experiment based on machine 

learning techniques 

The objective of this experiment is to evaluate the ability of machine learning 

techniques for a perceptive classification experiment. In the long term, this would 

allow machine learning algorithms to drive perceptive experiments so as to realise 

them on large-scale sounds corpus. Driving an experiment involves an active 

component that will cleverly choose the next sound to be presented to the 

participant.  

This chapter evaluates active learning techniques as well as passive learning 

techniques in order to have some comparison basis.  

6.1 Proceeding of the experiment 

As seen in the introduction (see Figure 1.3 on page 4), the results of the classical 

perceptive experiment were given to the machine learning algorithm. Beforehand, 

data were divided in two groups, group 1 and group 2. The results consist, for each 

of the 20 participants, in an input vector (the 6 physical parameters) and an output 

vector (the associated material). Group 1 sounds of each participant was used to train 

the machine learning algorithms: the algorithm knows the “good” answer, i.e. the 

material given by the participant. This group was composed of 272 sounds for the 

initial corpus and 96 sounds for the more significant sounds corpus. As for SVM and 

PGM methods, all sounds of group 1 will be used for the training. As for the 

perceptron algorithm, the point is to evaluate whether active learning techniques 

converge faster by cleverly choosing the points. Therefore, the algorithm will train 

with 35 data of group 1: these 35 points are randomly chosen by the passive 

perceptron algorithm and are cleverly chosen by the active perceptron algorithm. 

Then, a virtual participant was simulated to test the generalisation ability of the 

algorithm. The algorithm is given an unlabelled data from group 2 (100 data) and has 

to decide in which class this points belong to.  

Finally, the group 2 results of both classical and automatic experiments (the real 

participant and the simulated one) are compared to evaluate the machine learning 

algorithm. 

The experiment was done separately for 20 virtual participants, so as to avoid inter-

individual differences. Then, the mean error on all participants was calculated. 



 52 

6.2 Experiment results 

This section first presents the machine learning results for 372 sounds, i.e. for noisy 

data and then for 196 classes. Active learning (active perceptron algorithm) will be 

compared to passive perceptron algorithm, support vector machines and 

probabilistic generative models.  

6.2.1 Results with the initial corpus (372 sounds) 

Figure 6.1 presents the error for each virtual participant of active learning and 

passive learning algorithms (perceptron algorithm) for a four materials classification 

and for the initial corpus of sounds. This error is the error on the 100 testing sound 

after a training of 35 data. Actually, passive perceptron and active perceptron 

algorithms have the same results for a large amount of sounds. The difference is 

important at the beginning of the training: active learning is advantageous if better 

results are obtained for fewer sounds. As for active learning, the 35 sounds were 

cleverly chosen within the group 1. As for passive learning, 35 sounds were 

randomly chosen within the 272 sounds of group 1. 

Concerning Support vector machines and Probabilistic generative models, the 

training was done on the 272 sounds. 

 

 

Figure 6.1: Error of active and passive perceptron algorithm for 4 classes and 372 sounds for each 

virtual participant. 

 

Some important differences in the results are visible among the 20 participants. 
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The mean errors of both methods over participants are: 

Active mean error = 0.44 

Passive mean error = 0.49 

This error is very high: this means that the active learning perceptron algorithm has 

44% chance to fail the classification. However, the error turns out to be better than 

the passive algorithm error. 

As shown on figure 6.2, support vector machines have worst results than active 

learning but Gaussian classifiers are more powerful. This is explained by the 

quadratic boundary of this last algorithm, whereas SVM and perceptron algorithms 

can only draw linear boundaries.  

 

Perceptron 

Algorithm 

Support Vector 

Machines 

Probabilistic 

Generative Models 

44% 46% 40,7% 
 

Figure 6.2: Mean error for the 20 participants of perceptron algorithm, SVM and probabilistic 

generative models for 372 sounds and 4 classes. 

 

Figure 6.3 shows the perceptron algorithm error for 372 sounds and the two gross 

classes (wood/plastic and metal/glass). 

 

 

Figure 6.3: Error of active and passive perceptron algorithms for 2 classes and 372 sounds for each 

virtual participant. 
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The mean errors of both methods over participants are: 

Active mean error = 0.20 

Passive mean error = 0.24 

The error for gross classes is much better than for the four materials. Active learning 

still presents better results than passive learning. However, 20% of the sounds were 

misclassified. 

6.2.2 Results with significant data (196 sounds) 

In this section, machine learning algorithms performance is evaluated for more 

significant data, i.e. for data selected by the Chi-square test corrected by Benjamini 

[22]. The training set is composed of 96 sounds (35 chosen by the perceptron 

algorithm), and the test set of 100 sounds. 

Figure 6.4 presents the results for four classes. 

 

 

Figure 6.4: Error of active and passive perceptron algorithms for 4 classes and 196 sounds for each 

virtual participant. 

 

The mean errors of both methods over participants are: 

Active mean error = 0.35 

Passive mean error = 0.38 

Here again, active learning shows better results than passive learning. However, the 

error is very high. More than one third on the data was misclassified. 

Such poor performance is obtained with SVM and probabilistic generative models, as 

shown on picture 6.5. 
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Figure 6.5: Error of SVM and PGM for 196 sounds and 4 classes for each virtual participant. 

 

The mean errors of both methods over participants are: 

SVM mean error = 0.35 

PGM mean error = 0.36 

 

Better results are obtained with the identification of the two gross-classes, as shown 

on Figure 6.6.  

 

 

Figure 6.6: Error of active and passive perceptron algorithms for 4 classes and 196 sounds for each 

virtual participant. 



 56 

The mean errors of both perceptron algorithm methods over participants are: 

Active mean error = 0.05 

Passive mean error = 0.20 

Active learning performs the classification with 5% error, and much better than 

passive learning.  

SVM and PGM also give very good results with cleaned data and 2 gross classes. 

 

 

Figure 6.5: Error of SVM and PGM for 2 classes and 196 sounds for each virtual 

participant. 

 

The mean errors of these two methods are: 

SVM mean error = 0.04 

PGM mean error = 0.06 

6.2.3 Conclusion 

These experiments show that active learning helps converge more rapidly than 

passive learning. Active learning algorithm show very good results for cleaned data 

and gross classes. However, it remains slightly less efficient than probabilistic 

generative models. This is due to the fact than the perceptron algorithm only draws 

linear boundaries between material regions, whereas probabilistic generative models 

provide a quadratic boundary. 
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7 Conclusion  

Finally, the classical perceptive experiment showed little consensus among 

participants for the four material classes identification but significant results. 

However, it highlighted much better agreement for gross material classes: wood and 

plastic on the one hand, metal and glass on the other hand. Statistical analysis based 

on Chi-square statistic permitted to obtain a restricted sounds corpus composed of 

the most significant sounds. 

Experiments based on machine learning techniques were given these two corpuses to 

investigate the algorithms performance with both “noisy” and “cleaned” data. The 

perceptron active learning algorithm showed an important error of 35% for the 

restricted corpus and four classes, but this is explained by the poor performance of 

participants to identify the four material classes. Active learning turned out to be 

much more efficient with the 2 gross classes’ identification: only 5 % error was 

obtained.  

A possible improvement of this machine learning technique is the implementation of 

quadratic boundaries between the material classes instead of linear boundaries. This 

would permit active learning to be more efficient with noisy data. 

The limit of these methods is the necessity to have a training phase, which compels to 

perform a preliminary experiment to tune the model. 

Finally, this multidisciplinary work introduced a promising experimental method for 

psychoacoustic tests. This would permit to build a perceptive interface for sound 

synthesis models, usable by sound designers. 

The next step would be to implement, in real time, a classification perceptive 

experiment based on active learning techniques on a large-scale corpus. Another 

possible work is to use active learning for a work based on acoustic descriptors. 

 

 



 58 

 



 59 

Bibliography 

[1] P. Susini, N. Misdariis, O. Houix, G. Lemaître. Everyday sound classification – 

Experimental classification of everyday sounds. Deliverable 4.1 Part 2 of the CLOSED 

project, IRCAM, June 2007. 

[2] F. Guyot. Etude de la perception sonore en terme de reconnaissance et d’appréciation 

qualitative: une approche par catégorisation. PhD thesis, Université du Maine, 1996. 

[3] Y. Gérard. Mémoire sémantique et sons de l’environnement. PhD thesis, Université de 

Bourgogne, 2004. 

[4] M. M. Marcell, D. Borella, M. Greene, E. Kerr, S. Rogers. Confrontation naming of 

environmental sounds. J. of clinical and experimental neuropsychology, 22(6):830-864, 

2000.  

 [5] N. J. Vanderveer. Ecological acoustics: human perception of environmental sounds. 

PhD thesis, Cornell University, 1979. 

[6] R. P. Wildes, W. A. Richards. Recovering Material Properties from Sound. In W. 

Richards, editor, Natural Computation. Cambridge, MA:MIT Press, 1988.  

[7] A. Chaigne, C. Lambourg. Time-domain simulation of damped impacted plates: I. 

theory and experiments. J. of the Acoustical Society of America, 109(4):1422-1432, April 

2001. 

[8] A. Chaigne, C. Lambourg, D. Matignon. Time-domain simulation of damped impacted 

plates: II. Numerical models and results. J. of the Acoustical Society of America, 

109(4):1433-1447, April 2001. 

[9] D. Rocchesso, F. Fontana, editors. The Sounding Object. Mondo Estremo, 2003. 

Freely available from http://www.soundobject.org/.  

[10] R. L. Klatzky, D. K. Pai, E. P. Krotov. Perception of Material from Contact Sounds. 

Presence 9(4), 399-410, 2000. 

[11] F. Avanzini, D. Rocchesso. Controlling material properties in physical models of 

sounding objects. Proceedings of the International Computer Music Conference, La 

habana, Cuba, 91-94, 2001. 

[12] R.A. Lufti, E. Oh. Auditory discrimination of material changes in a struck-clamped bar. 

J. of the Acoustical Society of America, 102(6), 3647-3656, 1997. 

[13] D. J. Hermes. Auditory Material Perception. IPO Annual Progress Report 33, 1998. 



 60 

[14] W. W. Gaver. Everyday listening and auditory icons. PhD thesis, University of 

California, San Diego, 1988. 

[15] A. J. Kunkler-Peck, M. T. Turvey. Hearing Shape. J. exp. Psych. Hum. Percept. 

Perform 26(1), 279-294, 2000. 

[16] C. Carello, J. B. Wagman, M. T. Turvey. Acoustical Specification of Object properties. 

J. Anderson, B. Anderson editors, Moving Image theory: Ecological consideration, 

Southern Illinois University Press, Carbondale, 2003. 

[17] B. L. Giordano, S. McAdams. Material identification of real impact sounds: Effects of 

size variation in steel, glass, wood and plexiglass plates. J. of Acoustical Society of 

America 119(2), February 2006.  

[18] S. D. Monache, D. Devallez, C. Drioli, F. Fontana, S. Papetti, P. Polotti, D. 

Rocchesso. Algorithms for ecologically-founded sound synthesis: library and documentation. 

Deliverable 2.1 of the CLOSED project, Univerona, May 2005. 

[19] K.H. Hunt, F.R.E. Crossley. Coefficient of restitution, Interpreted as Damping in 

Vibroimpact. ASME J. Applied Mech., pages 440-445, June 1945.  

[20] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.  

[21] J. L. Fleiss. Measuring nominal scale agreement among many raters. Psych Bull, 76, 

378-382, 1971. 

[22] Y. Benjamini, D. Yekutieli. The control of false discovery rate in multiple testing under 

dependency. Annals of Statistics 29, 1165-1188, 2001. 

[23] S. P. Wright. Adjusted P-Values for simultaneous Inference. Biometrics, Vol. 48, 

1005-1013, 1992. 

[24] M. Derio. Approche perceptive dans un logiciel de synthèse sonore par modélisation 

physique: Modalys. Master’s thesis, Université du Maine, 2005. 

[25] R. Dos Santos. Interface perceptive de contrôle dans un logiciel de modélisation par 

synthèse  physique. Master’s thesis, Université Pierre et Marie Curie, Jussieu Paris VI, 

2006. 

 

 

 


