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Very high quality text-to-speech synthesis can be achieved by unit selection in a large
recorded speech corpus [1]. This technique uses some optimal choice of speech units
(e.g. phones) in the corpus and concatenates them to produce speech output. For various
reasons, synthesis sometimes has to be done from existing recordings (rushes) and possibly
without a text transcription. But, when possible, the text of the corpus and the speaker
are carefully chosen for best phonetic and contextual covering, for good voice quality
and pronunciation, and the speaker is recorded in excellent conditions. Good phonetic
coverage requires at least 5 hours of speech. Accurate segmentation of the phonetic units
in such a large recording is a crucial step for speech synthesis quality. While this can be
automated to some extent, it will generally require costly manual correction. This paper
presents the development of such an HMM-based phoneme segmentation system designed
for corpus construction.

1. ARCHITECTURE OF THE SYSTEM

The segmentation system presented here is based on the Hidden Markov Models Toolkit
(HTK [2]). It has been designed to perform a Viterbi decoding based on a phoneme-level
graph which topology depends of the text transcription availability :

e when a text transcription is not available, a phoneme bigram language model is
used. Indeed, the absence of script-derived constraints on the realisable phoneme
sequences should allow better phoneme recognition for this case. However, the
segmentation is less robust to non-speech noises like lipsmack or breathing which
can be intermingled with language phonemes;

e when a text transcription is available, the textual information, which can be
seen as a constraint on the permissible phoneme sequences, is provided by a
multi-pronunciation phonetic graph. This graph is built by using a version of
Lia_phon, a rule based French text-to-phone phonetisation program [3], which
we have improved for this purpose. The graph is built as presented on Fig 1.

Given the graph which has been selected (depending of the text transcription availability),
its associated set of HMMs and an acoustic observation (MFCC), the Viterbi decoder [4]
then finds the most likely sequence of phonemes given the acoustic signal. Finally, the
recognizer outputs the phonetic sequence that best matches the speech data.

2. HMMs DESIGN AND TRAINING

2.1. Text and recording. The recorded text is a set of 3994 sentences in French, chosen
in [5] for good phonetic and contextual covering. A subset of 354 of these sentences has
been hand segmented, and then divided into one set of 200 sentences for the tuning of
the models (development set), and another set of 154 sentences for testing (test set). The
remaining 3640 sentences are used for model training (training set). The acoustic features
used in all experiments are Mel-Frequency Cepstral Coefficients (MFCC), together with
their first and second smoothed time difference features (which we name MFCC- Energy
Delta Acceleration (MFCC-EDA)), calculated on 25 ms sample windows every 5ms.

2.2. Training procedure. HMMs used for each phoneme have the same topology of

forward and self connections only and no skips. The begin/end silence has a skip from

the first to the last active state and vice versa. Since the realisation of phonemes is highly

context dependent, the choice of triphones as phonetic units is expected to give better

match accuracy than monophones, but not necessarily a better timing accuracy. Then, the

two types of model have been experimentally compared in our system. Different numbers
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of states per HMM and Gaussians per state were also tested. At first, monophone HMMs
are estimated by embedded training on the training set using phonetic transcription of
the whole each sentence. The phoneme bigram language model is then trained on the
corpus phonetic transcription. If aiming for a final monophones based architecture, then a
number of steps of mizture splitting, are applied while increasing the number of Gaussians
per state by splitting the largest Gaussians, and models are re-estimated. If aiming for a
final triphone based architecture, then initial triphone models are first obtained from 1-
Gaussian monophone models. A clustering procedure is then used to map triphones absent
from the corpus onto models of triphones present in the corpus [2]. Several iterations of
mixture splitting and re-estimation steps are then applied, as in the case of monophone
models.

2.3. HMM design for phonetic decoding. Design of the models were conducted on
the development set sentences for different numbers of Gaussians. Optimisations have
been made considering the phoneme bigram language model for which recognition results
are more sensitive in the HMMs topology than when considering the multi-pronunciation
phonetic graph. HMMs topology is optimised according to segmentation accuracy which
is measured by the Match Accuracy measure [6]. Initial tests use a model with 3 states,
and 1, 2, 3, or 5 Gaussians. Several variations have been tested in these initial tests and
the best system configuration for the database was the following :

e 64Hz low-frequency cutoff;
e EDA with 13 base MFCCs;

e Shift of the 25ms sample window;

o Initial training using hand-segmented data.

From this configuration, we then varied both the number of Gaussians per state , the
number of states per HMM and the number of Baum-Welch iterations per processing step
(3, 6, 9). Figures 2a and 2b show match accuracy (ignoring timing information) according
to, respectively, the number of states per model and the number of Baum-Welch iterations
per training step. A number of points can be drawn from these Figures:

(1) Figure 2a shows that triphone models generally outperform monophone models
for a given number of Gaussians per model. However, overall model size is usually
much larger for triphones than for monophones. Further monophone tests would
be required to check whether monophone performance will peak at a value lower
than peak triphone performance (93.2%). However, as triphone models take ac-
count of known context dependencies, it would be expected that triphone model
accuracy would have a greater potential to increase as the proportion of triphones
represented in the training data increases;

(2) Performance peaks at 7 states per HMM for both monophone and triphone models
(9-state performance is almost the same, but slightly worse);

(3) Figure 2b shows that triphone performance peaks at 5 Gaussians per state. Mono-
phones peak somewhere above 40 Gaussians per state.

3. SEGMENTATION USING TEXTUAL KNOWLEDGE

We then used the topology found in the last section (triphone models, 7 states per
phoneme and 5 gaussians per state) and we studied the results obtained with the test set
considering the phoneme bigram language model to decide which pronunciations will be
allowed in the multi-pronunciation phonetic graph. We then compared the results in term
of phoneme recognition precision and phonem boundary precision.

3.1. Phoneme recognition precision. Table 1 shows the phoneme confusion counts for
the segmentation of the test set based on phoneme bigram language model considering
the best model topology presented in the last section (diagonal on the right under Diag).
Every one of the errors made was inspected and phonetic rules were deduced from them
and incorporated in Lia_phon in order to take the text information into account via multi-
pronunciation phonetic graphs. The phoneme confusion matrix resulting from this new
segmentation is given in Table 2. Most of the errors are avoided and the match accuracy
is now equal to 96.8% compared to 93.2% in the case of the segmentation based on the
phoneme bigram language model.



3.2. Phoneme boundary precision. We also compared the results in term of Timing
accuracy. Table 3 shows boundary precision in terms of Timing Accuracy for the seg-
mentation based on the phoneme bigram language model. It also shows the percentage of
sentences with all boundaries within tolerance. Two estimated boundaries are not allowed
to be matched to the same given boundary. The residual 5% inaccuracy for a tolerance of
70 ms is therefore mostly due not to inaccurate boundary positions, but to extra inserted
boundaries (which may in some cases not really be errors, because the hand labelling is
not 100% correct). On looking at Table 4, we can see that there is a slight improvement
concerning the segmentation precision.

4. CONCLUSION

This paper has presented some tests and improvements of an HMM-based phoneme
segmentation system aimed at the construction of large speech synthesis corpus. Optimal
HMM architecture and parameter values have been determined for a high quality monos-
peaker recording. Segmentation based on phoneme bigram language model, i.e. without
text knowledge, and segmentation based on multi-pronunciation phonetic graph with text
knowledge, have been studied and allow Match accuracy rates up to, respectively, 93,2%
correct phoneme recognition and 96,8% correct labelling. These results suggest that the
cost of manual verification and correction of the corpus can be largely reduced. This
system is actually tested on a bigger database called “Chronic” which consist of 3 hours
of manually segmented speech.
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1) Le petit chat
2) I [@lZI 9] p[ @12| 9] ti sg
9 (1@29)  (pl@2eti} (%
4) sil {l[@lZI 9]}[3p]{p[(6]>12|9]ti}[sp] {éa} sil

FIGURE 1. Phonetic graph construction for the sentence “le petit chat”.
The metacharacters : | denotes alternatives, [ | enloses options, { }
denotes zero or more repetitions: 1) the sentence is splitted in words, 2)
phonetisation of each word, 3) each word is optional and can be repeated,
4) optionals sp are added between words.
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FIGURE 2. a) Match accuracy versus number of Gaussians per state
for various number of states per HMM (6 iterations per step, mono or
triphones). b) Match accuracy versus number of Gaussians per state for
various number of training iterations per step (7 state HMMs, mono or
triphones)



TABLE 1. Phoneme confusion matric obtained after the test set seg-
mentation based on the phoneme bigram language model (row=true
phoneme, column=phoneme identified, diagonal on the right under
Diag). Hits=3000 Deletions=31 Substitutions=103, Insertions=85, Ac-
curacy=93.01%, Match accuracy=93.20%.

ssamEebRO9nykustoizl2fadwOvp@9ejgoHZS
ip ~ ~ ~ ~ Del Ins Diag
7 40
170
93
115
192
67
72
113
146

N
ONOOOOHORAONFRWNORKWWO
"
©
2

NNOOOCOWOOWNWRORKRNRNOW

TABLE 2. Phoneme confusion matric obtained after the test set seg-
mentation based on the multi-pronunciation phonetic graph (row=true
phoneme, column—=phoneme identified, diagonal on the right under
Diag). Hits=308/ Deletions=16 Substitutions=34, Insertions=50, Ac-
curacy=96.81% , Match accuracy=96.85%.
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TABLE 3. Phoneme boundary precision (left) and whole sentence align-
ment accuracy (Tight) for the segmentation based on the phoneme bigram
language model with T=number of fully correct, F=number of not fully
correct)

l Boundary accuracy H ‘Whole sentence accuracy ‘

Tol TAcc H D I N Acc T F N

5 19.76 991 1989 2036 2980 0.00 0 154 154
10 43.91 1833 1147 1194 2980 0.00 0 154 154
20 75.54 2585 395 442 2980 6.49 10 154 154
30 87.37 2801 179 226 2980 22.08 34 120 154
50 93.46 2902 78 125 2980 37.66 58 96 154
70 95.16 2929 51 98 2980 48.05 74 80 154
100 96.31 2947 33 80 2980 51.95 80 T4 154
500 96.95 2957 23 70 2980 54.55 84 70 154




TABLE 4. Phoneme boundary detection precision (left) and whole phrase
alignment accuracy (right) for the segmentation based on the multi-
pronunciation phonetic graph (T=num fully correct, F=num not fully
correct) for the segmentation based on the word-pair grammar

l Boudary accuracy “ ‘Whole phrase accuracy ‘

Tol TAcc H D I N Acc T F N

5 21.21 1049 1931 1965 2980 0.00 0 154 154
10 45.80 1883 1097 1131 2980 0.00 0 154 154
20 78.07 2628 352 386 2980 5.19 8 146 154
30 88.79 2819 161 195 2980 22.08 34 120 154
50 94.61 2914 66 100 2980 42.86 66 88 154
70 96.07 2937 43 77 2980 51.95 80 74 154
100 97.17 2954 26 60 2980 58.44 920 64 154
500 97.76 2963 17 51 2980 62.34 96 58 154




