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Abstract

In this paper, we describe and compare two methods for

unsupervised learning of musical style, both of which

perform analyses of musical sequences and then compute a

model from which new interpretations / improvisations

close to the original's style can be generated. In both cases,

an important part of the musical structure is captured,

including rhythm, melodic contour, and polyphonic

relationships. The first method is a drastic improvement of

the Incremental Parsing (IP) method, a method derived

from compression theory and proven useful in the musical

domain. The second one is an application to music of

Prediction Suffix Trees (PST), a learning technique initially

developed for statistical modeling of complex sequences

with applications in linguistics and biology.

1 Style Modeling
By Style Modeling, we imply building a computational

representation of the musical surface that captures important
stylistic features hidden in the way patterns of rhythm,

melody, harmony and polyphonic relationships are
interleaved and recombined in a redundant fashion. Such a

model makes it possible to generate new instances of

musical sequences that respect this explicited style (Assayag
& al 1999a). It is therefore an analysis by synthesis scheme,

where the closeness of the synthetic to the original may be
evaluated and may validate the analysis. Our approach is

unsupervised, that is we want an automatic learning process
that may be run on huge quantities of musical data.

Interesting applications include style characterization tools

for the musicologist (Dubnov &  al 1998), generation of
stylistic meta-data for intelligent retrieval in musical data

bases, convincing music generation for web and game

appl ications, machine improvisation wi th human
performers, computer assisted composition.

The interesting aspect of our method can be seen if the

whole process is considered as a sort of statistical learning
algorithm. By statistical learning we mean a method of

acquiring certain statistical properties of a data source so
that new sequences can be created, having the same

properties as the source. One of the main purposes of

learning is creating a capabil ity to sensibly generalize.
Composers are interested in finding out the possibilities of

certain musical material, without necessarily  "explaining"
it. So, let us consider here the possibilities that a piece (or a

set of pieces in a given style) offer. Statistical analysis of a
corpus reveals some of the recombination possibilities that

comply to constrains or redundancies typical of the

particular style. The concept of redundancy is closely
related to information or entropy.

2 The IP Method
The Incremental Parsing algorithm is inspired by the

analysis part of compression techniques of the Lempel-Ziv

family. To understand how an idea  derived from the

compression field might be useful for our purpose, it is
important to see that, as has been stated by several authors,

compressing is equivalent to understanding, because in
order to encode efficiently incoming information one has to

perform a fine analysis of the way redundancy is organized.
Compression algorithm can be split into two phases: first, it

reads the input sequence and constructs a model that

captures redundancy, and then it generates the compressed
code of this sequence with respect to the model. In our case,

the second phase is replaced by a stochastic navigation
through the model in order to generate new sequences.



2.1 Descr iption
During the generation process, a context-inference

scheme is applied. The sequence formed by recently

generated objects (a particular suffix of this sequence) is the
context, from which a prediction on the next object to come

is made with regard to a contextual probability distribution.
So, the analysis part must provide a dictionary of such

possible contexts along with their possible continuations.
First, the dictionary is reduced to the empty pattern and

IP incrementally reads the sequence. At each cycle, it selects

a pattern, from the current position to a further position,
such that this pattern is the shortest one which is not already

in the dictionary. Every left prefix of this pattern may
become a context, and every object that follows this prefix

may become a continuation. It is easy to see that an optimal
representation (in space) for such a dictionary is a prefix

tree where a branch descending from the root to any node is

a context, the childs of any nodes are the continuation
objects to the context going from root to this node, and

where the cardinalities of the subtrees at a certain node
encodes the probability distribution for the objects at the the

root of  each subtree. An optimal representation in
generation time is a suffix tree where the context are

reversed (i.e. from a leaf to the root) and continuations

stored as pointers associated to every node.
The probabi l i ty of  each continuation is derived

according to the length of the branches of the subtree at
every node. We associate to each node in the dictionary tree

a weight which is the number of nodes1 that belong to the

subtree which this node is a root of. Thus all leaves in the
tree get a number 1, the root gets the total number of nodes2

and the weight associated with every node is the sum of the
weight associated with all its descendents. The probability

of continuing in one of the deciples is the ratio between the
weight of the child note and the weight associated to the

current node.

Asymptotically it has been shown that IP predictor
outperforms a Markov predictor of any fixed finite order.

This surprising property of the IP scheme derives from the
counting interpretation of the IP procedure. In this

interpretation, the IP predictor is viewed as a set of
sequential predictors operating on separate bins, where each

phrase derived in the process of IP parsing is referred as the

                                                            
1 A variant of the algorithm considers the number of leaves.
2 The variant considers the total number of leaves.

bin label. Since IP is unbounded in its length, it can be
shown that for any finite k-th order Markov predictor, the

long contexts of IP serve as refinements of the k-th order

Markov predictors for sufficiently long sequences. Thus, the
total number of errors due to a long context prediction is

smaller for IP than the error in the case of a limited memory
Markov predictor. When calculating the overall  error

regime, it turns out that asymptotically the longer terms
dominate (since the length of the string grows) and

eventually the IP scheme outperforms any finite order

Markov predictor.

2.2 Example

Here is how IP analyzes the very simple sequence
“ abracadabra” . First, as we said, the dictionnary contains

only the empty pattern. Therefore, the shortest pattern
starting from the beginning of the sequence that is not

already in the dictionnary is simply “a” . This pattern is

added to the dictionnary and IP goes on its analysis on the
suffix of the pattern, that is “bracadabra” . Once again, the

shortest pattern consists only of the first letter of the
sequence, that is “b”. Idem for the next pattern “r”.

At this point, the current remaining sequence is
“acadabra”  and the dictionnary contains “ ” , “a” , “b” , “ r”.

Now the shortest pattern is no more “a” , because it already

belongs to the dictionnary, but “ac” . The next patterns are
“ad”, “ ab” and “ra”.

The corresponding prefix tree is therefore :

Now for each pattern in the dictionnary, the last letter is

considered as the continuation of its prefix. In this way, for

the pattern “a” , “b”  and “ r” , we say that a, b, and r are three
possible continuations of the context “ ”  ; for “ab” , “ac” , and

“ ad”  : b, c and d are three possible continuations of the
context “ a” . The probabi l i ties associated to these

continuations are computed as below. We have in this very
simple example three contexts : “ ” , “a”  and “ r ” . The

corresponding suffix tree is:

root

a r

db

b

c a



The generation process is incremental too. The first

letter is one continuation of the context “ ” . The next letters
are one continuation of the longest context that is a suffix of

what has been  already generated. In our simple example, if

the process generates a a, then the next letter is one
continuation associated with the context “a”  ; idem for r ;

else the context is “”.

2.3 Music as a Sequence

We have loosely used the term sequence as an ordered
list of objects. In order to capture a significant amount of

musical substance, we shall, in a pre-analytic phase, cut the

musical data (generally in Midi format) into slices which
beginning and end are determined by the appearance of new

events and the extinction of past events. Every slice has a
duration information, and contains a series of channels, each

of which contains pitch and velocity information and
whatever available musical parameters. These slices are

serialized in sequences submitted to analysis (these slices

will be referred to by the word object or symbol, and the set
of possible symbols as alphabet).

Here is for example the piano roll representation of the
beginning of Bach’s prelude in C, where lower case letters

represent the third octave, and upper case letters the fourth

one.

And here is how this sequence is sliced into symbols.
The bold letters represent beginning of notes.

2.4 Improvements
We have described here the basic IP algorithm. This

algorithm had already been tested with interesting results,

but had certain drawbacks that made it quite impractical in
specific situations. The improvements presented here are

divided into four sections: pre-analytic simplif ication,
generative constraints, loop escape, analysis-synthesis

parameter distribution.

Pre-analytic Simplification. Real musical sequences - for

example MIDI files of a piece interpreted by a musician -

feature fluctuations of note onsets, durations and velocities,
inducing a complexity which fools the analysis: the alphabet

size tends to grow in an intractable way, leading to
unexpected failures, and poor generalisation power. We

have thus developed a toolkit containing five simplification

filters:

•  the arpeggio filter vertically aligns notes which are
attacked nearly at the same time,

•  the l egato fi l ter removes overlap between
successive notes

•  the staccato fi l ter ignores si lence between

successive notes,

•  the release filter vertically aligns note releases,

•  the duration fi l ter  statistical ly quantizes the

durations in order to reduces the duration alphabet.

These features can be tweaked by the user, using

thresholds (e.g. a threshold of 50ms separates a struck chord

on the piano from an intended arpeggiated chord). Using the
simpl i f i cation toolki t, M idi f i l es containing real

performances that were intractable with the basic IP now
become manageable, opening new perspectives, because

this particular kind of musical data, full of idiosyncrasy, is

of great value as a model for synthetic improvisation.

context : “”
continuations : a (4/7), b (1/7), r (2/7).

context : “ a”
continuations : b (1/3), c (1/3), d (1/3).

context : “r”
continuation : a (1/1).
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Gener at ive Constr aints. It is now possible to specify
constraints during the synthetic phase. At each synthetic

cycle, if the constraint is not respected by the new generated

symbol, this generation is canceled and a new symbol is
tried. If no symbol is satisfying, the algorithm backtracks to

the previous cycle, and more if necessary. One interesting
constraint is called the continuity constraint: at any cycle of

the synthetic phase, it is possible that no context sequence
be a suff ix of the already generated sequence. The

maximum context is thus the empty context. In these cases,

the algorithm generates a continuation symbol of the empty
context, that is to say, any symbol, with a stochastic model

corresponding to its occurrence in the original sequence.
The obtained result is a musical discontinuity. To avoid this,

it is possible to specify a continuity constraint which
imposes a minimum size of context anytime during the

synthetic phase.

Loop Escape. The synthetic phase may easily enter into an

infinite loop state. Here is one example: at one cycle, the
maximal context A proposes only one continuation symbol;

once this symbol is generated the new maximal context B
features only one continuation symbol, and the new

maximal context is A, again. The next contexts will be B, A,

B, A, … This tends to happen when the input data contains
contiguous repetitions, which is often the case in music. We

describe a mechanism to detect and escape these loops.

The previous example is very simple, because this loop
was totally deterministic, and had only two states. At one

state of a loop, it may possible to consider several possible

continuation symbols, but this choice leads, sooner or later,
to return back to this present context or a previous one. We

introduce the concept of context-generated subtree, which
consists of the exhaustive set of all the possible contexts that

may be met after the present one. Practically, we just need
the size of this subtree, which is computed only once before

the generation phase. Its computation consists of a marking,

directly in the original tree, of all the possible future
contexts and a counting of these markings. When the size of

the context-generated subtree is below a user-specified
threshold N, an N-order-loop is detected. The loop

phenomenon is principally due to the fact that the synthetic
phase searches for the maximal context, which is unique and

proposes few alternative continuation symbols. In the case

of a loop, we loosen this constraint and examine not only

the maximal context, but also smaller ones, which escape
the loop in most cases.

Analysis-Synthesis Parameter  Distr ibution. The analytic

phase consists of finding the redundancy inside an original
sequence of symbols. The trouble is there may be so much

complexity and diversity in musical sequences that the size
of the alphabet may be of the same order of the length of the

sequence. Therefore, little redundancy would be observable.
Moreover, each symbol consists, as said before, of several

channels, each channel consists of notes, and each note

consists of different parameters. So a symbol is in fact a

Cartesian product of several musical parameters.

In order to increase abstraction and power in the

analysis, we allow the system to discard some parameters,
for example the velocity. The retained parameters will be

called  analysis information. In this way, it is obviously

possible to increase redundancy, because it implicitly
organizes the alphabet into equivalence classes: a chord

struck two times with different velocities is nevertheless the
same chord with the same harmonic function, and it will be

detected as such. The problem is, in the synthetic phase, all
the discarded information cannot be retrieved. For example,

if we choose to discard note durations and dynamics, we

finally obtain isorythmic and dynamically f lat musical
sequences, which sounds like musical box production. A

better solution is to store in the model the excluded
information.This information is thus cal led synthetic

information. The analytic phase is now performed on classes
inside the initial symbol set, and during the synthetic phase,

synthetic information, e.g. expressivi ty, may be

reconstructed.
This solution has significant advantages. First, generated

music regains much diversity, spirit and human appearance
of the original one. Moreover, since it is possible to restrict

analytic information and therefore find more redundancy in
the original sequence, the synthetic phase becomes less

constrained. At each synthetic cycle, every context features

many more possible continuations than before.

3.2 Implementation

The software is implemented as a user library in an
Open Source visual programming language developed at

Ircam, called OpenMusic (Assayag & al 1999b). Each step

of the algorithm - pre-analysis, analysis, synthesis, and post-
synthesis, is a function, which, in the musical representation



software, is represented by a box featuring inlets and outlets.
All parameters may be tuned up by the user. Indeed,

synthetic constraints, the distribution of analytic and

synthetic information, and the reconstruction of the
synthetic information may be explicitly formulated through

visual expressions.

2.6 Musical Exper iments
A lot of musical experiments have been carried in order

to test the new IP algorithm. Midifiles gathered from several
sources, including polyphonic music, piano music, and

which style ranges from early music to hard-bop jazz have

been submitted to the learning process. Experiments show
that the combination of the simplification tool box and the

new analysis-synthesis distribution scheme improves
dramatically the results in the case of ‘ live’  music, and in

cases where the overall complexity leads to a huge alphabet.
We show convincing examples, including, a set of piano

improvisations in the style of Chick Corea, another one in

the style of Chopin Etudes, polyphonic Bach counterpoint,
19th century symphonic music, and modern jazz style

improvisations derived from a training set fed by several
performers asked to play for the learning system.

3 PST
We have seen that IP predictor asymptotical ly

outperforms a Markov predictor of any fixed finite order. In

practice the strings (music sequences) are of a finite order,
and moreover, the size of the IP tree is bounded by a small

finite size. Due to these limitations it is desirable to consider

modeling schemes that might be more optimal for shorter-
term situations. Another important feature of IP that seems

redundant for our needs is the sequential nature of its
operation. In our application, the goal is generation of new

sequences that maintain similar statistical properties to the
reference source. We use the prediction probabilities as the

statistics generator, but we are not bounded by a

requirement to rely on the past only. Allowing one to use
the whole sequence for estimation of the statistics might

help improve the performance.
Ron &  al. (1996) developed a variable length Markov

model termed Prediction Suffix Tree (PST). It has been
shown that PST is a subclass of Probabil istic Fini te

Automata called PSAs. PSA is a variant order Markov chain

in which the memory is variable and in principle
unbounded. Given a f inite size PSA, there exists an

equivalent PST of a slightly larger size that produces the
same probability output. Moreover, an efficient learning

algorithm exists that allows one to construct a PST from
samples generated by PSA. Now, if we consider the PSA as

a common ground relating it to IP, we can consider the

similarities and differences between the two approaches.
One can see that both methods are similar in terms of their

use of a variable length context for determining the
probability for next symbol. The basic estimation procedure

of the PST though is significantly different from that of IP.

3.1 Descr iption
(Bejerano &  al 1999) First, we define L  to be the

memory length of the PST, i.e. the maximal length of a
possible string in the tree. We work out gradually through

the space of all possible subsequences of length 1 through L,
starting at single letter subsequences, and abstaining from

further extending a subsequence whenever its empirical

probability has gone below a certain threshold (Pmin), or on
having reached the maximal L length boundary. The Pmin

cutoff avoids an exponentially large (in L) search space. At
the beginning of the search we hold a PST consisting of a

single root node.  Then, for each subsequence we decide to
examine, we check whether there is some symbol in the

alphabet for which the empirical probability of observing

that symbol right after the given subsequence is non
negligible, and is also signif icantly different (i .e. the



quotient exceeds a certain threshold r) from the empirical
probability of observing that same symbol right after the

string obtained from deleting the leftmost letter from our

subsequence. This string corresponds to the label of the
direct father of the node we are currently examining (note

that the father node has not necessarily been added itself to
the PST at this time).  Whenever these two conditions hold,

the subsequence, and all necessary nodes on its path, are
added to our PST.

The reason for the two step pruning (first defining all

nodes to be examined, then going over each and every one
of them) stems from the nature of PSTs.  A leaf in a PST is

deemed useless if its prediction function is identical (or
almost identical) to its parent node. However, this in itself is

no reason not to examine its sons further while searching for
significant patterns.  Therefore, it may, and does happen that

consecutive inner PST nodes are almost identical.

Finally, the node prediction functions are added to the
resulting PST skeleton, using the appropriate conditional

empirical probabil i ty, and then these probabil i ties are
smoothed using a standard technique so that no single

symbol is absolutely impossible right after any given
subsequence (even though the empirical counts may attest

differently).

3.2 Example
Here is the PST analysis of “abracadabra” , with Pmin =

0.1, r = 2, L = 10 and a minimum smoothed probability of
0.01. For each node is associated the list of probabilities that

the continuation be, respectively, a, b, c, d and r.

3.3 Implementation

This algorithm has just been adapted to Open Music, and
integrated in exactly the same framework than IP.

Therefore, all the features presented in the paragraphs 2.3 to

2.6 are also disponible for PST.

4 IP/PST compar ison

4.1 Batch vs. On-line
PST parsing is not on-line in nature, as IP is — the

training text is viewed as a whole unit and symbol

frequencies are observed over the whole text. Thus there is
no arbitrary parsing as in LZ where a single symbol change

in the sequence may have deep influence on the dictionary
structure. So PST may prove more powerful for short

sequences but is not practicable for real time improvisation

situations, where the on-line nature of IP will be adapted.

4.2 Selectivity

While IP goes over the training text and parses all of it,
the PST learning algorithm looks at the text as a whole and

picks for its dictionary only patterns considered relevant.
This selective parsing can lead to more discontinuities and a

smaller repertoire to improvise on, but the context/inference

rules stores in the trees may be considered as more
motivated than in the case of IP.

From these two remarks, one could say that IP is more
adapted in generative applications, especially improvisation

and real-time, and PST is more precise and complete, and is
a good start for musicology applications where one wants to

achieve the finest description.

4.3 Example
Thanks to the integration of both algorithms inside a

unified framework, it is now possible to compare their
respective analysis and generation for a specific musical

example. Below is a score generated by Open Music of an

interpretation of the beginning of a Gnossienne by Erik
Satie followed by an improvisation of each algorithm. As

the original example does not feature a lot of complexity,
one can easily see that the generative process of both

algorithms consists of a kind of sampling of parts of the
original piece, so that the result be the most similar to the

original  sequence as possible. Nevertheless, these

algorithms may sometime decide some transitions between
the very little samples (which may consist of even one note)

that were not expected, but that follow their modelling of
the style of the original piece. As a result, the original style

can be recognized, but in the same time, these generated
sequences feature a certain amount of creativity. We invite

you to listen to more complex improvisations, included in

“” (root)
(0.44, 0.18, 0.10, 0.10, 0.18)

“b”
(0.96, 0.01, 0.01,

 0.01, 0.01)

“r”
 (0.96, 0.01, 0.01,

 0.01, 0.01)

“a”
 (0.01, 0.48, 0.25,

 0.25, 0.01)

“ca”
 (0.01, 0.01, 0.01,

 0.96, 0.01)

“da”
 (0.01, 0.96, 0.01,

 0.01, 0.01)

“ra”
 (0.01, 0.01, 0.96,

 0.01, 0.01)



the CDROM, in order to appreciate the creative skills of
these algorithms, that are limited here by the simplicity of

this didactic example.

5 Conclusion and New Directions
In the present state of researches, we have to consider

music as a sequence of symbols. It could be more interesting

to analyze directly the bi-dimensional score structure. This
would enable an intelligent analysis of a fugue for example.

Although the context-inference approach may be

compared with the implication/realisation view of Meyer,
we have to acknowledge that his view is more powerful

since his expectation is in long term, and not a systemic first
order expectation l ike ours. But we suspect hard

computability problems behind the long term approach.
In our work, learning is indeed unsupervised since we do

not feed our system with musical knowledge, rather it

analyzes music with constrained algorithms and does not
proceed to any inductive inference. Another approach would

be trying to induce automatically some conclusions about
the presence of musical structures, with the help of minimal

cognitive mechanisms.
Other statistical techniques have to be experimented in

music and compared to the two presented here. PPM for

instance, can be thought of as going half-way between IP
and PSTs. They are on-line (like IP) but they model k-terms

of growing k with respect to data wealth (like PSTs).

Finally, one may try instead of modeling sequence x1 x2

… xn based on its own redundancies, to try and model x1 x2

… xn based on the redundancies of a second, correlated (eg

2nd voice) sequence y1 y2 … yn (transducer). Then, the
generation of a X-type sequence could be constrained by an

incoming Y-type sequence. This could lead to a
synchronous improvisation scheme, where the computer,

instead of providing ‘answers’  to a human player, as usual,
would play synchronously with him, keeping an overall

polyphonic consistency.
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