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ABSTRACT

A new general methodology for Musical Pattern
Discovery is proposed, which tries to mimic the flow of
cognitive and sub-cognitive inferences that are processed
when hearing a piece of music. A brief survey shows the
necessity to handle such perceptual heuristics and to
specify perceptual constraints on discoverable structures.
For instance, successive notes between patterns should
verify a specific property of closeness. A musical pattern
class is defined as a set of characteristics that are shared by
different pattern occurrences within the score. Moreover,
pattern occurrence not only relies on internal sequence
properties, but also on external context. Onto the score is
build pattern occurrence chains which themselves interface
with pattern class chains. Pattern classes may be inter-
associated, in order to formalize relations of inclusion or
repetition. The implemented algorithm is able to discover
pertinent patterns, even when occurrences are, as in
everyday music, translated, slightly distorted, slowed or
fastened.

1. INTRODUCTION

Musical Pattern Discovery (MPD) is an emerging
discipline, which aims at offering automated analyses of
musical scores [7]. Lots of Musical Information Retrieval
applications would highly benefit from the tools offered
by MPD. Indeed, as MPD would automatically retrieve
the content of score, new types of music browsing,
listening, visualizing, etc., would be possible.

Nowadays, however, no computer system is able to
complete in a pertinent way the demanding task of MPD.
In this paper, we suggest a new approach that may offer an
answer to fundamental problems arisen in this discipline,
and that could therefore solve a certain number of
difficulties.

We introduce a general methodology whose intuition
stems from a mimicking of human perception. We will
defend such a position through a critical overview of
current approaches in MPD. This overview will lead us
towards a characterization of musical pattern that takes
into account the fundamental notions of repetition,
sequence and similarity in the musical context of temporal

perception. We then propose a complete computational
model that attempts to follow such methodology, and that
already offers promising results.

The remaining of the paper is structured as follows.
A preliminary survey of MPD concepts and methods will
enable a formalization of our approach. We then introduce
the data architecture and the algorithmic principles of the
proposed system. Finally, we illustrate the use of the
system in various musical contexts.

2. SOME NECESSARY CONDITIONS FOR
MUSICAL PATTERN DISCOVERY

2.1. Pattern Characterization

The concept of musical pattern may be characterized
following three main criteria:

2.1.1. Implicit knowledge

Pattern may result from implicit knowledge that cannot be
obtained directly from the score, such as: expected phrase
length or metric [8]. The trouble is, pattern perception
cannot firmly rely on such theory-oriented implicit
knowledge. Indeed, musical motives may be structured in
an ambiguous way, through a breaking of these rigid
rules, playing with the listener’s expectations and
conveying musical delightedness. A mere fugue may
easily show that patterns (here themes, for instance) may
appear at very unexpected metric places, and may feature a
long temporal extension.

2.1.2. Local boundaries

Low-level structural properties of the musical surface may
be obtained through local boundary detection [2]. For
instance, grouping boundaries may be introduced between
entities that contrast one with the other according to their
pitch, duration, intensity parameters, etc. Such heuristics
may enable an understanding of metric phenomenon, for
instance. However, such local segmentation does not
contribute to the understanding to the idea of musical
pattern itself. Indeed, a musical pattern is implicitly built
through contrastive aggregation.



Fig. 1. A pattern may feature contrastive steps.

In figure 1, the first leap of interval of fifth,
although triggering a contrastive idea, is the important
element that characterizes the beginning of the pattern
itself. A pattern is therefore not a conservation of
sameness, but on the contrary a travel along differences. In
fact, similar patterns features similar differences.

In the same time, it has to be recognized that local
boundaries may provoke a breaking of sequencing. We
have integrated such characteristic of music in our
mechanism of stream perception inside polyphony.

2.1.3. Repetition

Finally, a musical pattern may be defined as a set of
characteristic that is shared by several sets of notes
throughout the score. These sets of notes are said to be
similar in a certain sense. This may look as a particularly
intricate definition of pattern, which could have been
formalized more simply as: a set of notes that is
approximately “repeated”. But two difficulties should be
taken into account: firstly, that the concept of pattern
refers either to the characteristics, to a prototype of such
characteristics, or to occurrences; secondly, that such
concept of similarity has to be explicitly defined.

This “repetition”-oriented criterion of pattern seems
to remain the most relevant one, since music motives are
classically defined in this way [10].

2.2. Musical Similarity

The idea of successiveness should not be considered in a
rigid way, in order to enable deletions of notes or
insertions of new ones in the pattern. Dynamic
programming [11] is the most classical way to handle
such operations. But music features other kinds of
sequence transformation, such as passing notes or
appoggiaturas, which should be also considered.

Now patterns may be subject to other kinds of
transformation. Simply transposed patterns may be
detected by considering each pattern in its own
transposition reference. For example, if patterns are
described not with absolute pitch, but with relative pitch
whose reference is the absolute pitch of the first note of
the pattern, then such descriptions of transposed patterns
are exactly identical.

In the same way, slower and faster patterns may be
considered as identical one with the other if a relative
temporal representation is considered. For this purpose,
instead of considering the temporal interval between
successive notes, the quotient between current temporal
interval and first temporal interval is considered.

But real music features much more complex
transformations. In particular, pitch and temporal
distortions may appear locally inside patterns. To handle

such plasticity, more relative viewpoints of the pattern
may be considered, such as the contour representation in
particular. However, such a crude representation is so
loose that non-pertinent repetitions may also be detected.

In fact, when considering such local distortions,
there exist no viewpoint [3] sufficiently loose for finding
an exact repetition but in the same time sufficiently
detailed for avoiding non-pertinent inferences. Therefore
approximate repetition has to be tentatively inferred, to be
induced [5] from rough phenomenon, even if risks have to
be taken.

2.3. Incremental Inference of Similarity

Global analyses of the score, such as naïve statistics, not
taking into consideration the incremental expression of
music, fail to catch the essential temporal aspect.
Classical pattern analyses, by explicitly considering
prefixes and suffixes may offer better results. Dynamic
programming successfully highlights the necessity to
consider a progressive and chronological scanning of
patterns.

Lots of musical phenomenon deeply relies on the
fact that music is progressively perceived, and that the
listener itself progressively infers new knowledge about
what he is currently hearing. Therefore, music listening
should be considered as a kind of progressive reasoning.
That is why some configurations are not detected and
therefore not pertinent, simply because they cannot be
caught during progressive listening.

Hence, pattern cannot be defined solely along
internal description, but also along external criteria, or
context. It is senseless, therefore, to measure the similarity
between sequences out of their context. Patterns of figure
2 may be considered as two occurrences of a same
abstraction, because of the intrinsic similarity, only if this
example was the actual score itself. When these patterns
are included inside a real score, their similarity should be
inferred only if they share a similar context.

Fig. 2. The similarity of patterns cannot be measured
outside of their actual context.

The incremental and logical thinking that builds
human perception of music is ruled by fundamental
principles, which are necessary for insuring a coherent
process. For example, every time a sequence is considered
as an occurrence of a pattern, every suffix could
themselves be considered as occurrences of other pattern
class, for simple mathematical reasons. But cognitively
speaking, such inferences are not pertinent, since they do
not correspond to inference human makes when listening
to music. This is due to the fact that the first longest
pattern was sufficient to explain the phenomenon, and that
further inferences of suffixes would only infringe a clear
analysis of the score. That is why suffix of pattern should
not be explicitly represented [4].



2.4. Selection

As many patterns may be found, pertinent patterns are
considered as those that feature a highest defined score [2].
Such selecting mechanism is a classical and efficient way
to extract important knowledge. It should be remarked,
however, that this global selection, although enabling a
quick characterization of a piece, infringes a thorough
understanding of the complete score. We would like to
retrieve also little detail at particular places, that may be
of high relevance, and that may be taken into account by
an active listening. The only necessary condition for a
pattern to be considered as pertinent is that its score (here
a degree of activation) has to exceed a certain minimal
threshold. Therefore, to pattern selection we would prefer
the concept of pattern detection.

As the result of such analysis is very complex, an
interface should enable a browsing inside the analysis
space or across the score. As such interface is not available
now, our current implementation has to feature selecting
operations.

Finally, since the process of pattern discovery
proceeds itself through explicit characterization, there is
no need to characterize a posteriori the patterns that have
been discovered.

3. DATA REPRESENTATION

3.1. Pattern Class And Occurrence

The fact that several sequences are considered as similar in
a certain sense means that they all belong to a same
abstraction, which may be considered as a pattern class.
These sequences are therefore occurrences of the pattern
class. In this way, any new sequence sharing the same
similarity will simply be considered as a new occurrence
of this pattern class. The pattern class is not represented
by a single prototype, but by all its occurrences that are
effectively linked to it.

3.2. Pattern Class Chain

According to the incremental characteristic of music
perception, patterns are progressively discovered, interval
by interval, from initial interval to whole pattern. Pattern
classes have to be represented following this cognitive
constraint.

We propose therefore to model a pattern as a chain of
states, where each successive state is associated to each
successive note of the pattern. In this way, a pattern class
is a chain of states — called pattern class chain (PCC) —
where each state represents the shared characteristic of the
associated note, and each state transition represents the
shared characteristics of the associated transition between
two successive notes.

Moreover, when a pattern class is being discovered,
it is impossible to decide whether the discovery process is
now achieved or whether, on the contrary, following notes
— that have not been heard yet — will extend the pattern.

That is why each prefix of the pattern class may be
considered as a temporary PCC, until it is extended
further.

3.3. Pattern Occurrence Chain

Each pattern occurrence is also a conceptual representation
that interfaces the considered pattern class with the
sequence of notes inside the score that constitutes the
occurrence. Such interface may also be described as a
chain — called pattern occurrence chain (POC) — where
each successive state within the POC interfaces a note in
the sequence with its corresponding state in the associated
PCC.

Fig. 3. The POC (black circles) interfaces notes in the
score with the corresponding PCC (white circles).

3.4. Pattern Associations

The idea of segmentation may implicitly and dangerously
suggest that score features only one level of pattern
representation. On the contrary, patterns of different
lengths may coexist and there may be inclusion or
intersection relationships between them.

Fig. 4. Beginning of Bach’s Prelude in C.

In figure 4, the main 8-note pattern is itself
structured into an exact repetition of 3-note patterns. Each
occurrence of the 8-note pattern, though constantly varied,
carefully verifies the inner repetition of two sub-patterns.
And each 8-note pattern is itself repeated twice.

Thus pattern cannot simply be characterized through
an enumeration of similar intervals. The inner description
as explained below should be made explicit too, and
should be inferred by the machine.

We propose to represent such relationship between
pattern and sub-pattern as follows. If occurrences of a
pattern class feature a particular sub-pattern, a new POC,
representing this sub-pattern, is linked to the PCC of the
pattern itself. With such linking inside PCCs, a new
association network is build between pattern classes. This
high-level organization may help the recognition of basic
pattern occurrences. In this way, expectations are generated
by the system during the analysis: when a new occurrence
of the pattern is discovered, sub-patterns are also expected
[9].

1

11 2 3 5



Fig. 5. First bar of Bach’s Prelude, a POC (below the
score) associated to the 8-note PCC (white circles), and
two POC for the 3-note PCC (over the score). These 3-
note patterns are represented directly on the 8-note
PCC with two additional POCs (at the bottom).

3.5. Pattern Repetition

Music usually features successive repetitions of a same
pattern class. If no new mechanisms were added, the
system would consider each possible concatenation of
these successive patterns as a new pattern. These
inferences, not corresponding to human judgments and
leading to combinatory explosion, should be forbidden.
This fundamental issue has in fact never been taken into
consideration.

It should be remarked that such pattern repetition is
a special case of pattern association. If each pattern is
extended with the first note of the succeeding pattern, then
this last note of such extended pattern may be associated
to the first note of the same pattern class. This means
that, in the extended pattern class, the last state is linked
to the first state. The idea of pattern cycling is therefore
explicitly represented.

The first note of each new occurrence, as soon as it
appears, is immediately associated to a new pattern
occurrence chain. An additional mechanism prevents any
pattern, whose first note is also the last note of another
occurrence of the same pattern, to be extended further.

Fig. 6. When a pattern is repeated more than twice,
the last note of the pattern is linked to the first note
through an additional POC on the PCC.

Such a mechanism is not as arbitrary as it may
appear. When perceiving such successive repetitions of
occurrences of a same 8-note pattern, as soon as the last
note of an occurrence is detected, the first note of a new
occurrence is expected. This expected transition between

these two notes may therefore be represented as an
extension of the basic 8-note pattern into a 9-note pattern,
where the last note is also the first note of a new
occurrence.

4. ALGORITHMS

4.1. Pattern Class Discovery

In this section, we will show how our system is able to
detect new pattern classes, that is, new abstractions. As
told previously, a pattern is defined as an approximately
(or exactly) repeated sequence. So pattern will be
discovered only if a similarity relationship is inferred
between a current sequence and a past one. Past sequence
has to be recalled because of its similarity with current
sequence. The trouble is: current sequence does not
already exist as a sequence if repetition itself is not
already detected.

In our previous work [6], we alleviated the task by
imposing a constraint, which can be expressed as follows:
for a new pattern repetition to be detected, the repetition
of each single interval of the patterns has to be explicitly
and progressively discovered. In particular, the similarity
between the first interval of each patterns has to be
inferred before inferring the similarity of the remaining of
the pattern. The trouble is, such a constraint can hardly be
satisfied. Nevertheless, we will show first how we
implemented our previous approach. A generalization of
this algorithm will then be proposed, that can overcome
previous limitation.

4.1.1. First Approach

First, every local interval has to be memorized in an
associative memory that is able to retrieve any interval
similar to a query. For this purpose, a hash-table
associates for each interval parameter the set of its
occurrences within the score. Now if the hash-table shows
a similarity between current local interval i1 and an old
local interval i1’, a new pattern class is inferred (unless
already discovered) associated to this single interval. Then
if there exists any similarity between an interval i2 that
follows previous local interval i1, and an interval i2’ that
follows previous old local interval i1’, then a new pattern
class extends previous pattern class. And so on.

Fig. 7. In the first approach, similarity of single
intervals (solid lines) has to be inferred. This
similarity can be extended to following intervals
(dotted lines).

If i1 and i1’ have to be identical for being considered
as similar, then pattern featuring a slight distortion on its
first interval will not be detected. Therefore, a looser
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comparison between i1 and i1’ should be tolerated. But in
this case, lots of non-pertinent little patterns will be
inferred too. Moreover, with such approach it is not
possible to detect patterns with different speed, since i1
and i1’ should have similar interonset value.

4.1.2. Second Approach

We propose to improve our first approach as follows. If
current interval i1 is particularly similar to an old local
interval i1’, then a pattern class is inferred as previously.
If, on the contrary, this similarity is not very high,
previous local intervals i0 that precede i1 are considered,
and compared to previous local intervals i0’ that precede
i1’. If the sequence i0-i1 is considered as similar to the
sequence i0’-i1’, then a pattern class is inferred, that
consist of this succession of two intervals. In this way, a
pattern may be detected even if its first interval was not a
sufficient clue.

Fig. 8. In the second approach, similarity may be
inferred between sequences of intervals.

Now such approach may be immediately generalized
to n intervals instead of 2.

4.1.3. Pattern Class Extension

Once a new pattern class has been discovered, its
extension is an easier task. Indeed, the new local interval
that extends the discovered new pattern just have to be
compared to possible continuations of the discovered old
pattern, instead of comparing it to all possible intervals
through the hash-table. Indeed, thanks to the previous
pattern class initiation, two or more similar contexts have
been discovered in the score. Pattern extension just
consists of a deeper analysis of found contexts.

4.2. Pattern Occurrence Discovery

The discovery of a new occurrence of an already
discovered pattern class follows the two steps of Pattern
Class Discovery — namely: pattern initiation and pattern
extension.

4.2.1. Pattern Occurrence Initiation

When a similarity has been discovered between two
different contexts, and before deciding to create any new
pattern class, we have to make sure that such context does
not already exists in the beginning of one of the set of all
discovered pattern classes (or more simply to the set of
pattern classes associated to the past context). If there does
exist such pattern class, a new pattern occurrence simply
associates the new discovered context with the retrieved
pattern class.

4.2.2. Pattern Occurrence Extension

Since the beginning of currently discovered pattern
occurrence is already associated to a pattern class, each of
its successive candidate continuations may simply be
compared to the successive continuations along the pattern
class. In this case, current pattern occurrence does not need
to be compared to old occurrences. The similarity
threshold here is even greater than for pattern class
discovery, since the expectation is explicitly represented
within the pattern class.

4.3. Interval Distances

These local similarities are progressively built from single
intervals. Distances are computed first between single
intervals, then between succession of intervals, or
patterns.

Let n1, n 2, n 3, n 4 be four notes whose respective
pitches are p1, p 2, p 3, p 4 and respective durations d1, d2,
d3, d4.

We propose, in a first approach, to formalize the
perceptual distance between two intervals (n1, n2) and (n3,
n4) as a weighted product of a pitch distance and a
duration distance:

D((n1, n2), (n3, n4)) = (abs [(p2– p1) – (p4 – p3)] + 1)
* (max [d1/ d3, d3/ d1])

0.7

Here,  only the duration of the first note of each
interval is taken into consideration, since this duration is
also the temporal distance between the successive notes.
We may also remark that in music, pitches are subtracted,
whereas duration are divided.

4.4. Priority Rules

It appears that the pattern class and pattern occurrence
discovery routines have to be called in a very precise
order. In particular, if the pattern class discovery step is
systematically processed before the pattern occurrence
discovery step, then new classes — that should have been
in fact identified with already discovery classes — may be
inferred. That is why new notes have to be compared to
known pattern first.

Since previous notes have already been linked to
POCs, such priority rules may be stated as follows : for
each of these transitory POCs, first check whether the new
note can be considered as its next step; else, check
whether the new note can be considered as a new
extension of the POC.

Moreover, for similar reasons, POCs have to be
considered in a decreasing order of length.

5 RESULTS

This model has been implemented as a library of Open
Music [1], a musical representation software developed at
Ircam. This new library called OMkanthus is able to
proceed to analysis of MIDI files. In version 0.1, these



results are displayed as a list of texts that is not easy to
understand. That is why this library is provided with
some basic tools for selecting and displaying longest
patterns, most frequent patterns, or most pertinent
patterns, where pertinence is a product of length and
frequency. Here are some results.

When asking the pattern classes achieving the
highest degree of pertinence in the beginning of Bach’s
Prelude in C, we obtain the 8-note pattern (figure 9, first
line) and 3-note patterns that are repeated inside the 8-note
pattern itself (second line). Such interesting result,
discovered by a system that has no access to any prior
cultural knowledge, has never been obtained by any
previous algorithm.

When asking the most pertinent pattern classes in
the beginning of the Fifth Symphony by Beethoven, we
obtain the 4-note pattern (figure 10a-b, second line) and
the encapsulation of 3 times the 4-note patterns (figure
10b, third line). Note however that a non-pertinent
occurrence has been found (dotted lined). Non-pertinent
encapsulation of 2 times the 4-note patterns [first line] has
also been considered.

When asking the most pertinent pattern classes in
the beginning of the Rondo alla turca by Mozart, we
obtain the 5-note pattern (figure 11, second line). The
algorithm is not well prepared to face polyphonic pattern.
That is why we observe some failures in pattern detection
(figure 11, first and fourth lines). Finally, the long pattern
(fifth line) pertinently encapsulates the repetitions of the
5-note pattern, but cannot then integrate the following
chords, due to the polyphony limitations.

Such results may appear very simple and evident,
compared to the complexity of the conceptual framework
that has been developed for this purpose. But it has to be
remarked that such results are very interesting for
Artificial Intelligence researches, and also for the
understanding of the cognitive mechanisms of music
perception. Moreover, now that the algorithm performance
starts corroborating with expecting behavior, a little
refinement of the model should offer more subtle results.
An important study has to focus on the optimization of
the algorithms, as current version, easily entering into
combinatory explosion, cannot handle more than several
hundred of notes.

6 CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a new approach that
attempt to answer to some fundamental problems arisen
by current researches in MPD, through the elaboration of a
new general computational model founded on explicit
principles and aiming at mimicking human capacities for
music perception and understanding.

The proposed model and implementation are still in
an early phase, showing numerous limitations. With such
approach, many questions arise but few are answered yet.
Nevertheless, one interest of this general methodology is

to propose a framework in order to make explicit some
assumptions shared by MPD community.

It would be impossible to list all the difficulties that
have to be solved now. Maybe the hardest part is to make
these difficulties explicit. Some further improvements
include chord pattern discovery, comparison of sub-
patterns associated to a pattern (inferring the similarity
between sub-pattern themselves, comparing the relative
pitch and temporal distance between sub-patterns).

There may be, inside patterns, “enclaves” of foreign
notes not really belonging to these patterns. Patterns may
also features transitory states, such as passing notes or
appoggiatura. More generally, patterns may be included
inside a polyphonic flow. If all this flow is represented
like a single totally ordered sequence, patterns
representations, here also, feature enclaves. Such problem
has already been tackled [12], but uniquely for exact
repetition. Chords should also be taken into consideration
and patterns of chords should be discovered.

Then an interface has to be designed, enabling a
browsing inside the score and the discovered structures. In
a long term, such approach may try to go beyond pattern
and catch higher-level concepts. Would a system be able
to retrieve music theory?   
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Fig. 9. Most pertinent patterns of the beginning of Prelude in C Major, BWV 846, by Bach.

Fig. 10a. Most pertinent patterns of the beginning of the Fifth Symphony by Beethoven.

Fig. 10b. continued.

Fig. 11. Most pertinent patterns of the beginning of the Rondo alla turca by Mozart.


