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Summary
This paper is the second of a two-part study of the quality of car horn sounds. It aims to provide insights into
the design of new sounds. It is based on the assumption that hearing a car horn sound warns road users because
they recognize the sound of a car horn, i.e. they know what this sound means, and what they have to do as a
consequence. The three experiments reported in this paper are grounded in a psychoacoustical framework. They
seek to provide car horn builders with recommendations allowing them to create new sounds.
In the first part [1], we studied the perception of the timbre of existing car horn sounds. We found that, from their
perception of the sounds, listeners were able to make inferences concerning the different mechanisms causing the
sound, and that the perceived differences between the sounds were based on the integration of three elementary
sensations, correlated with three acoustical descriptors. In this second part, we focus on the agreement among lis-
teners in categorizing sounds as being members of the car horn category. Membership agreement is operationally
defined as the result of a two-alternative forced-choice task. We first study recordings of existing sounds. The re-
sults allow us to define relationships that predict membership agreement from a set of acoustical descriptors. To
extend these results, we create a new set of sounds in a second step, which we submit to a timbre study similar to
the one reported in [1]. We finally study membership agreement for these synthesized sounds. The results allow
us to define a methodology to create new car horn sounds.

PACS no. 43.50.-x, 43.66.-x

1. Introduction: Designing sounds that
warn road users

Car horns are wildly used and widely down-cried. How-
ever, they have the capital (and legal) function of warning
road users against potential danger1. At the same time, car
horn builders wish to tune their sounds to match them to
car categories and brand identities. Designing the sound of
car horns thus involves a compromise between the need to
customize the sounds and the necessity of providing effi-
cient warning signals. To fulfill these constraints, car horn
builders wish to create new sounds by means of a new de-
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1 For instance, according to the French “Code de la route” (articles R313-
33, R416-1, http://www.legifrance.fr), i) every motorized vehicle must be
provided with an acoustic warning device; ii) any other acoustic signal
is forbidden; iii) using the acoustic warning signal is only allowed to
warn road users against an immediate danger. Even the United Nations
requires a mandatory minimum acoustic level [2]

vice, made of an electronic synthesizer and a loudspeaker
(see [3] for a description of the device). In this context, the
goal of this study is to identify the acoustical properties of
car horn sounds that allow them to be recognized as such,
i.e. that allow the sounds to convey information concern-
ing danger to the listener. This will allow car horn builders
to design new sounds still perceived as car warning sig-
nals.

1.1. Timbre of current car horn sounds

The first step of this study consisted in investigating ex-
isting car horn sounds [1]. A car horn is a self-oscillating
electro-acoustical device. Two main categories exist. The
first kind (horn-like devices) is based on an electro-
dynamical driver and horn. The second kind (plate-like
devices) is also made of an electro-dynamical driver, but
there is a metal plate attached to the membrane, and no
horn. The devices are usually mounted alone (monophonic
sounds), or in twos or threes, resulting in chords (poly-
phonic sounds).

We studied their timbre by using the psychoacousti-
cal definition of timbre (ANSI definition [4], as summa-
rized by Krumhansl [5] p. 44): “the way in which musical
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sounds differ once they have been equated for pitch, loud-
ness and duration”. The results of the experiments showed
that the perceived dissimilarities between the sounds of car
horns are subtended by a small number of independent au-
ditory attributes (or perceptual dimensions) defining the
timbre space of the car horn sounds. Moreover, there are
acoustical descriptors correlated with these attributes:

• the first attribute is correlated with modulations of the
temporal envelope (roughness),

• the second attribute is correlated with the spectral dis-
tribution of energy (spectral centroid). This descriptor
has been found in other studies to correspond to the at-
tribute of brightness, and

• the third attribute is correlated with fine variations of
the spectral envelope (spectral deviation).

Further, a sorting task showed that listeners group together
the sounds in categories corresponding closely to the dif-
ferent sound-production mechanisms (type of excitation,
type of resonator, number of devices). These categories
are defined by the auditory attributes shared by the sounds
and thus by the acoustical descriptors.

1.2. Warning signals

There have been different approaches to the perception and
design of warning signals (see [6] for an overview). The
first idea was that a warning signal has to be audible to
the listeners for whom it is intended [7]. The issue can
be addressed by ensuring a given acoustic level in a spe-
cific area [8], or by designing signals with a low detection
threshold (considering the design issue as a signal detec-
tion paradigm) [9, 10, 11]. However, as noted in [12], the
detection threshold is not only modulated by the signal to
noise ratio, but also by the perceived relevance of the sig-
nal with respect to the perceived dangerousness of the sit-
uation.

Indeed, in many contexts (military aircraft, surgery
rooms), many different warning signals occur incessantly
and concurrently. And it may happen that users become
unable to decide whether a warning is really urgent or
not, and therefore, if they have to respond or not to this
signal. Thus, Edworthy et al. [13] [14] have proposed to
design warning signals with different levels of perceived
urgency, relevant to the actual urgency of the situation.
Urgency is in this case conceived as an auditory attribute
of the sound. Signals made of bursts of harmonic pulses
(after [7]) and speech signals [15, 16] were studied. The
results of such experiments are mathematical relationships
between perceived urgency and acoustical properties (the
more urgent signals are high in pitch, with short tran-
sients, partials with random frequencies, and an irregular
rhythm). However, some results also show that if the per-
ceived urgency can be manipulated by changing the acous-
tical properties of the sounds, the meaning of the speech
signals also has a great influence on the perceived urgency.

So the idea has moved from designing alarms with dif-
ferent urgency levels to warning signals that also inform
the listener of the reason for this warning [17]. Therefore,

three requirements for a warning signal were identified:
the signal must be recognized as a warning, the listener
must know what it represents and what should be done in
consequence. The same idea is found in the analysis of
the warning process made by Rogers et al. [18] for visual
signals: the user must (a) notice the warning, (b) encode
the warning, (c) comprehend the warning, and (d) comply
with the warning. In order to design warning signals that
listeners may comprehend, Edworthy et al. [19] designed
sounds informing helicopter pilots about the critical evolu-
tion of flight parameters (torque, high and low rotor speed,
etc.), precursors to warnings: trendsons (trend monitoring
sounds). To evaluate the comprehension of the trendsons,
they asked listeners to rate them along semantic scales.

Rather than, or in addition to, having listeners rate
sounds on scales (urgency scale, or other semantic scales),
several authors have directly studied how listeners com-
ply with the warning signals. Some [20, 21, 22, 23]
have measured reaction times of plane pilots performing
a tracking task and at the same time having to respond
to warning signals (based on Edworthy et al [13]). Simi-
larly, Suied et al. [24] measured reactions times of listen-
ers performing a tracking task, for signals used to warn car
drivers against too short of a distance between vehicles.
Using a driving simulator, Belz et al. [25] measured times
to brake when drivers were presented with different au-
ditory and visual warning signals. Interestingly, the reac-
tion times were different, according to the relationship be-
tween the signal and its meaning: symbolic (arbitrary rela-
tionship) or iconic (representational relationship, e.g., the
sound of breaking glass used to signal danger of a poten-
tial accident). For acoustic signals displayed alone, shorter
times to brake were obtained for iconic signals. Graham
[26] used a similar paradigm, but participants had to de-
cide how to react to the warning. The results showed that
auditory icons2 lead to more false alarms than symbolic
sounds, because the sounds could have several (natural)
meanings, whereas symbolic sounds have only one (arbi-
trary) meaning. Among these symbolic sounds, car horns
lead to faster reaction times and fewer false alarms because
of their lack of ambiguity.

This indicates that the meaning of a warning compre-
hended by the listener can play an important part in the
warning process. This idea appears also in the results of
Guillaume et al. [27]. They replicated the experiments of
Edworthy et al. [13], both with sounds synthesized accord-
ing to Edworthy’s specifications and with recordings of
alarms occurring in a plane cockpit. Overall their results
fit Edworthy’s prediction of perceived urgency on the basis
of the acoustical properties of the sounds. However, they
also report interesting exceptions: for instance, one sound,
identified as a bicycle bell was rated as less urgent than it
should have been according to Edworthy’s prediction. The
authors suggest that this sound was judged as non-urgent,

2 Auditory icons are sounds used to convey a meaning, when there is a
relation of similarity between the sound and the meaning (e.g. the sound
of an analogical camera meaning that a digital photo has been shot).
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because it “is often associated with a low level of threat
and may even be associated with relaxation and pleasure”
(p. 207).

An original approach is to be found in Vogel’s PhD the-
sis [28]. He studied several warning signals (priority ve-
hicle sirens, car horns, bicycle bells, whistles) in a psy-
cholinguistic framework. This approach is based on the
study of the participants’ free descriptions of the signals
mixed into two different background sequences (traffic
noise and public garden). Two experiments are reported.
In a first experiment (also reported in [29]), the partici-
pants had to describe the sounds at identification thresh-
old. In a second experiment, the signals were played well
above threshold. Participants had to describe triads of sim-
ilar signals, and to compare triads of different signals. The
analyses of both these experiments show that the context
improves the univocal nature of some signals. They also
show that the participants use different types of items to
describe or compare the sounds: the name of the sources,
the acoustical properties of the sounds and value judge-
ments. While the participants use mostly the names of the
sources when they had to compare sounds described as
different sources, they describe mostly acoustical proper-
ties and value judgements when they describe signals sim-
ilarly identified. Finally by comparing the descriptions of
the significant categories of warning signals and acoustical
representations of prototypes of these categories, he infers
hypotheses on relationships between acoustical properties
of the sounds and the sense given to them.

1.3. Perception of environmental sounds

As indicated by some of the results reported above, what a
listener identifies as the cause of a sound might influence
a lot what he or she associates with this sound. Several ex-
perimental studies have investigated the ability of listen-
ers to spontaneously identify the cause of environmental
sounds.

Sound events and environmental sounds
A first notable result is that there are sounds that are not
even distinguished from their source. For instance, a series
of psycholinguistic experiments on soundscape3 percep-
tion [31, 32, 33, 34, 35, 36, 37, 38] showed that listeners
perceive differently amorphous sound sequences (“back-
ground noises”) and sound sequences in which listeners
are able to identify emerging sound events (see [39, 40]
for a discussion).

Conversely to the former sort of sequences, listeners
describe sequences with sound events by referring to the
identified sound sources, and with reference to how the
source affects them in their everyday lives. Sound events
are not distinguished from their sources and listeners ap-
praise the source and the values they associate with the

3 The term “soundscape” was introduced in the late 70’s by the Canadian
composer R. Murray Schafer [30], who defined soundscape as the audi-
tory equivalent to landscape. Beside Schafer’s project, the term sound-
scape perception is used in a scientific context to characterize how inhab-
itants perceive, experience and appraise their sonic environment.

source. These findings coincide with Gaver’s ecological
distinction between musical listening (when listeners fo-
cus on qualities of the acoustic stimulus) and everyday lis-
tening (when listeners identify the properties of the events
causing the sound: interaction, material, shape) [41, 42].

This idea of sound event is close to the definition of
environmental sound proposed by Vanderveer [43, pp.16–
17]:

“. . . any possible audible acoustic event which is
caused by motions in the ordinary human environ-
ment. (. . . ) Besides 1) having real events as their
sources (. . . ) 2) [they] are usually more “complex”
than laboratory sinusoids, (. . . ) 3) [they] are mean-
ingful, in the sense that they specify events in the
environment. (. . . ) 4) The sounds to be considered
are not part of a communication system, or commu-
nication sounds, they are taken in their literal rather
than signal or symbolic interpretation.”

In the same study, Vanderveer investigated how listeners
identify and describe environmental sounds. The results
showed that they mostly described: 1) the action, 2) the
object of the action or 3) the place where the action took
place.

Perception of the cause of the sounds
Thereafter, many publications have studied the perception
of environmental sounds, and have reported the listener’s
ability to recover auditorily the properties of the events
causing the sounds. Some of these properties were related
to the objects causing the sound: the length of wooden
rods dropped on the floor [44], the thickness of struck bars
made of wood or metal [45], the shape (square, rectangu-
lar or circular) and the materials of struck hung plates [46],
the shape of a ball dropped on a plate [47], the categories
of materials (metal and glass vs. wood and Plexiglas) of
recorded struck plates [48]. Others were related to the ac-
tion: discrimination between bouncing or breaking events
(glass objects falling) [49] or the ability of blindfolded
participants to fill a vessel to a normal drinking level or
to the brim [50].

One important question raised by these results (espe-
cially when it comes to design) is to identify the acoustic
information used (or needed) by the listeners to recover
these properties. Synthesized sounds (physical modeling
simulating the physics of the events) of impacted bars
of different materials and multidimensional techniques al-
lowed McAdams et al. [51] to identify perceptual dimen-
sions correlated with physical parameters.

However, another series of experiments using synthe-
sized sounds (struck bars) [52, 53, 54, 55] showed that
listeners do not optimally use the available acoustic infor-
mation to decide upon the material or the hollowness of
struck bars. Using recorded sounds, it is sometimes diffi-
cult to identify a clear correlation between acoustic prop-
erties and the perceived event properties [56], or to reveal
stereotypical relationships between acoustical properties
and listeners’ responses (e.g. slow, loud and low frequency
sounds systematically associated male hand-clappers [57]
or walkers [58]).
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Factors in environmental sound identification
Therefore, it can be assumed that both the acoustic prop-
erties of the sound (i.e. the information present within the
sound) and the context and the knowledge of the listener
are responsible for the recognition of a sound. This ques-
tion has been explored thoroughly in a series of papers
published by Ballas and Howard. The main idea of these
authors is that the perception of environmental sounds
shares similarities with the perception of language (though
the parallels having to be considered carefully [59]).

Identification of sounds results from both a bottom-up
process (recovering of the information available in the
sound and in the context) and a top-down process (us-
ing previous knowledge and expectations): “It is not only
what we hear that tells us what we know; what we know
tells us what we hear [60]4. In [60], they showed that the
syntax and the semantics of sound sequences influence
their memorization (organized and meaningful sound se-
quences are better memorized).

In [61], they reported homonym-type sounds: sounds
being discriminated, but confused when listeners have to
identify their cause. In this case, the context helped listen-
ers to choose among the alternative causes of the sounds
[59].

An imposing series of experiments reported in [62]
showed that the identification performance is influenced
by several factors, including acoustic variables, ecological
frequency (the frequency with which a listener encoun-
ters a specific sound in everyday life), causal uncertainty
(measured as the amount of reported alternative causes for
a sound) and sound typicality. Actually, acoustic variables
accounted for only about half of the variance in identifica-
tion time and accuracy. Therefore, their results suggested
that sound identifiability is related to many other factors
than acoustical ones. Some of these factors (context inde-
pendence - when the sound can be identified easily without
context -, the ease of using words to describe the sound)
have been studied thoroughly in [28].

1.4. Approach used in this paper

The function of a car horn sound is to warn people against
a danger. Therefore, this review leads us to analyze the
case of car horn sounds in light of the different approaches
to warning signal design. Car horn sounds are warning
signals used by car drivers to warn other drivers about a
danger. There is no automatic reaction to be undertaken:
when hearing a car horn sound, road users have to local-
ize the potential danger, and to decide how to react (the
same analysis may be found as well in [27]). The first re-
quirement is therefore that these sounds must be audible
in a road traffic background noise. This requirement is ac-
tually already addressed by the law: car horn sounds must
be very loud broadband sounds [2]. Since, at the time of
this study, the manufacturers are not allowed to supply cars

4 cited from R.A. Cole and J. Jakimik: Understanding speech: how words
are heard, in G. Underwood (Ed.): Strategies of information processing,
New York, Academic Press, 1978, p. 113

with several different sounds, it is not possible to imagine
for the time being a system that would allow the driver
to choose between different sounds, with different urgency
levels.

Rather, to warn road users against a danger requires that,
when hearing the sound of a car horn, they must under-
stand immediately the meaning: “danger”. This is the sec-
ond requirement.

Even when heard out of any context, car horn sounds are
the sounds identified the most rapidly [62, 63] and almost
perfectly [62, 64]: they have a low causal uncertainty [62],
a low ambiguity of meaning [28], and lead to the shortest
reaction times [26] (among the sounds studied in the pa-
per). These results indicate that the association of meaning
with car horn sounds is very strong. But to be associated
with this meaning a sound must first be recogn ized as a
car horn.

In practical terms, we base our study on the assump-
tion that hearing a car horn sound warns road users be-
cause they recognize the sound of a car horn, because they
know what this sound means and what they have to do as
a consequence. This leads us to reformulate our problem:
designing new sounds that still warn road users is equiv-
alent to designing sounds that are still recognized as car
horn’s. This is also suggested by Vogel [28]: when intro-
ducing new warning signals, care must be taken that th ese
sounds are not too different from the already-existing ones:
the more the new signals are different from the already-
existing ones, the more the road users will need time to
learn their meaning.

The third requirement is that these sounds must not be
confounded with other sounds [65].

This study situates itself within a psychoacoustical
framework. Because our aim is to provide car horn buil-
ders with acoustical specifications, we will base our study
on the perceptual dimensions of timbre and pitch and the
related acoustical descriptors revealed in the previous ar-
ticle. Indeed these descriptors provide us with a tool al-
lowing us to study the acoustical properties of the sounds,
and are based on what listeners perceive. Specifically these
descriptors have shown their ability to account for the per-
ception of the mechanical causes of car horn sounds.

We will first seek to identify among existing car horn
sounds, which are the best items of this category, by mea-
suring the agreement of the participants on the member-
ship of each sound in the category of car horn sounds
(Section 2). By observing the gradient of this membership
agreement within the acoustical descriptor space, we will
be able to relate it to the acoustical descriptors, and thus
to provide specifications for the design of new sounds. We
will then test the generality of these relationships and their
relevance for the creation of new sounds by studying syn-
thesized sounds (sections 3 and 4).

2. Experiment 1: Agreement on the mem-
bership of current car horn sounds

The timbre of existing car horn sounds was studied in a
previous paper [1]. In the first experiment of the current
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study, we will ask listeners whether they perceive these
sounds as coming from car horns (even though all the
sounds tested are real car horn sounds heard on a daily
basis by road users). We will therefore measure the agree-
ment among the listeners on the membership of each of
these sounds in the category “car horn”.

2.1. Experimental setup
Method
Participants: Twenty-nine participants (14 men and 15
women) volunteered as listeners and were paid for their
participation. They were aged from 18 to 34 years old.
Most of them were students from the various universities
of Paris. Thirteen were musicians (from amateur to nearly
professional level), and the other sixteen had no musical
education. Three were audio specialists. All reported hav-
ing normal hearing.
Stimuli: Twenty-two car horn sounds were chosen so as
to sample the nine classes obtained from the sorting task
in the previous study (see the lower panel of Figure 2).
The car horns were recorded in an anechoic chamber (see
[1] for the details of the recordings). All sounds lasted ap-
proximately 550 ms. They had been previously equalized
in loudness in a preliminary experiment. Listeners were
asked to adjust the level of each sound so that they per-
ceived it at the same loudness as a reference sound (1 kHz
pure tone at 83 dB SPL). Their loudness is therefore 83
phons.
Apparatus: The test took place in the IAC sound-atten-
uated rooms at IRCAM. The experiment was run on a
Personal Computer under Linux, and the graphical inter-
face was implemented under Matlab. The sounds were
amplified through a Yamaha P2075 amplifier and sent to
Sennheiser HD 520 II headphones.
Procedure: For each sound, we studied the agreement of
the participants on the membership in the car horn cate-
gory by means of a two-alternative forced-choice (2AFC)
procedure: participants listened to each sound, and had to
answer the question, “Do you recognize a car horn sound?
Yes or no”.

The sounds were played in random order. The listeners
had to answer by clicking one of two icons labeled “yes”
and “no” (see Appendix A for the verbatim of the instruc-
tions). The 2AFC task actually amounts to a binary cate-
gorization in which the participants categorize each sound
in one of two categories: “car horn” or “not car horn”.
Coding results: Two variables are derived from this exper-
iment. For each sound, we count how many participants
gave a positive answer (“yes”). We call this variable the
membership agreement. We also count, for each partici-
pant, how many sounds were rated as a car horn. We call
this variable the positive answer rate. This latter variable
is only used to compare the participant strategies.

2.2. Results
Participant strategies
One way to study the participant’s response strategy is to
compare how they divided the 22 sounds into two cate-
gories. As all the sounds are genuine car horn sounds, we

Positive answer rate

Figure 1. Cumulative distribution (in %) of the positive answer
rate across participants.

expect that most of them will be categorized as car horns.
The positive answer rates range from 39% to 100%, with
a median of 61%. The cumulative distribution (Figure 1)
shows that 83% of the participants have categorized more
than 50% of the sounds as car horn sounds.

A single-sample t test was performed [66] to test the
null hypothesis that “the average positive answer rate is
50%”. The test result is that the null hypothesis can be re-
jected (t(28)=4.3, p< 0.01). This leads us to conclude that
participants did not make two equal partitions of sounds.
The participants thus neither balanced their answers, nor
answered randomly. Furthermore, since not all the sounds
were categorized as car horns, we can expect to observe
differences among the values of membership agreement
for the different sounds.

Agreement on the membership of the sounds
Observing the agreement among the participants to cate-
gorize a sound as a car horn or not, three cases can be
highlighted:

• There is consensus among the participants to catego-
rize the sound as produced by a car horn. The member-
ship agreement τ is close to 100%. The sound is repre-
sentative of the category of car horn sounds.

• There is consensus among the participants to catego-
rize the sound as not produced by a car horn. The mem-
bership agreement τ is close to 0%. The sound is not
representative of the category of car horn sounds.

• There is no consensus among the participants. The
membership agreement τ is around 50%.

Hence thresholds of membership agreement have to be
set, to decide whether each sound falls into one of these
cases. This is done by means of an exact binomial test
[66], which tests the null hypothesis for each sound: “the
membership agreement is 50%”. If the null hypothesis
can be rejected, the sound is either representative or non-
representative. Otherwise, there is no consensus among the
participants to categorize the sound as a car horn or not. A
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Figure 2. Membership agreement of each of the 22 recorded
sounds in the category “car horns”. Symbols refer to the nine
classes of sounds highlighted in [1], reported in the lower panel
of the figure. Gray scale codes the results of the exact binomial
test. White and dark grey: p < 0.05/22, light grey: p > 0.05/22.

simple exact binomial test with an α value of 0.05 leads
to two thresholds: τ1=34% (11 among 29) and τ2=66%
(19 among 29: τ ≤ τ1 → non-representative, τ ≥ τ2 →
typical). However, as several tests are compared, a more
conservative significance criterion has to be chosen. This
is done by performing a Bonferroni procedure [66]. The
significance criterion becomes αadjusted = 0.05/22, and the
membership agreement thresholds τ1adjusted = 20.7% and
τ2adjusted = 79.3%.

Membership agreement is represented for each sound in
Figure 2.

The representative families
Figure 2 shows that every sound in category 1 (standard
polyphonic plate-like), and almost all of the sounds in cat-
egory 6 (standard polyphonic horn-like) and category 8
(standard monophonic plate-like) are representative. This
indicates that the polyphony and the spectral characteris-
tics due to the plate act as a kind of signature of car horn
sounds. Listening to them reveals that they indeed sound
like a caricature of car horns.

For these three categories, the membership agreement is
rather homogeneous (category 1: 93-96%; category 6: 76-
90%; category 8: 72-90%), whereas the values are much
more spread over the categories for which there is no con-
sensus (e.g. category 2: 21-52%), or the categories of non-
representative sounds.

For instance, within category 7 (standard monophonic
horn-like), one sound was categorized as a car horn by
only 30% of the participants, whereas another one was
categorized by more than 65% of the same participants,
although they were judged to be perceptually close to one

another in the dissimilarity rating task. The lack of con-
sensus thus reveals that the listeners were actually unable
to decide whether the sounds did or did not belong in the
category of car horn sounds, and could even give different
responses for sounds rated as being similar. They are am-
biguous, as the post-experimental interviews revealed: par-
ticipants declared that they did not know what to answer
for some sounds. They could possibly have been car horn
sounds, but they could also have been emitted by other
sound sources, such as trumpets, car alarms, ambulance
sirens, etc.

2.3. Relation to the acoustical descriptors

We now seek to link up membership agreement and acous-
tical properties of the sounds. The original LCREG (La-
tent Class REGression with spline transformations) algo-
rithm developed by Winsberg [67, 68] is used. This tech-
nique aims to build a predictive additive model ŷ of a de-
pendent variable y based on spline functions of the in-
dependent variables xi: ŷ = n

i=1 S
mi
oi (xi), where S

mi
oi is

a spline function of order oi defined for mi knots. Each
spline function is a linear combination of the B-spline ba-
sis for the given order and set of knots. In our case, for each
sound the dependent variable y is the membership agree-
ment, and xi are acoustical descriptors. For a given model,
LCREG maximizes the likelihood to get the parameters.
The best model is then chosen among competing mod-
els using the Bayesian Information Criterion (BIC) [69], a
log-likelihood measure of model fit that takes into account
the number of degrees of freedom in the model.

We test several acoustical descriptors in addition to
those revealed in the previous study [1] (we assume indeed
that identification may be based on other perceptual at-
tributes than those used to rate dissimilarities between the
sounds). The best model found by the algorithm includes
as independent variables roughness, spectral deviation,
and fundamental frequency5. Fundamental frequency is re-
lated to pitch perception, and is therefore not a dimension
of timbre (according to the definition used in this study).
The model predictions are significantly correlated with the
measured membership agreement (r(20) = 0.9). Figure 3
represents the three additive functions of the model.

It indicates that the sounds leading to higher member-
ship agreement are those with high roughness values, low
spectral deviation values, and a fundamental frequency of
around 480 Hz. The first condition corresponds to poly-
phonic sounds. The second condition corresponds to the
sounds of the plate-like horns. The third condition can be
related to the fact that most of the horns sold in Europe are
tuned to a fundamental frequency around 440 Hz (this can
be related to the concept of ecological frequency devel-
oped by James Ballas [62]). Listeners tend to favor sounds
they are used to listening to. This can be further visualized
in Figure 4 which represents the positions of the category

5 For polyphonic sounds, we take the fundamental frequency of the low-
est note.
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Figure 4. Representation of the sounds in the descriptor space:
roughness, spectral deviation and fundamental frequency. The
color of the symbols codes the results of the exact binomial test:
black = representative sounds; gray = ambiguous sounds; white
= non-representative sounds.

of sounds in the space formed by the three descriptors and
the results of the exact binomial test.

In this figure the two categories of polyphonic sounds
are represented by star symbols. They correspond to the
upper values of roughness. The monophonic plate-like
sounds, represented by diamond symbols, are located at
lower values of spectral deviation and roughness. The
horn-like sounds, represented by triangles or circles are
located at higher values of spectral deviation. Representa-
tive sounds are roughly spread over a hyperplane around

480 Hz. Interestingly, they are located at the centre of the
space.

2.4. Discussion
We can draw several conclusions from this experiment.
Qualitatively speaking, it is clear that the standard poly-
phonic sounds are representative of the category of car
horns, whether they are horn-like or plate-like. The stan-
dard plate-like sounds are representative, whether they
are monophonic or polyphonic. Two main criteria hence
emerge to characterize what makes a sound representative
of car horns: polyphony and plate resonance. The stan-
dard monophonic horn-like sounds are ambiguous. They
can be confused with other sound sources such as trum-
pets or alarms (according to informal interviews with the
subjects). This is quite an astonishing result, inasmuch as
most of the high-end cars are provided with horn-like hoot-
ers. This indicates that for most people, car horns are still
associated with the old rough plate-like sounds, which ac-
tually define a caricature of car horn sounds, mainly be-
cause they are unlikely to be confused with another sound
source.

This conclusion leads us to qualify our first assumption:
some car horn sounds are indeed almost always identi-
fied. But some others, although they are regular car horn
sounds, are likely to be confounded with other sound
sources, when heard in a context-free situation. One sound
was even judged as non-representative of the category. Al-
though this sound is currently mounted on cars, it has a
very high pitch, quite different from the sounds usually
heard on the street.

Quantitatively speaking, the membership agreement can
be specified and predicted by means of three descriptors:
roughness, spectral deviation and fundamental frequency.
It must be noted that fundamental frequency is not related
to timbre. It is rather related to the sensation of pitch. This
experiment therefore shows the importance of the pitch
of the car horn sounds. This perceptual dimension did
not appear in the timbre study of the car horns, because
we explicitly asked listeners to rate the dissimilarities be-
tween the sounds without taking pitch into account (which
has been demonstrated to be feasible [70]). The predictive
model does not rely on spectral centroid. This may indicate
that although the car horn sounds are perceived with dif-
ferent brightnesses, these differences do not change their
belongingness to the car horn category.

To test the validity of this model, we repeated the same
experiment with synthesized sounds in the next section.

3. Experiment 2: Synthesizing new sounds

The previous results were obtained using only recorded car
horn sounds. This means that the relationships between the
membership agreement and the acoustical descriptors are
only tested for the range of the acoustical descriptors cov-
ered by these sounds. To extend these results, and to gen-
eralize the relationships to descriptor values outside the
range of the current recorded sounds, we synthesized new
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sounds. These new sounds had to respect two constraints.
First, they had to share the same perceptual dimensions
as the recorded ones, and to have a more extended range
of values than the previously tested sounds, in order to
investigate the relationships between membership agree-
ment and acoustical descriptors. Second, they had to be
perceptually close to the categories of existing car horn
sounds, in order to not be set apart from the existing ones.
Because the results of the previous study [1] showed that
listeners perceive the mechanism causing the sound, we
took care to preserve these aspects.

Synthesizing sounds fulfilling these constraints also
helped us to test a possible methodology for the design
of new car horn sounds.

3.1. Creation of a new set of sounds

The three descriptors correlated with the perceptual di-
mensions shared by the car horns are related to the spec-
tral properties of the sounds (spectral centroid and spectral
deviation) and to short-term temporal properties (rough-
ness). Yet even this latter property can be seen as spectral,
since it may result from the mistuning of the harmonic par-
tials of the spectrum. Thus, we can assume that the per-
ceived dissimilarities between the current car horn sounds
are based only on spectral and harmonic differences. And
we can further assume that these sounds share identi-
cal temporal properties, and particularly have an identical
temporal envelope. Therefore, to create new sounds close
to the current ones, we have to create sounds with the same
temporal envelope. Extending the range of the timbre di-
mensions can thereby be achieved by modulating the spec-
tral and harmonic properties.

Synthesis method
Car horns, like most of musical instruments, can be
thought of as an excitation mechanism (the membrane, set
into vibration by an electromechanical or pneumatic sys-
tem), and a resonator (the plate or the horn). Three phe-
nomena are worth considering. First, it may be assumed
that the resonator, acting like a filter, has a strong influ-
ence on the spectral envelope, and thereby, on the spec-
tral centroid and spectral deviation of the sounds. Second,
the particular excitation mechanism of the car horns forces
the membrane to vibrate with a nearly square wave move-
ment. Thus, the sounds produced have a very rich and har-
monic spectrum in steady state. However, when car horns
are not firmly fixed to the body of the car (which occurs
after the car has been driven for a while), the device is not
free to vibrate in the proper way, which causes the funda-
mental frequency to move slightly (therefore detuning the
chords when horns are mounted in twos or threes). This
slightly shifts the frequencies of the partials from a perfect
harmonic series. This phenomenon is assumed to be re-
sponsible for the roughness of the sounds. Third, listening
carefully to the car horn sounds reveals that the harmonic
steady state takes time to become established and to re-
lease. Furthermore, we might suspect that these transient
parts of the sounds, and particularly the non-harmonic

noise, are very important for the recognition of car horns.
Because the perceived dissimilarities between the current
car horn sounds do not rely on any temporal property, we
can therefore assume that these properties are identical for
all the sounds of the category. They must be kept identical
for the synthesized sounds, if we want them to be percep-
tually close to the recorded ones.

This analysis of the sound production mechanism of the
car horns led us to propose a synthesis model in four parts:

• A. A nearly harmonic excitation source, made of a
sum ofN normalized sinusoids, the frequency of which
are integer multiples i of a fundamental frequency ω0

added to an inharmonicity term �i. The excitation is
then: N

i=1 sin(iω0 + �i)t.
• B. A temporal envelope Ti(t) defining the temporal
evolution of each of the sinusoids.

• C. A non-harmonic noise n(t).
• D. A filter defining the amplitude of each of the sinu-
soids Ai.

The synthesis model is therefore defined by the following
model:

S(t) =
N

i=1

Ai sin (iω0 + �i)t Ti(t) + αn(t). (1)

The different parameters of the model are modulated to
create sounds with different descriptor values:

• The fundamental frequency is adjusted by varying ω0.
• The roughness is adjusted by varying each inhar-
monicity term �i.

• The spectral deviation and the spectral centroid are ad-
justed by varying the number of sinusoids N and their
amplitudes Ai.

The temporal envelope Ti(t) of each partial and the non-
harmonic noise n(t) are kept constant for all the sounds.
They are actually computed from two recordings of car
horn sounds (one horn-like and one plate-like, both being
rated as representative in the first experiment).

The temporal envelopes of each partial and non-harmo-
nic noise are extracted using the ADDITIVE algorithm
[71]. The signal to noise ratio α is kept constant and ad-
justed to 18 dB, as measured from the recorded sounds.
The principle of the synthesis method is summarized in
Figure 5.

Synthesized sounds
Forty-six new sounds were synthesized. We chose 19
sounds from among them. They were all 550 ms in du-
ration and were equalized in loudness in a preliminary ex-
periment. We report in Table I the range of the descriptors
for these 19 sounds as well as for the 22 sounds previously
tested. There are synthesized sounds with higher values of
roughness, lower and higher values of spectral centroid,
lower values of spectral deviation and lower fundamental
frequencies than the recorded sounds. We assume that the
timbre of these sounds is defined by the same perceptual
dimensions as the recorded sounds. To test the assumption
we subjected these new sounds to the same experimental
procedure as in [1] (see section 3.2).
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Table I. Range of the acoustical descriptor values for the set of
22 sounds tested in [1], and for the set of 19 synthesized sounds
tested in Experiments 2 and 3. r: Roughness (asper), c: Spec-
tral centroid (Hz), d: Spectral deviation (sones), f : Fundamental
frequency (Hz).

Recorded sounds Synthesized sounds
Min. Max. Min. Max.

r 0.37 2.81 0.53 2.91
c 1380 3790 1180 4560
d 5.30 11.6 2.85 11.6
f 262 683 198 500

3.2. The perception of the timbre of the new sounds

We perform a dissimilarity rating experiment to investi-
gate the timbre of the synthesized sounds. According to the
psychoacoustical definition of timbre used in this study,
timbre is what allows a listener to differentiate two sounds
that have been equalized in duration, loudness, and pitch.
Following the multidimensional scaling approach (see [1]
for a rationale of the method), we first collect dissimilarity
judgments.

Dissimilarity judgments
Participants: Thirty participants (15 men and 15 women)
volunteered as listeners and were paid for their participa-
tion. They were aged from 22 to 43 years old. All reported
having normal hearing. The majority of the participants
were students from the various universities in Paris. Thir-
teen were musicians (from amateur to nearly professional
level), and the other 17 had no musical education. None of
them was considered to be an audio specialist.
Stimuli: Nineteen sounds were chosen from among the 46
synthesized sounds. Four recorded sounds that had already
been tested in the previous experiments were also included
to make sure that recorded sounds and synthesized sounds

would not be set apart. They were played at the same level
as in the previous experiment (83 phons).
Apparatus: Same as in previous experiment.
Procedure: Participants all received written instructions
explaining the task (see Appendix B). They were told that
they were to make judgments on the timbre. The meaning
of the word timbre (neither pitch, nor perceived duration,
nor loudness) was explained to them. Particular emphasis
was placed on ignoring pitch [70].

All 253 different pairs (AB or BA pairs are considered
as equivalent) among the 23 sounds were presented. At the
beginning of the session, the participant listened to all of
the samples in random order to get a sense of the range of
variation possible. Next, six training trials were presented
to familiarize the participant with the rating task. On each
trial, a pair of sounds was presented, separated by a 500-
ms silence. The participant saw a horizontal slider on the
computer screen with a cursor that could be moved with
the computer mouse. The scale was labeled “Very Simi-
lar” at the left end and “Very Dissimilar” at the right end.
A rating was made by moving the cursor to the desired po-
sition along the scale and clicking on a button to record it
in the computer.
Coherence of the responses: The correlations between the
responses of the participants ranged from 0.11 to 0.72.
One participant was removed from subsequent analyses,
because of the poor correlation of his judgments with the
other participants (the correlation between his judgements
and the other participants ranged from r(21) = 0.11,
p<0.01 to r(21) = 0.36, p<0.01).

CLASCAL analysis
CLASCAL, a multidimensional scaling (MDS) technique,
is described in detail in [72]. Here we only give a short
description. In the CLASCAL model, dissimilarities are
modeled as distances in an extended Euclidean space of R
dimensions. In the spatial representation of the N stimuli,
a large dissimilarity is represented by a large distance. The
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CLASCAL model for the distance between stimuli i and j
postulates common dimensions shared by all stimuli, spe-
cific attributes, or specificities, particular to each stimulus,
and latent classes of subjects. These classes have different
saliences or weights for each of the common dimensions
and for the whole set of specificities. For the tthlatent class,
the distance between two sounds i and j within the percep-
tual space is thus computed according to

dijt =
R

r=1

wtr(xir − xjr)2 + vt(Si + Sj). (2)

In this equation dijt is the distance between sound i and
sound j, t is the index of the T latent classes, xir is the
coordinate of sound i along the rth dimension, wtr is the
weighting of dimension r for class t, R is the total number
of dimensions, vt is the weighting of the specificities for
class t, and Si is the specificity of sound i.

The class structure is latent, i.e. there is no a priori as-
sumption concerning the latent class to which a given sub-
ject belongs. The CLASCAL analysis yields a spatial rep-
resentation of the N stimuli on the R dimensions, the speci-
ficity of each stimulus, the probability that each subject
belongs to each latent class, and the weights or saliences
of each perceptual dimension for each class. We found a
spatial model with two dimensions, specificities, and two
latent classes (see Figure 6).

We chose the model configuration by comparing BIC
[69] across models, as well as by performing Hope’s
(Monte Carlo) test [73].

The two classes of participants
Table II displays the weights of the two latent classes of
participants over the two dimensions of the spatial model.
The most noticeable difference between the two classes is
that participants in class 2 weight the two dimensions more
overall than do participants in class 1. This indicates that
they used a larger range of the slider to rate the dissimi-
larities. The second difference between the two classes is
that participants in class 2 weight the specificities more
than the dimensions, conversely to participants in class 1,
i.e. they placed more emphasis on the particularity of each
sound than on the shared properties of all the sounds. We
did not find any relation between the biographical data of
the participants (gender, age, musical skills) and the be-
longingness to the latent classes.

Perceptual dimensions and acoustical descriptors
The first dimension of the spatial model is correlated with
roughness (r(21) = −0.8, p<0.01), and the second dimen-
sion is correlated with spectral centroid (r(21) = −0.8,
p<0.01). No dimension is correlated with spectral devia-
tion even in non-optimal (according to BIC values) models
with higher dimensionality. The dissimilarities between
the recorded sounds are consistent with the previous data.
The four recorded sounds are not set apart from the syn-
thesized ones, which indicates that synthesized sounds are
perceptually close to the recorded ones (see Figure 6). The
two sounds with the highest specificity values have exces-
sively audible noise transients.
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Figure 6. Representation of the perceptual space obtained by
the Clascal analysis in Experiment 2. Circles represent synthetic
sounds. Gray squares represent recorded sounds.

Table II. Weights of the two latent classes of participants over
the two perceptual dimensions. Class1: 23 participants, class 2:
6 participants.

Dimension 1 Dimension 2 Specificity

Class 1 0.83 0.92 0.71
Class 2 1.17 1.08 1.29
Total 2 2 2

Discussion
The assumption that the timbre of synthesized sounds is
defined by the same perceptual dimensions as the recorded
sounds is only partially supported, because none of the
dimensions of the synthesized sounds is correlated with
spectral deviation. One hypothesis could be that these
sounds really do not differ according to a perceptual di-
mension related to spectral deviation. But they were cre-
ated such that the range of this descriptor is wider than for
the real sounds. Listeners should have been able to hear
the differences.

In [1], we assumed that combinations of the sensations
correlated with spectral centroid and spectral deviation
were used by the listeners as cues that help them to distin-
guish between horn-like and plate-like sounds. As our syn-
thesis method did vary both descriptors arbitrarily, combi-
nations of these descriptors were no longer related to res-
onating phenomenon, and it may have become difficult for
the participants to hear dissimilarities due to variations of
spectral deviation alone (see Caclin et al. [74] for a discus-
sion on a similar phenomenon). They may have focused on
more obvious differences due to roughness or spectral cen-
troid variations. Moreover, listening to the stimuli reveals
that the sounds with the highest specificity values have
more audible transient noises. These particularities may
also have pushed listeners to concentrate only on strong
dissimilarities.

However, it should be stressed that the absence of a per-
ceptual dimension related to spectral deviation does not
negate the fact that the first two perceptual dimensions are
still present.
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4. Experiment 3: Agreement on the mem-
bership of synthesized sounds

These new sounds are presented in a 2AFC experiment
similar to the one reported in Section 2. In order to test the
consistency of these measures, we include in the test the
22 recorded sounds tested in the first experiment.

4.1. Experimental setup

The experiment took place during the same session of ex-
periment 2. The participants6 began either with experi-
ment 2, or with experiment 3. The order (Exp. 2 Exp. 3
vs. Exp. 3 Exp. 2) was counterbalanced across the partic-
ipants. None of them had taken part in the previous ex-
periment 1. The apparatus and the procedure were exactly
the same as in section 2. The 19 synthesized sounds were
tested as well as the 22 recorded sounds.

4.2. Results

Participant strategies and consistency of the measure
The set included roughly as many recorded as synthetic
sounds. The latter were designed to explore the limits of
the perceptual space, so we expected that a lot of them
would not be categorized as car horn sounds. The positive
answer rates range from 32% to 80% with a median of
51%.

A single-sample t test (testing the null hypothesis: “the
average positive answer rate is 50%”) confirmed that par-
ticipants partition the set equally (t(30)=0.97, p>0.05).

To determine the consistency of the results, the mea-
sures of membership agreement for the recorded sounds
in this experiment were compared to those found in the
experiment described in section 2. Figure 7 represents the
regression of the membership agreement for the previous
experiment (homogeneous set of recorded sounds) onto
the membership agreement measured in this experiment
(mixed set of both recorded and synthetic sounds).

The correlation coefficient is 0.9 (df=20, p<0.01), and
the measures of membership agreement are smoothly
spread over the regression line (slope: 0.9, origin ordinate:
5.2%).

The perfect consistency regression line (slope: 1, origin
ordinate: 0%) falls within the 95% confidence interval of
the regression. This allows us to conclude that the measure
of membership agreement is not influenced by the kind
of set tested. The indicator can be compared for the two
experiments.

The representative sounds
The measures of membership agreement are represented
in Figure 8. They range from 3.2% to 96.8%. For each
sound, the result of an exact binomial test is represented
by the gray scale.

There is no consensus among the participants for cat-
egorizing most of the synthetic sounds in one of the two

6 There was one more participant in Experiment 3: there are therefore 31
participants in this experiment

Representative

Non-
representative

Absence of
consensus

Absence of consensus Representative

Figure 7. Linear regression between the membership agreement
measured for the recorded sounds, when they were part of an
homogeneous set of recorded sounds, and when they are part of
a mixed set of both recorded and synthetic sounds. The dashed
lines define the 95% confidence interval around the prediction.
The horizontal and vertical dashed lines correspond to the thresh-
olds fixed by the exact binomial test τ1ajust and τ2ajust.
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Figure 8. Membership agreement measured for the mixed set of
both recorded and synthetic sounds. Symbols refer to Figure 2.
Stars represent the synthetic sounds. Results of the binomial test:
p < 0.05/41 for white and dark grey bars, p > 0.05/41 for light
grey bars.

categories. Only one of the synthetic sounds was represen-
tative of car horns. For recorded sounds, among the eight
sounds that were representative when they were tested in
the homogeneous set (not counting the reference sound),
seven are again representative when tested in this mixed
set. The qualitative results described in section 2 remain
unchanged.

4.3. Relation to acoustical descriptors

Following the method described in section 2, we relate the
measures of membership agreement to the acoustical de-
scriptors by means of the LCREG algorithm. The best pre-
dictive additive model is again based on roughness, spec-
tral deviation and fundamental frequency. Correlation be-
tween predicted and measured membership agreement is
(r(39) = 0.7, p< 0.01). Figure 9 represents the spline
functions defining this model.
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The first function, indicating the contribution of rough-
ness to the membership agreement, is qualitatively identi-
cal to the first function of Figure 3. Sounds the most of-
ten associated with the category “car horns” are those with
the highest roughness values. The second function predicts
that sounds with a spectral deviation value around 7 sones
lead to the highest membership agreement. The model de-
picted in Figure 3 predicted that the highest membership
agreement would have been obtained for sounds with a
spectral deviation lower than 9 sones. But none of the
sounds tested had a spectral deviation lower than 5 sones.
Hence this experiment allows us to extend the model to
lower values of spectral deviation. The third function pre-
dicts that sounds with a fundamental frequency of around
350–400 Hz are those that are most often categorized as
car horns.

To better visualize the localization of the representative
sounds in the descriptor space, this space is represented in
3D in Figure 10.

As in Figure 4, the representative sounds are located
at the center of the space. Two areas can be distin-
guished: one corresponding to the polyphonic sounds
(plate- or horn-like), and one corresponding to the mono-
phonic plate-like sounds. The unique representative syn-
thetic sound is located close to the area corresponding to
the monophonic plate-like sounds. These two areas are
defined for a fundamental frequency around 350-400 Hz
and for a spectral deviation value between 6 and 9 sones.
Roughness in itself does not allow segregation between
representative and non-representative sounds. Rather, it
has to be combined with spectral deviation. This is mainly
due to the monophonic plate-like sounds, which are repre-
sentative, whereas monophonic horn-like sounds are am-
biguous. Hence, to be representative, a sound may possi-
bly have a low roughness (i.e. monophonic), but only if it
has a high spectral deviation value (i.e. plate-like). In other
cases, the roughness value must be high.

4.4. Discussion
The addition of synthetic sounds to the set allows us to
generalize the conclusions drawn from the recorded sound
set. First of all, duplicating the measure of membership
agreement demonstrates that this measure is stable. Here
again, the representative car horn categories are the stan-
dard polyphonic sounds (both plate- and horn-like) and the
standard monophonic plate-like sounds.

We demonstrate again that fundamental frequency plays
an important role in predicting the membership agreement
in the car horn category. Membership agreement is thus
related to both the timbre and the pitch of the sounds.

Finally, we generalize the description of the representa-
tive sounds. The additive regression model applied to syn-
thetic sounds and recorded sounds allows us to define more
precisely the combinations of descriptors that describe the
sounds categorized as car horn sounds without ambiguity.
Representative sounds are those with the largest values of
roughness, a spectral deviation around 7 sones, and a fun-
damental frequency around 400 Hz. These quantitative re-
sults are important for the design of new sounds.
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Figure 9. Predictive model of the membership agreement for the
set of mixed recorded and synthetic sounds. The crosses repre-
sent the sound samples used.
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Figure 10. Localization of the sounds in the descriptor space
(Roughness, spectral deviation, fundamental frequency). The re-
sults of the exact binomial test are coded by the color of the sym-
bols: black = representative, white = non-representative, gray =
no consensus. Symbols refer to Figure2.

However, we shed a light on the importance of the am-
biguity phenomenon. A large number of synthetic sounds,
as well as some recorded sounds, are not categorized as
car horn sounds, not only because they are perceptually
different from the sounds most often categorized as car
horns, but also because they possess specific properties
that would lead listeners to identify them as other sound
sources. This is coherent with the CLASCAL analyses
of dissimilarity ratings of both recorded and synthetic
sounds, which showed that sounds were compared accord-
ing to specificities in addition to continuous dimensions.
However, we are not able from these experiments to pre-
dict possible associations with other categories of sound
sources.
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5. General discussion and conclusions

This paper concerns the design of new car horn sounds.
Warning is the main function of car horns. This function
must be preserved when the sounds are tuned according
to the customer’s wishes. The review of the literature on
warning signal design reported in Section 1 leads us to
base our approach on the following assumption: hearing a
car horn sound warns road users because they recognize
the sound of a car horn, they know what this sound means,
and they know what they have to do as a consequence.
Therefore, the experimental studies reported in this paper
seek to identify acoustic properties that are responsible for
a sound (among sounds sharing common dimensions with
current car horns) to be categorized as coming from a car
horn.

Following a paradigm that was originally designed to
study the timbre of musical sounds, we have defined in
[1] the timbre of car horn sounds as the integration of
three continuous perceptual dimensions (shared by all the
sounds) and specificities (particular to each sound). The
continuous perceptual dimensions were correlated with
appropriate acoustical descriptors. Latent class analysis re-
vealed that different classes of participants weighted the
dimensions and specificities differently. The latent classes
were not related to any recorded biographical data con-
cerning the participants (age, gender, musical skills).

The experiments reported in this paper were focused on
measuring the agreement of some groups of listeners on
the membership of sounds in the car horn category. The
membership agreement was operationally defined as the
results of a 2AFC task. These measures were analyzed so
as to highlight three types of agreement: there might be
an agreement among listeners to categorize a sound as a
car horn. In this case, we called the sound representative.
Conversely, there might be an agreement of the listeners
to categorize a sound as not coming from a car horn. In
this case, we called the sound non-representative. When
there is no agreement among the participants, analyses of
the participants’ comments suggested that the sounds were
ambiguous.

We first measured in Section 2 the membership agree-
ment of the 22 recorded sounds tested in [1]. Whereas
most of the sounds were representative, we observed a
gradient of membership agreement. By means of a mul-
tispline regression technique, we were able to relate the
membership agreement to three acoustical descriptors of
the sounds: roughness, spectral deviation and fundamental
frequency. Furthermore, the results showed that some cat-
egories of car horn sounds were systematically categorized
as car horns.

To generalize these conclusions to descriptor values out-
side the range of the recorded sounds (thereby testing a
methodology for the design of new sounds), we created
in Section 3 a set of new sounds. The synthesis method
was designed so as to preserve the temporal properties of
the sounds (particularly the transient parts), suspected to
underlie the recognition of the car horns, and so as to cre-
ate sounds sharing the same perceptual dimensions as the

recorded ones. To test this last assumption, we subjected
the created sounds to a dissimilarity rating task. The anal-
ysis revealed that these sounds shared only two of the three
dimensions of the recorded sounds.

Finally in Section 4, we performed a 2AFC task that
aimed to measure car horn membership agreement for a
mixed set of recorded and synthesized sounds. These re-
sults confirm those of Section 2 and lead to a generaliza-
tion of the predictive model.

Several conclusions are to be drawn from these results.
From a general standpoint, a major result of the first part
of the study [1] was the importance of the perception of
the sound-producing mechanism. The categorization ex-
periment indeed revealed that categories of car horns built
by listeners closely correspond to the different kinds of
devices. These categories were preserved both in dissimi-
larity judgments and in 2AFC tasks.

These experiments have suggested that when sounds are
not categorized as car horns, it is not only because they
are dissimilar to the sounds most often categorized as car
horns, but also because they may be identified as another
sound source. This has shed light on the problem of iden-
tification ambiguity. Ambiguity occurs when a sound may
be associated with distinct categories of sound sources. In
our case, ambiguity must be avoided: if a sound is con-
fused with another sound source, it may fail to convey the
warning message.

However, our results only allow us to predict how
“close” a sound is to what we may call a shared repre-
sentation of what a car horn’s sound is. It does not predict
if the sound may be identified as another sound source.
As our experimental tasks were based on sound compar-
isons, we have emphasized the properties shared by the
sounds. The acoustical descriptors that we used are cor-
related with the common perceptual dimensions: they de-
scribe the shared properties of the sounds. A more effi-
cient description should also include idiosyncratic proper-
ties, because these distinctive properties may explain why
some sounds can be confused with other sound sources.
The CLASCAL analyses performed on both synthetic and
recorded sounds have included not only common dimen-
sions, but also specificities, which are individual properties
of the sounds (this is similar to Tverky’s contrast model
[75], which aims to include both common and distinctive
features). These specificities may indicate possible mis-
interpretations of the sound. It is however difficult to de-
termine to which acoustical properties these specificities
correspond and then to make any a priori predictions.

The question of sound source identification is, however,
only partially addressed by this study. Indeed, all the re-
ported experiments were done in a laboratory, without any
acoustic, visual or situational context. The question is still
open as to how these sounds would be categorized if they
were heard on the street. However, we can assume that the
context would play two roles. Firstly, the acoustic back-
ground noise would raise the detection threshold of the
sounds. The issue of detection of the sounds is, however,
already addressed by the very high level imposed by law.
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Secondly, it can be assumed that a road traffic situation
would lower the ambiguity of some sounds. Indeed, if a
sound heard in a laboratory can be confused with a musi-
cal instrument sound, and the more so when this labora-
tory is located in a institution devoted to music, it can be
assumed that the same sound heard in a road traffic situa-
tion would have less chance to be confused with a trumpet
call. As noted by Vogel [28], listening to warning signals
in context can improve the univocal nature of these sig-
nals. We can therefore assume that our results are more
conservative than the real situation.

Another interesting finding of our experiments is that
listeners do not use the same perceptual dimensions when
they have to judge the dissimilarity between the sounds,
and when they have to categorize a sound as a car horn.
Indeed, the timbre study reported in [1] revealed three per-
ceptual dimensions correlated to roughness, spectral cen-
troid and spectral deviation. When listeners had to cate-
gorize the same sounds, our analyses concluded that they
had based their judgments on roughness, spectral devia-
tion and fundamental frequency. It is easy to explain why
fundamental frequency did not appear in the timbre study:
in this experiment listeners were specifically asked to not
base their judgment on pitch, and other studies have shown
that they are able to do so [70]. Because the wide major-
ity of car horn sounds that can be heard nowadays have a
fundamental frequency in the region of 440 Hz, introduc-
ing sounds with lower or higher fundamental frequencies
may lead listeners to judge them as unusual, and makes
this descriptor a good predictor of the membership agree-
ment. More puzzling is the fact that spectral centroid did
not seem to have been used to categorize the sounds as
car horns, even when we introduced sounds with more
extreme values of this descriptor. The brightness of the
sounds (a sensation correlated to spectral centroid) ap-
pears very often in the multidimensional study of timbre
(see [1] for a review), but seems therefore to be of minor
importance to categorize car horn sounds, with respect to
the other sensations related to the modulations of funda-
mental frequency, roughness and spectral deviation. Spec-
tral deviation, on the other hand, did not appear as a per-
ceptual dimension of the timbre of the synthesized sounds,
certainly because some synthesis artifacts overwhelm the
more subtle differences due to variations of spectral devi-
ation. Yet the analyses of the third experiment predicted
that listeners use a sensation correlated to this descriptor
to categorize the sounds as car horns or not. This again in-
dicates that listeners can weigh their sensations differently
according to what they have to judge.

Going back to the framework of sound design, these
results are useful, despite the reservations expressed in
the above paragraphs. Car horn builders will continue to
design broadband, loud, harmonic sounds. Hence, tuning
new sounds may be conceived as choosing values of the
descriptors of the car horn sounds. Our synthesis method
easily allows a car horn builder to design a new sound and
to compute the descriptor values. With the results of the
studies of the agreement on the membership of the sounds,

the sound designer is thus able to predict whether such a
sound will be close to the sounds best recognized as car
horns.

Appendix: Experimental instructions pro-
vided to the participants

A. 2AFC experiment (Experiments 1 and 3)

Goal of the study

The goal of this experiment is to answer the question: “Do
you recognize a car horn sound ?” for each sound of a set.

Procedure

You will sit in front of a computer screen. You will hear
a set of sounds played one after the other. For each sound
you will have to answer the question: “do you recognize a
car horn sound ?” Two buttons are displayed on the inter-
face, labeled with “yes” and “no”. To indicate your answer,
you will have to click on one of these buttons. The sounds
are only played once. When you have entered your answer,
the next sound will be played after a pause. Try to answer
spontaneously.

Note

The sounds may originate from different sources. We are
interested in your opinion, so there is no “correct answer”.
Do not try to balance the amount of “yes” and “no” an-
swers. You can even answer “yes” for every sound, or “no”
for every sound, if this is what you hear.

B. Dissimilarity rating experiment (Experiment 2)

Goal of the study

The goal of this experiment is to study the perception of
the timbre of a set of sounds. Your task is to judge the
dissimilarity that you perceive between two sounds.

Procedure

You will sit in front of a computer screen.
There are 23 sounds in the test. They all last about half
a second. At the beginning of the test, you will be pro-
vided with 23 buttons, which allow you to listen to the 23
sounds and to familiarize yourself with them. Then you
will be provided with each one of the 23 possible pairs
of sounds among the 23 sounds. For each pair of sounds,
the interface looks similar: there are two buttons labeled
“listen again” and “validate”, above a cursor with the la-
bels “very different” and “very similar” at each extremity.
When you click on the “listen again” button, you can hear
the two sounds. You can listen to the pair of sounds as
many times as you wish. The cursor allows you to rate the
dissimilarity between the sounds. When your are sure of
your rating, click on the “validate” button. This moves to
the next pair of sounds. Before the real test, you will be
provided with six pairs of sounds to familiarize yourself
with the interface in the presence of the experimenter.
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Remark on the notion of timbre

You have to group together sounds with similar timbre.
Timbre is what allows you to distinguish between two
sounds having the same duration, the same intensity and
the same pitch. For instance, two musical instruments
playing the same note, with the same intensity and of the
same duration do not sound identical. What distinguishes
them is referred to here as “timbre”. Timbre may also
be called the “color”, “texture”, . . . of the sound. These
sounds are supposed to have the same intensity. You may
however feel that certain sounds are louder than others.
We ask you to not take into account intensity in your judg-
ments.
Similarly, the sounds do not all have the same pitch. They
“play different notes”. Here again, we ask you to not in-
clude these differences of pitch in your judgments, but
rather to focus on timbre.
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