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Abstract. We describe a method for local time-adaptation of the spec-
trogram of audio signals: it is based on the decomposition of a signal
within a Gabor multi-frame of raised cosine windows through the STFT
operator. The sparsity of the analyses in every single frame of the multi-
frame is evaluated through the Rényi entropies measures.
We give an analytical expression for the entropy of the spectrogram of a
sinusoidal signal using Hanning windows of different sizes, and describe
the results obtained with other basic signals; we then provide an example
of the performance of our algorithm with an instrumental sound.

Key words: adaptive spectrogram, sound representation, sound analy-
sis, sound synthesis, Rényi entropies, sparsity measures, frame theory.

1 Introduction

Far from being restricted to entertainment, sound processing techniques are re-
quired in many different domains: they find applications in medical sciences,
security instruments, communications. The most challenging class of signals to
consider is indeed music: the completely new perspective opened by contempo-
rary music with the deep reconsideration of concepts as noise and timbre makes
every sound a potentially musical sound.

The standard techniques of digital analysis are based on the decomposition of
the signal in a system of elementary functions, and the choice of a specific system
necessarily has an influence on the result. This motivates the search for adaptive
methods of sound analysis and synthesis, and for algorithms whose parameters
are designed to change according to the analyzed signal features. Our research
is focused on the development of mathematical models and tools based on the
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local automatic adaptation of the system of functions used for the decomposition
of the signal: we are interested in a complete framework for analysis, spectral
transformation and re-synthesis; thus we need to define an efficient strategy to
reconstruct the signal through the adapted decomposition, which must give a
perfect recovery of the input if no transformation is applied.

Here we propose a method for local automatic time-adaptation of the Short
Time Fourier Transform window function, through a minimization of the Rényi
entropy of the spectrogram; we then define a re-synthesis technique with an ex-
tension of the method proposed in [9]. Some examples of this approach can be
found in the literature: the idea of gathering a sparsity measure from Rényi en-
tropies is detailed in [1], and in [11] a local time-frequency adaptive framework
is presented exploiting this concept, even if no methods for perfect reconstruc-
tion are provided. The choice of Frame Theory ([2],[10]) as a model for the
analysis/synthesis process is largely described in [14]: the fundamental step to
Multiple Gabor Frames is comprehensively treated in [6] and an approach where
sparsity is obtained through a regression model is introduced in [16]; a recent
development in this sense is contained in [12] where a class of methods for anal-
ysis adaptation are obtained separately in the time and frequency dimension
together with perfect reconstruction formulas: indeed no strategies for automa-
tization are employed, and adaptation has to be managed by the user. The model
conceived in [15] belongs to this same class but presents several novelties in the
construction of the Gabor multi-frame and in the method for automatic local
time-adaptation. In [13] another time-frequency adaptive spectrogram is defined
considering a sparsity measure called energy smearing, without taking into ac-
count the re-synthesis task. The concept of quilted frame, recently introduced in
[7], is the first promising effort to establish a unified mathematical model for all
the various frameworks cited above.

In the second section we recall the concept of spectrogram and the link
between the analysis resolution and the size of the window used. In the third
we apply the method introduced in [1] to obtain a global information about
the sparsity of a time-frequency density using the Rényi entropies, providing
new analytical results for the class of spectrograms with raised cosine windows.
The fourth section describes how to model the problem in the Frame Theory
domain, as the decomposition of a signal within a Gabor multi-frame, and we
use this approach to derive a local entropy measure which rules the choice of
a local optimal resolution. In the fifth section we finally provide a description
of the algorithm and an example of adapted spectrogram for a monophonic
instrumental sound.

2 Spectrogram as Energy Density

Several works have investigated the relations between the physical and the prob-
abilistic concepts of density (see [3],[4]); in the field of time-frequency analysis,
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the interest is focused on functions Φ ∈ L2(R2) which jointly represent the energy
of a function f ∈ L2(R) and the energy of its Fourier transform. This approach
leads to consider a large class of representations of a signal as time-frequency
energy densities, and to the use of probabilistic tools to analyze their features.

A window function is a function g ∈ L2(R) such that ‖g‖ = 1 and g(t) =
g(−t). The related transform operator is called Short Time Fourier Transform
(STFT) and it is defined as

Sf(u, ξ) = 〈f, gu,ξ〉 =
∫

f(t)g(t− u)e−2πiξtdt, ∀f ∈ L2(R). (1)

The spectrogram is the squared modulus of the STFT

PSf (u, ξ) = |Sf(u, ξ)|2 =
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∣

∣

2

, (2)

and it measures the signal energy in a neighborhood of (u, ξ) in the time-
frequency plane. The spectrogram can be considered as a joint time-frequency
density of the energy of the signal f , whose time and frequency marginals are
respectively |f(t)|2 and |f̂(ω)|2. Actually, the marginals are not satisfied as they
depend on the window function, nevertheless this does not affect the advan-
tages of considering the spectrogram as a density, with cares to the necessary
distinctions.

2.1 Spectrogram Resolution

The resolution of analyses based on time-frequency transforms, such as the STFT
and the Wavelet Transform ([8],[14]), is linked to the time and frequency con-
centration of the basic functions involved in the decomposition, represented by
their Heisenberg boxes (for a definition see [14] chapter IV): these are rectangles
drawn in the time-frequency plane whose dimensions are linked respectively to
the time spread of a function and to the frequency spread of its Fourier Trans-
form. In the STFT, the boxes associated to the transpositions of the window
function have fixed dimensions in every area of the time-frequency plane: the
resolution is the same for all the components of the signal.

The analysis resolution can be globally modified with the choice of a different
window or by a scaling operation

gl(t) =
1√
l
g

(

t

l

)

, (3)

which has the effect of changing the ratio between the edges of the Heisenberg
box associated to g preserving its area: this means that we are changing the
resolution by privileging the concentration in one dimension to the detriment of
the other.

There are limits to the achievable analysis accuracy imposed by the Heisen-
berg uncertainty principle ([4] chapter III, [14] chapter II): its interpretation is
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that more accuracy in the time domain resolution causes a loss of precision in
the frequency domain, and vice versa. A poor time resolution can lead to un-
certainty in the time location of an event, i.e. the event is not detected exactly
when it happens but at several times around its true location; a poor frequency
resolution can lead to representations which are not consistent with the percep-
tive features of the signal: this happens for example when two different spectral
components are so close in frequency that they are merged together in the spec-
trogram, and so not resolved.

A method for a local adaptation of the time-frequency resolution gives a
more flexible and coherent representation of the signal, in particular providing
a higher precision for the existing techniques of processing: we envisage that an
adaptive analysis and re-synthesis framework would give better performances
within all the algorithms based on spectral processing and sinusoidal models.
Nevertheless, the definition of the optimal tradeoff between time and frequency
resolution is not unique; several criteria exist to classify the sparsity of the
analysis of a signal, i.e. the concentration of the energy density given by a certain
time-frequency representation of the signal. In our method, we use the sparsity
measures introduced in [1] which are based on Rényi entropies, as we describe
in the next section.

3 Rényi Entropies

Thanks to the above interpretation of the spectrogram as an energy density, some
techniques belonging to the domain of Probability and Information Theory can
be applied to our problem. In particular, the concept of entropy can be extended
to give a sparsity measure of a time-frequency density. A promising approach ([1])
takes into account Rényi entropies, a generalization of the Shannon entropy: they
are defined for an order α > 0, α 6= 1 and for a time-frequency representation
Φf (u, ξ) ∈ L2(R2) of a unitary energy signal f ∈ L2(R) as follows

Hα(Φf ) =
1

1− α
log2

∫∫

Φα
f (u, ξ)dudξ . (4)

The application to our problem is related to the concept that minimizing the
complexity or information of a set of time-frequency representations of a same
signal is equivalent to maximizing the concentration, peakiness, and therefore
the sparsity of the analysis.

3.1 Entropy Evaluation on Spectrograms with Raised Cosine

Windows

The method of minimizing the entropy of a time-frequency density to achieve
sparsity has shown to give interesting results both analytically and numerically:
in [11] some results are demonstrated with signal composed by Gaussian atoms
and a Gaussian window for the spectrogram analysis. We have obtained further
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results with impulses, sinusoids with constant frequency and with linearly vary-
ing frequency, using the class of the so called raised cosine analysis windows,
which is a common choice in audio applications: they guarantee good features of
time-frequency localization and a good tradeoff between the main and the side
lobes in their Fourier transform (for a list of features characterizing the window
functions see [14] chapter IV). We have focused in particular on the Hanning
window

h(t) = cos2(πt)χ[− 1

2
, 1
2
] (5)

with χ the indicator function of the specified interval, but it is possible to gen-
eralize what we demonstrate to the entire class considered.

We consider different scaled versions of a Hanning window function

h l(t) =
1√
l
cos2

(πt

l

)

χ[− 1

2l
, 1

2l
] (6)

with l ∈ L, a finite set of positive real values. Here we analyze the case of a
sinusoid with constant frequency ξ0

s(t) = ei2πξ0t . (7)

The spectrogram of s cannot be defined as in (2) because s is not a function in
L2(R); we preserve the same formula assuming that signals have finite duration,
so considering that s is zero outside of a finite interval. For each one of the scaled
windows we obtain

PSsl(u, ξ) =
∣

∣

∣

∫

s(t)h l(t− u)e−2πiξtdt
∣
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∣

2

=
l

4

∣

∣

∣

sinc(πl(ξ − ξ0)

1− l2(ξ − ξ0)2

∣

∣

∣

2

. (8)

As above, here is not possible to apply the definition (4) as the time integral
would not converge; but the densities in (8) are not time dipendent, so we can
define an instantaneous entropy as

H∗

α(Φf ) =
1

1− α
log2

∫

PSαsl(u, ξ)dξ , (9)

obtaining the general entropy with a second integration on finite time intervals.
For every spectrogram obtained in (8) we have

H∗

α(PSsl) =
1

1− α

(

log2

∫

∣

∣

∣

sinc(πξ′)

1− ξ′2

∣

∣

∣

2α

dξ′ + log2

( lα−1

22α

))

, (10)

where ξ′ = l(ξ − ξ0). We see that the first term does not depend on l; if we fix
α, the second term is decreasing with l ∈ R+.

The sparsity measure we consider is obtained minimizing the entropy of a set
of time-frequency densities, so in this case we are interested in finding l∗ such
that

l∗ = min
l∈L

H∗

α(PSsl) , (11)
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which for every given order α is l∗ = maxl∈L l. This means that for a sinusoid
with constant frequency ξ0 and for any order α the method gives as optimal
spectrogram the one taken with the larger scaling l in the finite set specified. As
such a signal is perfectly concentrated in the frequency domain, this choice cor-
responds to our needs since it provides the best frequency resolution available.
With a similar procedure we have analytically and numerically investigated the
case of an impulse s(t) = δ(t− t0): the method identifies as optimal spectrogram
the one obtained with the smaller scaling, so providing best time resolution; as
above, the choice of the optimal window is not dependent on the order α.

For a sinusoid with linearly varying frequency s(t) = ei2π(ξ0t+at2) the optimal
spectrogram is chosen according to the slope a: for higher slopes time precision
is enhanced, while frequency resolution is maximized for lower. The optimal
analyses obtained for different classes of signals with different entropy orders have
numerically confirmed that a dependency of the method on α is shown as soon
as the signal becomes more complex. The value α = 0.7 has been heuristically
fixed for the example in figure 2.

4 Frame Theory

The spectrogram (2) is defined as a function in L2(R2) and it can be interpreted
as an energy density; Frame Theory ([2],[10]) extends the concept of orthonor-
mal basis in a Hilbert space, and in our domain it provides a theory for the
discretization of time-frequency densities (see [14],[6]).

4.1 Basic Definitions

Given a Hilbert space H seen as a vector space on C, with its own scalar product,
we consider in H a set of vectors {φγ}γ∈Γ where the index set Γ may be infinite
and γ can also be a multi-index. The set {φγ}γ∈Γ is a frame for H if there exist
two positive non zero constants A and B, called frame bounds, such that for all
f ∈ H ,

A‖f‖2 ≤
∑

γ∈Γ

|〈f, φγ〉|2 ≤ B‖f‖2 . (12)

We are interested in the case H = L2(R) and Γ countable, as it represents
the standard situation where a signal f is decomposed through a countable set
of given functions {φk}k∈Z. The frame bounds A and B are the infimum and
supremum, respectively, of the eigenvalues of the frame operator U , defined as

Uf =
∑

k∈Z

〈f, φk〉φk . (13)

A Gabor frame is obtained by time-shifting and frequency-transposing a window
function g according to a regular grid. Given a time step a and a frequency step
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b we write {un}n∈Z = an and {ξk}k∈Z = bk; these two sequences generate the
nodes of the time-frequency grid for the frame {gn,k}(n,k)∈Z2 defined as

gn,k(t) = g(t− un)e
2πiξkt ; (14)

the nodes are the centers of the Heisenberg boxes associated to the windows
in the frame. The grid has to satisfy certain conditions ([5]) for {gn,k} to be a
frame, which impose limits on the choice of the time and frequency steps. There
is clearly a relation between the steps a, b and the frame bounds A, B, so that
the frame bounds provide an information on the redundancy of the decomposi-
tion of the signal within the frame.

Frames allow to decompose a signal using several different classes of functions:
the choice of a specific frame shapes the information that we can earn about the
signal through its decomposition. For any frame {φk}k∈Z there exist dual frames
{φ̃k}k∈Z such that for all f ∈ L2(R)

f =
∑

k∈Z

〈f, φk〉φ̃k =
∑

k∈Z

〈f, φ̃k〉φk , (15)

so that given a frame it is always possible to perfectly reconstruct a signal f using
the coefficients of its decomposition through the frame. For a Gabor frame built
with a window function g, such coefficients are given by sampling the STFT of
f with window g according to the nodes of the time-frequency grid of the frame.

4.2 Multiple Gabor Frames

In our adaptive framework, we look for a method to achieve an analysis with
multiple resolutions: thus we need to combine the informations coming from the
decompositions of a signal in several frames of different window functions. Mul-
tiple Gabor frames have been introduced in [17] to provide the original Gabor
analysis with flexible multi-resolutions techniques: given a set of index L ⊆ Z and
different frames {gln,k}(n,k)∈Z2 with l ∈ L, a multiple Gabor frame is obtained

with a union of the single given frames. The different gl do not necessarily share
the same type or shape: in our method an original window is modified with a
finite number of scaling as described in (6); then all the scaled versions are used
to build |L| different frames which constitute the initial multi-frame.

A Gabor multi-frame has in general a significative redundancy which lowers
the readability of the analysis. This limit has been overcome with the definition
of reduced multi-frames ([6]), which turn out to belong to the recently introduced
class of quilted frames ([7]): a decomposing system is obtained with an union of
certain subsets of the individual frames in a multi-frame. The choice of the sub-
sets is realized to locally privilege specific resolutions, and in order to assure that
the resultant system is still a frame. Such a variable structure introduces some
difficulties in the analytic determination of a dual frame and a reconstruction
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formula as in (15). The system we use for the decomposition process is actually
a quilted frame, whose local structure is determined automatically by the spar-
sity evaluations. On the other hand, our reconstruction method is not defined
by deducing a dual frame: we extend the technique introduced in [9] instead, as
detailed in the next section.

5 An Algorithm for Spectrogram Time-adaptation

We now summarize the main operations of our algorithm providing an example
of time-adaptive spectrogram performed on a B4 note played by a marimba.

Given a finite set L of scaling values, we create a Gabor multi-frame with |L|
different scaled versions of a Hanning window. The choice of the time-frequency
steps for the individual frames determines the structure of the energy densities
whose sparsities have to be evaluated: the spectrograms obtained with the dif-
ferent windows are sampled according to the grids thus obtained. We perform
a local entropy calculation on every discretized spectrogram: taken a certain
time-frequency rectangular subset of the whole grid, we calculate the entropy of
the spectrogram coefficients in the subset, normalized to obtain a density with
values between 0 and 1. We have numerically verified that as long as the de-
composing system is a frame the entropy measure is invariant to redundancy
variation: chosen a frame originated by a certain window function, the entropy
of the spectrogram of a signal does not increase if the frame grid is tightened.
Therefore, a choice for a practical implementation is to consider the same time-
frequency steps a and b for all the systems: to guarantee that all the |L| scaled
windows constitute a frame when translated and modulated according to this
global grid, the time step a must be set with the hop size assigned to the smallest
window frame. On the other hand, as the FFT of a discrete signal has its same
number of points, the frequency step b has to be the FFT size of the largest
window analysis: for the smaller ones, a zero-padding is performed.

Another remark concerns the local entropy evaluation: if we choose a rect-
angular subset of the whole grid, the coefficients of the spectrograms there con-
tained do not correspond to the same part of signal, as windows have different
time supports. Therefore, a preliminary weighting of the signal has to be per-
formed before the calculations of the local spectrograms: this step is necessary
to balance the influence between coefficients which regard parts of signal shared
or not shared by the different frames analyses.

Adaptation is then obtained along the time dimension by evaluating and
minimizing the entropy over such rectangular subsets, which cover the whole
frequency grid: they are chosen with a fixed time step and in order to have a
constant overlap between each two consecutive subsets in the series.
For every signal segment individuated by the rectangular subsets of the time-
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Fig. 1. Two different spectrograms of a B4 note played by a marimba, with Hanning
windows of sizes 512 (top) and 4096 (bottom) samples.

frequency grid, the sparsest local analysis is defined to be the one with minimum
Rényi entropy: the best window is thus defined consequently. The global signal
time adapted analysis is realized opportunely assembling the slices of local spars-
est analyses: they are obtained with a further spectrogram calculations on the
unweighted signal employing the chosen best window.

In figure 1 we give an example of an adaptive analysis performed by our
algorithm with four Hanning windows of different sizes on a real instrumental
sound, a B4 note played by a marimba: this sound combines the need for a good
time resolution at the moment of the percussion, with that of a good frequency
resolution on the harmonic resonance of the instrument. This is fully provided
by the algorithm, as shown in the adaptive spectrogram at the bottom of the
figure 2.

To complete the description of our framework we finally describe the tech-
nique that we use for the reconstruction of the signal through the coefficients
of its adapted analysis. The re-synthesis method introduced in [9] gives a per-
fect reconstruction of the signal as a weighted expansion of the coefficients of
its STFT in the original analysis frame. Let Sf [n, k] be the sampled STFT of
a signal f according to a Gabor frame as in (14), with window function g and
time step a; fixing n, an iFFT expansion gives a windowed segment of f

fg(n, l) = g(na− l)f(l) , (16)

whose time location depends on n. An immediate perfect reconstruction of f is
given by

f(l) =

∑+∞

n=−∞
g(na− l)fg(n, l)

∑+∞

n=−∞
g2(na− l)

. (17)
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Fig. 2. Example of an adaptive analysis performed by our algorithm with four Hanning
windows of different sizes (512, 1024, 2048 and 4096 samples) on a B4 note played by
a marimba: on top, the best window chosen as a function of time; at the bottom, the
adaptive spectrogram with α = 0.7.

We extend the same technique using a variable window g according to the com-
position of the reduced multi-frame, obtaining a perfect reconstruction as well.
The interest of (17) is that the given distribution needs not to be the STFT of
a signal: for example, a transformation S∗[n, k] of the STFT of a signal could
be considered. In this case, (17) gives the signal whose STFT has minimal least
squares error with S∗[n, k].

6 Conclusions

We have shown how an adaptive analysis/synthesis framework can be defined
combining two main models: Frame Theory to rule the time segmentation in
the analysis process, Rényi entropies to define a class of sparsity measures. The
choice of a common time-frequency grid for all the frames allows a practical
implementation and let the different spectrograms contain the same number of
coefficients. Nevertheless this requires a substantial pre-weighting of the signal
and a high overlap for larger windows which has a significative computational
cost. For this reason we are interested in defining strategies for a specific choice
of the time-frequency grid related to every different frame involved in the anal-
ysis.
A further fundamental improvement will concern the extension of our method to
perform automatic adaptation of the resolution simultaneously in time and fre-
quency: this will require the conception of new re-synthesis techniques managing
time-frequency overlap between different frames.
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la Méditerranée - Aix-Marseille II, (2005)

12. Jaillet, F., Balazs, P., Dörfler, M.: Nonstationary Gabor Frames. INRIA a CCSD
electronic archive server based on P.A.O.L [http://hal.inria.fr/oai/oai.php], (2009)

13. Lukin, A., Todd, J.: Adaptive Time-Frequency Resolution for Analysis and Pro-
cessing of Audio. Audio Engineering Society Convention Paper, (2006)

14. Mallat, S.: A wavelet tour on signal processing. Academic Press, San Diego, (1999)
15. Rudoy, D., Prabahan, B., Wolfe, P.: Superposition frames for adaptive time-

frequency analysis and fast reconstruction. eprint arXiv:0906.5202v1, (2009)
16. Wolfe, P. J., Godsill, S. J., Dörfler, M.: Multi-Gabor Dictionaries for Audio Time-

Frequency Analysis. Proc. IEEE WASPAA, (2001)
17. Zibulski, M., Zeevi, Y. Y.: Analysis of multiwindow Gabor-type schemes by frame

methods. Appl. Comput. Harmon. Anal. vol.4, n.2, (1997)


