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Abstract

Many applications and practices of working with recorded sounds are based
on the segmentation and concatenation of fragments of audio streams. In
collaborations with composers and sound artists we have observed that a
recurrent musical event or sonic shape is often identified by the temporal
evolution of the sound features. We would like to contribute to the devel-
opment of a novel segmentation method based on the evolution of audio
features that can be adapted to a given audio material in interaction with
the user.

In the first place, a prototype of a semi-supervised and interactive seg-
mentation tool was implemented. With this prototype, the user provides
a partial annotation of the stream he wants to segment. In an interactive
loop, the system is able to build models of the morphological classes the
user defines. These models will then be used to provide an exhaustive seg-
mentation of the stream, generalizing the annotation of the user.

This achievement relies on the use of Segmental Models, that have been
adapted and implemented for sound streams represented by a set of audio
descriptors (MFCC). The very novelty of this study is to use real data to
build models of the morphological classes, issued from various audio mate-
rials. A singular method to build our global model is defined, using both
learning paradigms and the integration of user knowledge.

The global approach of this work is validated through experimenta-
tions with both synthesized streams and real-world materials (environmen-
tal sounds and music pieces). A qualitative and less formal validation also
emerges from the feedback given by composers that worked with us along
the whole internship.

ii



Résumé

De nombreuses applications et travaux utilisant des sons enregistrés re-
posent sur la segmentation et la concaténation de fragments de flux au-
dio. A l’occasion de collaborations avec des compositeurs et des artistes,
nous avons pu constater qu’un événement musical récurrent ou qu’une forme
sonore est souvent identifiable par l’évolution temporelle d’observations du
signal. Nous souhaiterions contribuer au développement d’une méthode de
segmentation innovante reposant sur l’évolution temporelle de descripteurs
audio, et qui s’adapterait aux matériaux audio considérés, en interaction
avec l’utilisateur.

En premier lieu, nous avons implémenté un prototype d’outil de seg-
mentation semi-supervisée et interactive. Avec ce prototype, l’utilisateur
fournit une annotation partielle du flux qu’il veut segmenter. Dans une
boucle d’interaction, le système est alors capable de construire des modèles
de classes morphologiques que l’utilisateur définit. Ces modèles sont ensuite
utilisés pour proposer une segmentation exhaustive du flux, en généralisant
les annotations de l’utilisateur.

Ces résultats reposent sur l’utilisation de Modèles Segmentaux, adaptés
et implémentés pour des flux sonores représentés par un ensemble de descrip-
teurs (MFCC). L’originalité de cette étude tient à l’utilisation de données
réelles pour construire les classes morphologiques, issues de matériaux sonores
divers et variés. Une méthode singulière pour construire le modèle global
est alors définie en utilisant à la fois les paradigmes d’apprentissage et
l’intégration de connaissances de l’utilisateur.

L’approche globale de ce projet est validée par des expériences menées
avec des flux de synthèse ou des sons réels (environnementaux ou des pièces
musicales). Une validation plus qualitative et moins formelle tient aussi aux
retours donnés par des compositeurs ayant travaillé avec nous tout au long
de ce stage.
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Chapter 1

Introduction

1.1 Context and Motivation

Many applications and practices of working with recorded sounds are based
on the segmentation and concatenation of fragments of audio streams. In
particular, recent concatenative synthesis techniques have shown promis-
ing possibilities for the synthesis of speech and music [Bloch et al., 2008]
[Lindeman, 2007] [Schwarz, 2007] [Collins, 2002] through the concatenation
of fragments cut from pre-recorded and analyzed audio streams.

In speech synthesis, these techniques usually rely on large databases of
automatically segmented audio material in order to achieve realistic and rich
synthesized sounds. The quality of concatenative synthesis depends on the
quality of the segmentation as well as the description and classification of
the segmented sound fragments.

While the automatic segmentation of speech recordings usually relies on
alignment with a text as well as a clear hierarchical structure of phrases,
words, syllables and phonemes, the precise and meaningful segmentation
and structuring of other sound recordings remains a major challenge.

For recorded performances of an existing musical score and improvised
music with clearly identifiable pitches and rhythm, adequate techniques
have been developed to align the audio stream to a symbolic music rep-
resentation [Orio et al., 2003], or to automatically transcribe the melodic
and rhythmical structure of the performance [Gouyon and Herrera, 2003]
[Klapuri, 1997]. Further techniques can segment arbitrary audio material
based on the detection of singularities (i.e. onsets [Duxbury et al., 2003]
and silences [Lu et al., 2002]) and recurrences [Peeters, 2004] [Jehan, 2005].

Nevertheless the segmentation of arbitrary complex audio materials us-
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ing available techniques often remains unsatisfying, even in cases where the
human listener clearly distinguishes a sequence of sound objects of recurrent
characteristics and classes. In most professional applications such as record-
ing of acoustic instruments, sampling and sound design, segmentation and
concatenation are performed manually to assure the quality of the segmen-
tation as well as the concatenated sound stream.

In collaborations with composers and sound artists we have observed
that a recurrent musical event or sonic shape is often identified by the tem-
poral evolution of the sound features within a given segment and that the
strategies and criteria to identify a recurrent sound object differ from one
sound material to another.

We would like to contribute to the development of a novel segmentation
method based on the evolution of audio features that can be adapted to a
given audio material in interaction with the user taking into account the
following aspects:

• representation and model of the temporal evolutions of sound streams.

• segmentation of sound streams and classification of the sound seg-
ments, based on the temporal evolution of sound characteristics.

• exploration of a semi-automatic interactive methods involving the user
into the modeling process and taking into account his preferences and
knowledge.

We have implemented a prototype of a semi-automatic interactive seg-
mentation system based on Segmental Models (SMs). A user provides a
partially segmented and annotated audio stream. From these data, the sys-
tem will automatically generate an exhaustive segmentation of the stream,
generalizing the partial work of the user. The proposed segmentation will
eventually be modified by the user. This process ends when the user is
satisfied with the provided segmentation.

1.2 Overview

To fulfill these objectives, we wil start with an investigation of the exist-
ing work that address the issue of defining musical objects with regards to
their temporal evolutions with both musicological and computational point
of views in chapter 2. We will then point out some modeling tools that can
meet the requirements of this study in chapter 3.

In a second part, we will describe more intensively the specificity of
our approach and the contributions that were made. The modeling choices
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and implementation will be explained in chapter 4. Then, the interaction
paradigm that we explored will be introduced in chapter 5.

Finally, some segmentation results will be given. They will lead to an
evaluation of the system and to a discussion of the different assumptions
that we made.
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Chapter 2

Sound and Music Streams

2.1 Pierre Schaeffer’s Musical Objects

In the investigation of the relation between sound, music and semantics, the
Traité des Objets Musicaux [Schaeffer, 1966], offers a valuable contribution
and some rewarding directions of reflection. However, a lot of issues Schaeffer
addressed more than forty years ago are still open to debate. An important
preliminary point emerges from his early reflections when trying to define
the concept of musical object. A musical object is neither its source, nor
its musical symbol(s), nor its physical signal. He clearly states that there is
no obvious relationship between the signal (or observations from the signal)
and the object as it is perceived by the listener.

A more practical synthesis of the ideas that Schaeffer developed is given
by Michel Chion [Chion, 1983]. Among them, the ones dealing with mor-
phological criteria will have shed a light on our study. About matter, three
main criteria have been kept:

• spectral mass: a generalization of the concept of pitch. That roughly
describes the distribution of the audible frequencies in the signal.

• harmonic timbre: Schaeffer means “the additional qualities that seem
associated with the spectral mass and allow us to characterize it.”.

• grain : the microstructures of the sound matter.

Concerning the shape:

• dynamic : intensity profile characterizing the sound.

• attack : a determining perceptive role to characterize the object.

• allure : characteristic variation in the sustain of some objects.

Finally, two variation criteria are also introduced :
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• melodic profile : overall variations of the sound mass.

• mass profile : small scale variations of the sound mass.

For each of these criteria, Chion (and Schaeffer) provide a class or
profile typology. This typology can partially be adapted to a computa-
tional approach. Some previous works already investigated this approach
[Peeters and Deruty, 2008]. Ricard and Herrera [Ricard and Herrera, 2004]
also confirm the relevance of this approach. Nevertheless, both studies also
underly two main limitations. First of all, this typology is linked to a specific
listening, namely reduced listening. It is an attempt to describe sound ob-
jects for what they are, regardless of their origin or influence on the listener.
But this listening is not evident and can easily lead to confusions for an
untrained subject. The other commonly underlined limitation is connected
to the idea that new dimensions could be investigated in order to describe
some sounds more precisely.

2.2 Temporal Semiotic Units and Parametric Tem-
poral Patterns

Along the same lines, a formalism has been developed, over several years, by
researchers at the Laboratoire Musique et Informatique de Marseille (Music
and Computer Sciences Labs of Marseille). The Unités Sémiotiques Tem-
porelles (Temporal Semiotic Units) [Delatour, 2005] provide a framework
for musical analysis, specifically addressing the issue of musical semiotics,
sketching out a general time semiotics in an artistic context. On the basis of
20 units, corresponding to distinct archetypes of sound dynamics and mor-
phology, one can analyze musical pieces of various natures.

Lately, a mathematical and formal approach to these UST was devel-
opped with the Motifs Temporels Paramétrés (Parametric Temporal Pat-
terns) [Bootz and Hautbois, 2005]. MTP describe the semantics of UST us-
ing graphic and analytic representations. Thus temporal profiles are drawn
to describe an audio stream morphology. These profiles are built as an as-
sociation of elementary functions, called profilèmes. These units display the
same granularity as the ones we will model in this work.

Despite the humility of their authors on the validity of their work, the
typologies described by Schaeffer or Chion, and the UST have a broad and
general thrust. In this work, we want to inject less a priori knowledge on
the studied materials. As a consequence, our paradigm is quite different.
However, both approaches are not totally exclusive and one may try, with
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the system that will be further described, to build object models relying on
these typologies.
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Chapter 3

Using Segmental Models

Among the different signal models, one may distinguish two main families:
deterministic and statistic. Deterministic models tend to focus on specific
known properties of the signal. For example, given the knowledge of a signal
being composed as a sum of sine waves, one can estimate parameters like
the amplitudes, frequencies and phases to build a model of this signal.

On the one hand, considering the variety of signals we must model in
this work, such invariant properties can not be used a priori. On the other
hand, the class of statistic models has been more deeply investigated for this
study, as their flexibility allows us to model some variability. The goal of
such a model is to characterize some statistical properties of the signal. It is
assumed that real signals can be well modeled as realizations of parametric
random processes where the parameters can be effectively estimated.

3.1 Markovian Models

In order to model the temporal development of observation series, Marko-
vian models provide interesting formalisms and tools. We will thus study
how these models can fit in our context.

3.1.1 Standard HMM Formalism

Lawrence R. Rabiner addresses most of the usual problems linked with the
use of Hidden Markov Models in his tutorial [Rabiner, 1989]. First of all,
Markov processes offer a modeling formalism for systems that can be fully
described, at any time, with a finite number of different states. Each of
those states corresponds to an observable event.
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With HMMs, each state corresponds to a probabilistic function. It has
proven to be useful to model systems where the events are not directly
observable (they are hidden) but can be approached through observations
resulting from some stochastic processes. An HMM is characterized by:

• a number of states N , which are hidden,

• a number of distinct observable symbols M ,

• a probability distribution for state transition A = {aij} with 1 ≤ i, j ≤
N where aij is the probability to go from state i to state j,

• a probability distribution for observation symbols given a state B =
{bi(k)} with 1 ≤ i ≤ N and 1 ≤ k ≤M where bi(k) is the probability
to observe k if the system is in state i,

• an initial state distribution Π = {πi} with 1 ≤ i ≤ N where pii is the
probability for the system to initialize with state i.

In the context of automatic recognition or segmentation, a basic problem
is to find the optimal state sequence Q = q1q2...qT that best explains a given
sequence of observation O = O1O2...OT (with a given set of parameters
λ = (Π, A,B)). But the solution depends on how we define our optimization
criterion. We may want to maximize the number of states that locally best
explain the sequence, regardless of the likelihood of the global sequence. But
if we want to maximize the posterior probability P (Q|O, λ), the best path
can be retrieved with Viterbi algorithm, defining the quantity:

δt(i) = max
q1,q2,...,qt−1

P (q1q2...qt = i, O1O2...Ot|λ) (3.1)

which is the highest probability of a path ending in state Si at time t. It
can be computed recursively as:

δt+1(j) = max
i

δt(i) aij bj(Ot+1) (3.2)

δ1(j) = πj bj(O1) (3.3)

To explicitly get the state sequence, we must also keep track of the array
φt(j) defined with:

φ1(j) = 0 (3.4)

φt(j) = arg max
i

(δt−1(i) aij) (3.5)

Once these quantities have been evaluated for 1 ≤ t ≤ T , the best state
sequence q̂t can be backtracked in this way:

q̂T = arg max
i

δT (i) (3.6)

q̂t = φt+1( ˆqt+1), t = T − 1, T − 2, ..., 1 (3.7)
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3.1.2 Limitations

Standard HMMs offer interesting possibilities but also suffer from some
weaknesses and limitations [Ostendorf et al., 1995]. We will now review
some of the most important ones, with regards to our context.

Weak Duration Modeling

The major limitation of standard HMMs lies in duration modeling. Let us
represent two states Si and Sj of a larger HMM.

Si

pii

Sj

pjj

pij

pji

.

.

.

.

.

.

Figure 3.1: Two states of a larger HMM.

The probability that we get n consecutive observations in state Si will
then be given by :

pi(n) = an−1
ii (1− aii) (3.8)

As a consequence, the standard HMM state duration model is given by a
geometric distribution where the ratio is the auto-transition probability of
the state. In our context, two segments referring to the same morphological
class may not necessarily have the same length. As a consequence, we may
want to provide an explicit duration model in order to address the duration
flexibility our segments.

Conditional Independence of Observations

Another important limitation lies with the assumption of conditional in-
dependence of observations with standard HMMs. This problem has been
studied and addressed in a large number of works [Bilmes, 1998]. An im-
portant element of this work is its focus on temporal evolution of successive
observations. Therefore, conditional independence of observations is an as-
sumption that would limit the robustness of our models.

Feature Extraction imposed by Frame-Based Observations

Last but not least, with standard HMMs, the observations are necessarily
frame-based. When one wants to focus on temporal evolutions of a signal,
it can be interesting to use descriptors that are not directly frame related
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[Zue et al., 1989].
However, each state generates a single frame. Focusing on segments, sub-
unities such as single frames are not necessarily meaningful. A segment-
based model, with each state generating a variable-length sequence of frames,
would thus allow us to emphasize the role of the elementary units we want
to model.

3.2 Segmental Models

The limitations we pointed out are topics of concern for many different ap-
plication fields. As a consequence, solutions have been given with many
extensions of standard HMM models [Rabiner, 1989]. Among them, Seg-
mental Models have acquired an increasing popularity in areas like speech
processing or automatic handwriting recognition [Artieres et al., 2007]. We
will thus investigate how well this extension can fit in our context.

3.2.1 How SM overcome HMM Limitations

The main idea, with Segmental Models, is to have each state (a in figure 3.2)
generate a variable-length sequence of frames (y1, .., yL) instead of a single
frame y with standard HMMs, as this figure shows:

Figure 3.2: A frame-based HMM and a segment-based SM. (This figure has
been copied from [Ostendorf et al., 1995])

As a consequence, this actually addresses all of the limitations we pointed
out. At first, with this extension, each state is also characterized by an ex-
plicit duration distribution probability (p(L|a) on figure 3.2). Secondly,
each segmental state can generate an ordered sequence of frames. The as-
sumption of conditional independence between observations is thus directly
relaxed. Finally, we are obviously no longer restricted to using frame-based
observation features and we can consider segment-based features.

11



3.2.2 From HMM to SM

As mentioned earlier, Segmental Models are an extension of standard HMMs.
They can be considered as a generalization. As a consequence, the formalism
remains similar. We’ll now study how this generalization affects the results
described earlier.

With standard HMMs, the observation distribution model is given by
the following formula representing the probability of the state Si generating
the frame y:

bi(y) = p(y|Si) (3.9)

With segment modeling, the observation distribution model represents the
probability of the state Si generating the frame sequence yL

1 = (y1, ..., yL),
given a length L:

bi,L(yL
1 ) = p(yL

1 |Si, L) (3.10)

As a generalization of standard HMMs, a similar procedure can be de-
scribed with SMs to find the optimal state sequence Q = q1, ..., qN that
best explains a sequence of observation O = O1, ..., OT (still with a given
state of parameters). However, the introduction of the duration distribution
for each state adds a dimension to the combinatory of the algorithm. This
is why Viterbi, in the context of Segmental Models, is called 3D Viterbi
[Ostendorf et al., 1995].

The general framework is identical. However, with 3D Viterbi, equation
3.2 becomes:

δt(j) = max
i

max
l∈L

δt−l(i) aij bj,l(Ot
t−l+1) pj(l) (3.11)

In this new equation, one may notice the second max operator that is the
consequence of the introduction of a third dimension. Beyond that, the algo-
rithm remains similar. One slight difference: during the final backtracking
step, we have to backtrack both q̂t best state sequence and its associated
duration sequence d̂t.

3.2.3 Model Parameters and how they can be set

The models we will use have been introduced, as well as the tools that will
allow us to decode a sequence of observations as an optimal state sequence.
However, these statistic models rely on a good determination or estimation
of the parameters, and the results will dramatically depend on them. To
make things clear, we will state here the set of parameters that have to be
defined.

First of all, as described in 3.1.1, every HMM is characterized by:
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• a number of states N and observation symbols M ,

• a probability distribution for state transition A = {aij}, defining the
topology of the model,

• an output probability distribution B = {bi,l(k)},

• an initial state distribution (often called prior) Π = {πi}.

Moreover, as we are using SMs, each state of the model is also charac-
terized by:

• an explicit duration probability distribution pi(l)

Finally, with the use of 3D Viterbi algorithm, another parameter can be
set:

• a global transition penalty α that will give priority to either longer or
shorter segments during the decoding step (this issue is investigated
in [Marukatat, 2004]).

For all these parameters, two different approaches can be considered.
The first one consists in a true learning of the parameters. The idea is
to learn, from annotated data, the best set of parameters through super-
vised (or semi-supervised) algorithms. However, this approach often leads
to complex optimization problems. For example, [Rabiner, 1989] addresses
the issue of finding the best set λ = {A,B,Π} that maximizes P (O|λ) given
a sequence of observations O, with standard HMMs. In that case, there is
no analytical solution to the exact problem. But the function can be locally
maximized with classic algorithms such as Expectation-Maximization (EM).
Automatic learning of the parameters aims at building a model that statis-
tically best fits to the data. The drawback of this approach is that a large
amount of labeled data is required.

Another approach consists in setting the parameters a priori. The choice
of parameters can thus be driven by a priori knowledge of the signals to
model or by some modeling choices. One important assumption behind this
approach is that, given a specific task using the models, the set of parameters
that achieve best results may be different from the optimal set of parameters
that statistically best fit the data. For example, for some classification tasks
a set of parameters that allows a better discriminability between the classes
will often be more useful than a set that best generates the observed data.
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Part II

Achieved Work
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Chapter 4

Extensions and
Implementation of the Model

The characteristics we want to describe, and the models we will use to do
so, have now been introduced, in a general framework. We can now address
the specific issues of this work. More specifically, we will now discuss the
properties of the objects we will model, the observations we will work on
and how the parameters of our models listed in 3.2.3 will actually be set.

4.1 The Elementary Objects and their Description
Space

Potentially, the diversity of the objects we will model may be huge. However,
the computational framework of this study sets some limits we have to define.

4.1.1 Properties of the Objects and Redefinition of the Seg-
mentation Task

Within a morphologic class, the temporal evolution of the observations is
the common characteristic. But this evolution does not depend on the global
duration of the different occurrences of the class. As a consequence, we will
have to study the similarities between objects with different lengths.

To do so, we will have to allow some temporal variability in our models.
In figure 4.1, we can see that the two curves have strong similarities in their
temporal development. However, assuming that we would like to define a
morphological class that would include both these curves, it is impossible
to deduce one occurrence from the other using a linear stretch. Some tools
like Dynamic Time Warping [Keogh and Ratanamahatana, 2005] would al-
low us to overcome this problem and to realign the curves with non-linear
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Figure 4.1: Two objects that can not directly be deduced from each other
with a linear stretching.

stretches as a pre-step to build our models. But the computational com-
plexity of this step makes us investigate another way.

If one actually cuts the curves into 3 zones, as displayed on figure 4.1,
the problem of retrieving one whole sequence from the other, using linear
stretches can be solved. In fact, allowing only linear stretching does not
reduce the generality of this work as long as we cut our segments in small
enough parts.

As a result, the granularity of the objects we will model is now set. Our
elementary segments will be defined by the following property: two segments
referring to the same class can be temporally aligned by applying a linear
stretch. The segmentation task can thus be described as a two-step work :

• Extraction of a dictionary of elementary objects,

• Given a dictionary, decoding the sequence of elements that will best
explain the whole audio stream.

4.1.2 Nature of the Observations and Limits of the Study

Depending on the objects we want to model, the relevant description spaces
will be different. To give a few examples, if one wants to build a model of
glissando, pitch descriptors will be adapted. With crescendo models, loud-
ness descriptors will fit better. On the contrary, using pitch descriptors to
describe a crescendo would make no sense. We can assume that the choice
of the descriptors will dramatically affect the quality of our models.

However, the evaluation of the quality of descriptors or the automatic se-
lection of adapted descriptors is not an issue we want to address in this work.
As a consequence we will use a predefined set of descriptors throughout this
study. Every set of descriptors will have its own benefits and drawbacks.
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But a good compromise can be found using timbre descriptors. We will
thus use a set of 8 Mel Frequency Cepstral Coefficients (including the first
one). These descriptors have proven to be particularly efficient for speech
description but also for musical signals [Logan, 2000].

An important assumption is also to be made. We are using a multidimen-
sional description space. As a consequence, the sequences to describe will
also be. However, these dimensions will be considered as synchronous. In
other words, the signal processing tasks will be done over all the dimensions
at the same time. Segmenting separately along different sets of descriptors,
and then using data fusion is an approach that will not be addressed here.

4.2 Setting the Model Parameters

For every model parameter listed in 3.2.3, we will now discuss the choices
that we made and describe the methods used to estimate them.

4.2.1 The Number of States and their Topology

As we do not have a priori knowledge of the segments and the way they are
organized, an ergodic topology will be given to the Markovian model. As a
consequence, all transitions between states, as well as auto-transitions, will
be allowed and equiprobable.

4.2.2 Output and Duration Probability Distribution

Though complex output distributions and conditional probabilities between
successive observed frames can be examined, the most simple assumptions
will be done with respect to the small body of annotated data we will have.
If one considers a single output distribution and independent and identically
distributed successive frames, the output distribution model is:

bi,l(yl
1) =

l∏
j=1

p(yj |i) (4.1)

One may notice that a segmental state generating a sequence yL
1 is then

analogous to a pure left-right HMM with L states, each generation a frame
yi:

For each segmental state, we have to define an explicit output distribu-
tion model. We will assume that a state generates a mean sequence with
a deviation modeled like a sequence of centered gaussian noises. Let us
consider a sequence of observations θi, we have:
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s1 s2 ... sL

y1 yLy2

Figure 4.2: The equivalent left-right semi-Markov model.

θi = θ̂i + bi (4.2)

where θ̂i is the mean sequence and bi is the gaussian noise. As a con-
sequence, this mean sequence curve θ̂i will have to be estimated, as well as
the parameters of the gaussian noises bi.

Estimating the Mean Sequence

For each segmental state, we can estimate the parameters from annotated
occurrences of the related class. These occurrences refer to a common mor-
phological class and thus share some similarities in their temporal behavior.
However, their lengths are different. It is thus essential to stretch the oc-
currences so that they can fit within the boundaries set in 4.1.1, as we see
in figure 4.3.

descriptor

time

Figure 4.3: Three occurrences of an exact identical trajectory with different
lengths.

Moreover, with actual data, the curves generally do not directly match
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with a simple resampling to the same length. A temporal alignment is nec-
essary in most of the cases, as illustrated in figure 4.4.

descriptor

time

descriptor

time

Figure 4.4: Two occurrences with a same length but that need an alignment
as displayed on the right graph.

The first important step thus consists in aligning theses occurrences. In
this work, we will just consider linear stretching in order to align curves.
Then, the problem boils down to finding the best combination of stretching
and time lag that maximizes the cross-correlation between the two curves.

Once all the occurrences have been properly aligned, we can estimate a
mean trajectory. However, even if the curves are well aligned, the mean es-
timated trajectory may not locally capture the dynamics of the real signals,
as figure 4.5 shows.

descriptor

time

Figure 4.5: Two properly aligned occurrences (dotted lines) with their mean
estimated trajectory (plain).
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To address this problem, one of the solutions is to add another step. Us-
ing the mean estimated trajectory in the model, we can choose among the
occurrences the one that would be most likely generated. Then, we can use
this most likely (and real) trajectory for our model. The differences between
the two built state models will be further investigated.

The Gaussian Noises Variances

We are considering multi-dimensionnal segments. Let us define D as the
number of dimensions of the observation vectors and L as the length of
the segment (which is the number of temporal frames). Assuming the in-
dependence of our successive observation frames, we will have to estimate
the parameters of the L-length sequence of multivariate gaussians. Each of
these gaussians will theoretically be characterized by a D × D covariance
matrix.

In order to reduce the number of parameters, we will assume that the
different dimensions of our signal descriptors are statistically independent.
As mentioned earlier, the system and modeling choices do not depend on
the chosen descriptors. And as the description space may consist of dras-
tically different dimensions (audio descriptors combined to physical gesture
capture recordings, for example), this assumption is not unrealistic .

The covariance matrix of our gaussians then becomes diagonal and there
are D coefficients to estimate for each gaussian. This leaves us with D × L
parameters to estimate for the whole segmental model. One may notice that
theseD-multivariate gaussians are thus equivalent toD univariate gaussians.

We could still reduce this number of coefficients. However, keeping the
D×L coefficients allows us to keep a precise control over the deviation toler-
ance of our models. For example, in order to model a specific musical event,
we may want to restrict deviation on some critical temporal parts while a
larger deviation in other portions may not drastically change the perception
of the segment. This is illustrated with figure 4.6 where the different real-
izations of the model have a similar profile, and a deviation tolerance that
is not constant through time.

In the same way, the deviation tolerance can be independently controlled
for each dimension of the description space. Practically, each coefficient will
be computed with regards to the aligned occurrences and the mean trajec-
tory.
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Figure 4.6: An unidimensional model (with its center displayed as plain
strokes) with non-constant variance and three of its realizations (displayed
as dotted lines).

The Duration Probability Distribution

Many options could also be considered to model the duration probability
distribution function. It was decided to set the limits of a range of allowed
durations and to assume that the different values between theses boundaries
were equiprobable.
The boundaries of the allowed duration range still have to be chosen. For
the lower boundary, the value is less important than the length of the short-
est occurrence. Precisely 0.7 times this shortest length will be kept as the
first boundary. In the same way, 1.3 times the longest length will be chosen
for the second boundary.

4.2.3 3D Viterbi Algorithm

Finally, contributions were also made within the 3D Viterbi algorithm. More
specifically, one improvement has been made for the backtracking step. It
may happen that the sequence we want to decode does not finish exactly
on the end of the realization of a state segment. As a consequence, the
best state sequence will be obtained through backtracking from OT̂ , with T̂
chosen to be the end time maximizing the global likelihood of the decoded
sequence:

T̂ = arg max
T−L+1≤t≤T

max
j
δt(j) (4.3)

where L is a quantity representing the longest duration that may not be
segmented at the end of the observation sequence.
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Moreover, as mentioned earlier, the decoding involves the computation
of the likelihood of a state Sk given an observed sequence ŷ1, ..., ŷL. With
mono-dimensional signals, in the logarithmic domain, this likelihood can be
approximated with the following formula [Artieres et al., 2007]:

log p(ŷ1, ..., ŷL|L, Sk) =
−1
2

L∑
i=1

(ŷi − yi)2

σ2
(4.4)

As we are working with multi-dimensional signals, considering that our mod-
els and the assumed independence between dimensions, we will use the fol-
lowing formula:

log p(ŷ1, ..., ŷL|L, Sk) =
−1

2 D L

L∑
i=1

D∑
j=1

(ŷij − yij)2

σ2
ij

(4.5)

where ŷij is the j-ith coordinate of the i-ith observation vector in the se-
quence. Moreover, the 1

DL factor will normalize the likelihood with respect
to the number of dimensions and the length of the sequence.
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Chapter 5

User Interaction Model

So far, we have investigated how models could be built to represent the
temporal evolution of signals and how a segmentation relying on these char-
acteristics could be computed. The last aspect we wanted to address was
the methods we could use to integrate user-specific prior knowledge and
preferences in the learning process. We will assume that this can be done
through an interaction loop between the system and the user. We will now
describe the use case of this particular work and the interaction paradigm
that is investigated. This chapter introduces the possible building blocks of
a user-interaction-based learning algorithm. Although not fully automated
in our system, we carried on with this learning paradigm through the rest
of our work.

5.1 Paradigm and Use Case

The interaction between a system and its users can take many forms. In
order to enhance the results that could be obtained with a fully automatic
unsupervised segmentation task, the supervision from an expert user can
be of great help [Chapelle et al., 2006]. However, for this supervision to be
fruitful, the roles of the different agents have to be clearly depicted.

In the prototype system we implemented, the user will first provide a
partial segmentation of the stream where occurrences of the different mor-
phological classes will be marked and labeled. From these data, models of
the different classes will be built as described in chapter 4. Using these
models an exhaustive segmentation will be proposed. Depending on his sat-
isfaction, the user will either validate the segmentation or try to improve it.
If so, some more precise feedback will have to be given so that the system
can generate a segmentation that will eventually satisfy the user. This pro-
cess will be iterated and an interaction loop will be set between the system
and the user.
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The system is deterministic in the sense that given a stream to segment
and a set of annotations, used as an input, the system will always derive
the same models, and generate the same segmentation. As a consequence,
to obtain different output results, a different annotation input has to be
provided. Various modifications in this input can be considered. Given a
class, fewer or more of its occurrences can be manually labeled. New classes
that had not been considered in the first place can be defined. If a class
contained occurrences that were too different, it could be divided into to
separate classes. On the contrary, two classes that were too similar could
be grouped into a single one.

The reasons for a divergence between the segmentation provided by the
system and a satisfying solution from the user perspective can be multiple.
We will further study some of the main ones. But the basic idea in this
interaction is to have the system try to point out the problems and identify
their origins. Instead of trying to have the system solve all the problems
itself, the expert user will be asked to guide the algorithm.

5.2 The Main Problems and their Identification

In the interaction loop between the system and the user, the state models are
built in a learning step. From that point, a segmentation is proposed given
the state models, in an inference step. These two steps are opportunities
to detect different problems. For both, we will now investigate the main
difficulties that may be identified and methods to automatically detect them.

5.2.1 Class Modeling Issues

Case of a class with a too high tolerance to variation

If one tries to model a class allowing far more variability than the oth-
ers, the σij coefficients will globally be assigned higher values. Considering
equation 4.5, one can notice that given an observation sequence and a state
mean sequence, the likelihood of the observed sequence being generated by
the state model will be all the more important since σij coefficients are large.

As a consequence, a sequence corresponding to a given morphological
class might as well be more likely be generated by another state model, as
long as it has a higher variability tolerance. This situation can thus lead
to misclassification problems. Fortunately, this issue can be addressed by
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computing, for the state models, the mean variance coefficients :

σ̄ =
1
LD

L∑
i=1

D∑
j=1

σij (5.1)

If one of these coefficients is significantly higher than the others, the user
will be warned that the corresponding class may refer to occurrences that
are morphologically too different. Moreover, the origins of this problem can
also be identified. Once the state models have been built, the likelihood of
each of the occurrences being generated by their associated state model is
computed. The lowest likelihood will be attained for the outliers of each
class. This information will also be given to the expert user.

Ambiguity between States

If two different classes describe too similar temporal evolutions, from the sys-
tem perspective, there may be some ambiguity between the state models.
This ambiguity is also a common source of misclassification. A divergence
measure between the different state models can give an insight of the ambi-
guity of the models.

In information and probability theory, this issue has been widely inves-
tigated [Burbea and Rao, 1982] [Basseville, 1988]. Among the large num-
ber of existing similarity or divergence measures, the Kullback-Leibler di-
vergence measure [Kullback and Leibler, 1951] was chosen. For probability
distributions P and Q of a discrete random variable, the K–L divergence of
Q from P is defined as :

DKL(P ||Q) =
∑

i

P (i) log
P (i)
Q(i)

(5.2)

This measure is not symmetric but can be symmetrised through the com-
putation of :

DKL(P ||Q) +DKL(Q||P ) (5.3)

One can notice that this actually is a pseudo-distance as the symmetry, non-
negativity and identity of indiscernibles properties are satisfied.

If the relative distance between two states output probability distribu-
tions is low, this may indicate that the class definitions may be ambiguous.

5.2.2 Case of Portions of the Stream that can not be ex-
plained with the Modeled Classes

The whole segmentation process relies on the identification of recurring
shapes in a stream. But often, the stream to segment may contain sin-
gular shapes that do not match any of the morphological classes. However,
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the Viterbi algorithm will still try to decode the full sequence and try to
find a combination of states that best explains the singular shape.

Once the best path has been computed and backtracked, for each state of
the sequence, the likelihood of each segment being generated by the retrieved
state model will be computed. Spotting the regions where the likelihood val-
ues are significantly low is a good way to detect this problem.

In order to overcome the segmentation problems related to this issue, a
special label is set to let the system know that it should not try to segment
some part of the stream. If one considers a whole sequence y1, ..., yT and one
region delimited by two indexes l1 and l2 (so that 1 ≤ l1 < l2 ≤ T ) that one
does not want to automatically segment, the segmentation task will then be
divided into two parts. The Viterbi algorithm will independently be used
on y1, ..., yl1−1 and yl2+1, ..., yT .

Doing so will actually improve the overall results as some knowledge has
been implicitly transfered to the system. Indeed, the assumption that a
segment will end with yl1−1 and that another one will start with yl2+1 is
done.
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Chapter 6

Results

In this chapter, we will introduce the most important results that have been
obtained. We will particularly focus on three types of sound materials that
were used. Each of these examples have uncovered some major aspects and
issues of our approach.

6.1 The Elephant

In order to validate the first implementation of the global system, a simple
segmentation task was tested and evaluated.

6.1.1 Description of the Data

The first series of materials we worked with consists of recording of environ-
mental sounds. At different moments, the audio environment of the Place
Stravinsky, by the entrance of IRCAM, was recorded by our colleague Diemo
Schwarz. More specifically, the characteristic sounds produced by the ele-
phant of the Stravinsky Fountain were captured in one set of recordings
lasting between 40’ and 5 minutes approximatively, at different times of the
day.

Actually, the elephant is a mechanical automat. Periodically, the ele-
phant belches water through its trunk. Due to the rust and greasing of the
mechanisms, this action produces a characteristic squeak with a noticeable
dynamics. Within a recording, this sound event is reproduced with some
small variations in its ”pitch” and length. Thus, the sound produced by the
elephant is a perfect object for a first segmentation task, using real data.

For some reason, depending on the moment when the recordings were
made, the squeak was somewhat different but still, all of them shared a
common dynamics.
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Figure 6.1: The elephant of the Stravinsky Fountain

6.1.2 Segmentation and Results

In a first attempt, two classes were chosen to model the data. The first one
consisted of the squeak sound of the elephant (labeled as 2). The second one
was the environment sounds between two squeaks (labeled as 1). We can
hear the flow of the fountain water and sounds coming from the surrounding
area (people talking mainly).

In order to evaluate the quality of the automatic segmentations, a man-
ual segmentation was made to serve as a reference. It consists of sequences
of classes 1 and 2 occurrences as displayed on figure 6.3. The first task
consisted in learning models with little learning data (2 occurrences of each
class) and performing the segmentation on the same stream.

Figure 6.2: An excerpt of the first stream with its wavefront and two seg-
mentations (the reference one on the top and the result at the bottom).
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In this first task, all the occurrences of squeaking sounds were segmented
and labeled correctly. If we compare the resulting segmentation with the
reference one, frame by frame, we can claim we obtained almost 100% cor-
rect classification. Allowing a temporal tolerance of 100ms for the beginning
and end markers of each segment, 94% segments can be considered as seg-
mented correctly. Considering a tolerance of 400ms (20% of the shortest
segment duration), we obtained 100% of correct segmentation and classi-
fication. Apart from the divergence of the marker positions, all segments
matched perfectly with the reference segmentation.

Paying closer attention to the precise position of the markers, in many
cases, we found that the automatic segmentation is even better than the
manual one. Indeed the dynamic captured by the model is such that the
events are segmented in a consistent way and there is a strong regularity in
the position of the start and end markers.

Using the same stream, a second segmentation task was performed. As
mentioned earlier, the squeaks were slightly different along the recording.
But if one focuses on the evolution of the ”pitch”, one could divide the
squeaking sounds into two classes.

Figure 6.3: Another excerpt of the first stream with a third class corre-
sponding to a specific squeak type.

Along the whole stream, 15 squeaks can be identified. In this task, the
15 squeaks were precisely segmented. Moreover, except for one occurrence,
the squeaks were correctly classified in the 2 classes of squeaking sounds.

In a last segmentation task, we used the models built in the first task to
segment another stream taken from a different recording. Despite the differ-
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ences between the occurrences used to train our models and the ones that
could be identified in the segmented stream, the system could still perform
the task without error.

These first segmentation tasks were rather simple but provide a first val-
idation of the proposed algorithm. The system can actually retrieve ”real”
audio objects that are morphologically similar but have some variability
in their temporal development and length. These results are all the more
satisfying than the cepstral description space is not optimal to capture the
evolution of the perceived pitch of the squeaking sounds.

6.2 Concatenation of Fixed Sounds

Some further experiments were conducted with manually-concatenated au-
dio streams. This time the different occurrences in the stream were exact
copies with no variation. But this was the opportunity to study the impact
of the learning data on the results more intensively.

6.2.1 Description of the Data

During an interview with the composer Roque Rivas, we could learn about
his particular strategies and criteria he applies to the segmentation of sound
materials in his work. In a meticulous way, Rivas collects a lot of various
audio materials and organizes their storage using a complex typology. For
some materials, the classification criteria for his database were very close to
the morphological criteria we are interested in.

In his piece Conical intersect, Rivas mixes bassoon recordings with var-
ious processed environmental sounds and vocal performances. Among his
huge collection of environmental sounds, we selected four samples. Two of
them were sounds produced by the ignition of canons and the two others
consisted of paper being torn.

6.2.2 Segmentation and Results

The first task consisted in building four classes corresponding to the four
types of samples. As the occurrences in the stream were exact copies, this
task was extremely simple and the system performed an exact and precise
segmentation.

For the second task, only two classes were built. One class corresponded
to the canon sounds, and the second class regrouped the paper sounds. For
each class, the models were built using both samples. This task was hardly
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more difficult and the system achieved 100% correct classification with an
imprecision on the marker position below the duration of the analysis win-
dow.

The last task was performed using the same two classes. But this time,
the classes were built using only one type of samples from each class. As
we can see in figure 6.4, the canon events (label ”2”) were segmented as
expected. But unexpected results were obtained for the paper events (label
”1”). For the sample used as learning data (corresponding to label ”1a”
in the reference segmentation), expected results were obtained. But sur-
prisingly, the system considered the second paper sample (label ”1b”) as a
sequence of two occurrences of the paper class.

Figure 6.4: The segmentation result on top and the reference at bottom

From a semantic point of view, the first paper sound is similar to the
second one, as they refer to the same action. But when one abandons this
perspective and pays more attention to the temporal development of the
two samples, the results given by the system actually make more sense.

Beyond the pleasant surprise of the system giving unexpected but mean-
ingful results, these results highlight a major difficulty of evaluating the
quality of the results. Indeed, a basic comparison between the resulting and
reference segmentation would lead to the conclusion that the system made
some mistakes. But the segmentation the system provides is at least as valid
as the reference. As a consequence this result directly calls into question the
very existence of a unique reference segmentation.

If we cannot rely on a reference to compare our results, the usual evalu-
ation methods do not apply to our context.
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6.3 A Real Musical Piece

During the four months that this internship lasted, the reflections on many
issues were fed through the exchange with composers. Among these meet-
ings, those with the composer Marco Antonio Suárez-Cifuentes were partic-
ularly fruitful. Suárez-Cifuentes pointed out that the temporal evolutions
of some properties of the signal was actually one of the most important as-
pects to take into account in the selection and use of audio material in his
composition work. As a consequence, working with some of his pieces was
a valuable opportunity to test the system in the conditions that motivated
this study.

6.3.1 Description of the Data

Most of the work with Suárez-Cifuentes’ data was done with an extract
taken from his latest piece Poetry for // dark -/ dolls. This extract is a
solo performance using various vocal techniques. Throughout the piece, re-
current timbral evolutions can be identified. As a consequence, this piece
constituted a stream of choice for this study.

However, given the complexity of the piece, choosing the partial segmen-
tation to give as an input to the system was a critical and difficult task. In
those conditions, the idea of having the composer himself provide this input
made sense. Watching the composer performing this task actually provided
a lot of insight on what a professional user could expect from a segmentation
tool.

With this set of data, many more different classes were identified com-
pared to the materials that had been used so far. The variability of those
classes was also far greater than what we had previously considered.

6.3.2 Segmentation and Results

In an iterative and interactive process, three steps were made in order to
segment this stream. We will now show the results of these consecutive it-
erations.

On the part displayed in figure 6.5, the results, though not erratic, are
not satisfying. One of the main problems is that a lot of segments are la-
beled as occurrences of the fifth class. Actually, this is due to the definition
of this class. As described in 5.2.1, the variability among the occurrences
that were given to build this state model is too important.
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Figure 6.5: The first attempt (the segmentation result on top and the input
at bottom)

Taking this useful information into account, Marco provided a new in-
put. Although the results were improved, we still had to face a number of
similar problems. Finally, a last attempt was made with a third input.

Figure 6.6: The third attempt (the segmentation result on top and the input
at bottom)

Ultimately the results partially displayed on 6.6 were significantly bet-
ter than the ones obtained with the first iterations. Beyond that, one can
notice that between the first and last iterations, the input given by Marco
really evolved. More classes have been identified in the process. Moreover,
on may notice that globally, the segments Marco provided are far shorter.
This phenomenon can be interpreted as a progression in the extraction of
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the elementary units constituting the whole stream.

Even though very encouraging, the results are not yet directly usable for
applications like concatenative synthesis. In the process, one can observe
that the interaction between the user and the system was really fruitful.
The input given by the composer influenced the output of the system. But
the output of the system also influenced the next inputs that the composer
provided.

From a totally qualitative point of view, one may also add that the
feedback by Suárez-Cifuentes about the system was very positive. More
specifically, he underlined that the results were actually improving in the
process, from his point of view. In addition, he also expressed enthusiasm
when the system revealed solutions that he had not expected.
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Chapter 7

Conclusion

As a conclusion, the achieved work in this study can be briefly summed up.
Here are the main achievements that one may particularly highlight.

In the first place, a prototype of a semi-supervised and interactive seg-
mentation tool was implemented. With this prototype, the user provides
a partial annotation of the stream he wants to segment. In an interactive
loop, the system is able to build models of the morphological classes the
user defines. These models will then be used to provide an exhaustive seg-
mentation of the stream, generalizing the annotation of the user.

This achievement relies on the use of Segmental Models, that have been
adapted and implemented for sound streams represented by a set of audio
descriptors (MFCC). The very novelty with this study is to use real data to
build models of the morphological classes, issued from various audio mate-
rials. A singular method to build our global model is defined, using both
learning paradigms and the integration of user knowledge.

The global approach of this work is validated through experimenta-
tions with both synthesized streams and real-world materials (environmen-
tal sounds and music pieces). A qualitative and less formal validation also
emerges from the feedback given by composers that worked with us along
the whole internship.
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Chapter 8

Future Directions

Segmental Models have proven to be effective in this study in a generative
processing. For the segmentation task, it may be interesting to investigate
the use of discriminative models. Considering our context, Conditional Ran-
dom Fields [Lafferty et al., 2001] may provide an adequate extension of the
developed approach.

In order to enhance the results achieved through the interactive process,
the iterative process has to be formalized with more clarity.. More specifi-
cally, we have to precisely study the criteria and conditions of a convergence
between the segmentation suggested by the system and the expectations of
the user.

Another aspect that limits the interaction is the computation time for
each iteration. The 3D Viterbi algorithm, in its current implementation
(Matlab, without approximation) is too heavy to ensure that a segmenta-
tion can be computed within a decent time. The fluidity of the workflow,
alternating user annotation and the feedback by the system, depends on the
time the system needs to compute one iteration. An optimization of the al-
gorithm, with approximations of the best solution, such as pruning methods
[Ostendorf et al., 1995] shall then be explored.

An extension of our system could also be implemented to process real-
time audio streams with a pre-trained system. The classic Viterbi algo-
rithms, relying on posterior probability computations, is not meant for real-
time. However, extensions, like Short-Time Viterbi [Bloit and Rodet, 2008],
can overcome this problem at the cost of an approximation of the optimal
solution.

We did not want to address the issue of an automatic feature selection
in this work. However, the selection of an adapated description space could
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increase the quality of the segmentation task. This aspect could thus be
explored, taking into account the specificity of our interactive approach.

In this first prototype, we only investigated ergodic topologies for our
model. To model a specific sequencing, other topologies could be considered.
In order to model the organization of the elementary units inside the stream,
a hierarchical model could be used. A multi-layer segmentation would then
be performed, allowing us to access the different semantic layers of the ma-
terials.

Last but not least, such a segmentation system could be a valuable con-
tribution to the existing applications based on segmented sound materials.
Corpus-based concatenative synthesis, automatic improvisation system such
as OMax [Bloch et al., 2008], score and gesture following tools as well as au-
tomatic orchestration may benefit from a system like the one we proposed
and prototyped in this work.
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