| Serveur © IRCAM - CENTRE POMPIDOU 1996-2005. Tous droits réservés pour tous pays. All rights reserved. |
Real-Time Synthesizer Control
Max V. Mathews, Gerald Bennett
Rapport Ircam 5/78, 1978
Copyright © Ircam - Centre Georges-Pompidou 1978
Control of real-time sound synthesizers
It seems clear that apart from its computer IRCAM should have the possibility of real-time sound synthesis. This task might be done by a digital synthesizer since digital
techniques appear to be cheaper and better than analogue methods. It seems
somewhat less clear that IRCAM should actually build its own synthesizer, for
at the moment we have much more musical than engineering expertise, and it
would seem only logical to exploit this expertise to the fullest. Because at
least one extremely convincing design for a very general and powerful digital
synthesizer exists already, it is not clear how necessary it is that we invest
great amounts of time in this project. On the other hand, no very suitable or
compelling control devices exist to render synthesizers musically useful. We
feel that the most urgent priority should be given to developing powerful and
supple control devices which could be used with any synthesizer IRCAM decides
to buy or build.
The development of such devices will be a two-fold project: the more obvious aspect
will be middle-term in length and will concern various sorts of external control
imposed on or giving rise to musical material. Some ideas for these sorts of control will be
discussed at greater length below.
The other aspect of the project will be of longer duration and cannot be
precisely defined yet. The point, however, is this: Just as the digital
synthesizer is faster and more economical than the general purpose computer for
the specific task of making sound, so it is reasonable to imagine that
increased knowledge in psychoacoustics may make it possible to design
synthesizers more specifically tailored to certain musical functions. For the
moment it is more realistic to consider general techniques for controlling
sound synthesis. However, the possibility of developing a synthesizer whose
very structure would, for example, simplify complex additive synthesis should
be kept in mind.
We shall now consider some specific kinds of devices which seem appropriate
for controlling sound synthesis.
Controlling many sound sources with few musicians
How can we control a group of sound sources which is large and
complex enough to be musically interesting with the control signals that can be
produced by one or by a few performers? We believe this is an essential
unsolved problem which is appropriate for IRCAM.
As an example to make the problem clear, the thousand oscillators proposed
by Berio appear to be
a very interesting sound source. It now seems that they
can be built for a reasonable cost and should operate reliably. But how could
one man with only ten fingers, one vocal tract, two legs and feet,two arms, one
body, and one head control more than a small fraction of these
oscillators?
In general, we see several approaches to this problem, all of which are
worth studying, none of which are guaranteed to usefull.
- Controlling many oscillators with each human action. If many oscillators
are controlled in identical ways by one action, the result will almost
certainly be uninteresting. A more promising possibility is to transform the
action in individually different ways before applying them to the individual
oscillators.
- Controlling some oscillators with "recorded" actions. A complex process
can be controlled by making a number of passes and in each pass controlling
only part of the process. The control signals can be recorded and combined with
control signals from the next pass so that at the last pass everything is
controlled.This is a technique used by "Groove".
- Using many aspects of a complex human activity for control. It is
possible to derive many signals from a complex process such as human speech or
singing or performance on an instrument, and to use each signal for control
purposes. Pitch, amplitude, and formant frequencies are obvious possibilities
if the activity is speech. Pitch, amplitude and spectrum are possibilities for
instrumental performance.
- Using many performers. This possibility is obvious but we do not wish to
overlook it.
Matching human physiological characteristics
The control devices must fit the physiological characteristics of
people. We believe that at least two kinds of gestures may need separate
consideration. The first, we call facile gestures which can be done rapidly,
for example, to control individual notes. For these gestures the fingers, lips,
tongue, breath, vocal chords, and possibly other things associated with the
vocal tract seem most promising. The second kind of gestures we call grand or
smooth gestures such as the sweeping arm movements used in conducting. These
may involve the inertia of large parts of the body to achieve a smooth motion
appropriate to control of phrases and large musical units.
We believe that there is often a conflict between precision and freedom in
gestures - finger motions being an example of precise motions and arm-hand
motions being an example of free motions. Because of this conflict, it is
important to choose gestures appropriate to the demands of musical parameters
for precision and freedom. It is also important to seek gestures which have
both good precision and good freedom to as great an extent as is possible.
Using natural complexity
The everyday world of sound is remarkably complex: even a simple
metal bar when struck vibrates in ways which would take great amounts of time
to reproduce by additive synthesis. In thinking about control devices for sound
synthesis, one goal should be to harnass the complexity of the world to make
and control complex structures in music.
We already have extremely delicate control over some of this complexity:
here the voice is the first example which comes to mind. The muscles of the
vocal tract can reproduce exceedingly small changes in complex speech sounds
with startling fidelity. It should be possible to put the refinement of speech
production to work to control complex musical structures in an equally refined
and precise way.
Certainly pitch and amplitude, and perhaps the formant structure of speech
can be used to control any aspect of sound synthesis one chooses. One can
imagine a composer constructing sounds modeled on, or at least determined by,
the formant structure of a vowel sound. Timbral changes might be determined by
a diphthong, while consonants might give information about attack, decay, and
inharmonicity of components.
Keyboards
One device which should be given special consideration as an input
mechanism is the piano or organ keyboard. It seems likely that present
keyboards are the most rapid devices with which people can control things. It
may or may not be possible to significantly improve keyboards by changing their
shape. But even if their shape remains the same, their function should be
examined. In particular, should the keyboard be an off-on
device as in an organ or a touch sensitive device? If it is touch sensitive,
how many dimensions should be sensed for each key? The piano probably senses
one velocity for each keystroke plus how long the key is depressed. Can a
person effectively control the entire time course of the keystroke? If not, how
much can he control? Can a person effectively control lateral pressure on the
keys and, if so, how many independent lateral pressures can he control?
Real-time graphical input device
A device such as a lightpen and cathode ray tube on which one can
draw or trace a graph or picture and use the picture for real-time
control of sound parameters seems interesting. Specifically, the x and y
coordinates of the tip of the pencil could provide two time functions to
control two musical parameters.
Generality and memory
To both facilitate research where great flexibility is needed and to
provide for novel performance modes, we believe that it should be possible to
attach almost any control device to any musical parameter. Obviously, some
control devices will be less suited to some musical parameters or, at least,
will produce unusual performances, but we feel that it is important to confront
the musician with these novel possibilities.
It is also important to directly record the control signals so that they
can be analyzed and so they can be later reproduced. Fortunately, people move
slowly (compared to sound waves) and low sampling rates (about 100
samples/second) are enough to record the signals produced by human
gestures.
What to build and what to buy
We hope the points we have presented make a convincing argument that the
real-time control problem is much better suited for IRCAM's attention than
the real-time sound synthesis problem. However, one can control nothing if one
has nothing to
control. IRCAM must either build or buy an adequate synthesizer.
On this choice we see the following points:
- We can probably purchase exactly the same synthesizer that
we would build. There are plenty of people who would build
something according to our specifications.
- If we build a machine, we will learn a lot more about making
synthesizers than if we buy a machine. Our people will
become expert in this kind of circuit construction instead of the
contractor's people.
- It will probably take us longer to get a synthesizer if we
build it ourselves.
- The costs of building may turn out to be almost the same
as the costs of buying. However, the kinds of money involved
may be different - more operating budget being used if we choose
to build.
____________________________
Server © IRCAM-CGP, 1996-2008 - file updated on .
____________________________
Serveur © IRCAM-CGP, 1996-2008 - document mis à jour le .