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Abstract: In this paper, a special class of damping model is introduced for second order
dynamical systems. This class is built so as to leave the eigenfunctions invariant, while modifying
the dynamics: for mechanical systems, well-known examples are the standard fluid and structural
dampings.
In the finite-dimensional case, the so-called Caughey series are a general extension of these
standard damping models; the damping matrix can be expressed as a polynomial of a matrix,
which depends on the mass and stiffness matrices. Damping is ensured whatever the eigenvalues
of the conservative problem if and only if the polynomial is positive for positive scalar values.
This can be recast in the port-Hamiltonian framework by introducing a port variable corre-
sponding to internal energy dissipation (resistive element). Moreover, this formalism naturally
allows to cope with systems including gyroscopic effects (gyrators).
In the infinite-dimensional case, the previous polynomial class can be extended to rational
functions and more general functions of operators (instead of matrices), once the appropriate
functional framework has been defined. In this case, the resistive element is modelled by a
given static operator, such as an elliptic PDE. These results are illustrated on several PDE
examples: the Webster horn equation, the Bernoulli beam equation; the damping models under
consideration are fluid, structural, rational and generalized fractional Laplacian or bi-Laplacian.

Keywords: energy storage, port-Hamiltonian systems, eigenfunctions, damping, Caughey
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1. INTRODUCTION

In this paper, the idea is to find and even parametrize
damping models of discrete systems (or ODEs) and con-
tinuous systems (or PDEs), which leave the eigenvectors
or eigenfunctions unaffected by the damping: only the
eigenvalues are shifted. To this end, in 1896, Lord Rayleigh
introduced damping models named after him, which are
nothing but a first order polynomial in both the mass and
stiffness matrix. But the pioneering works by Caughey in
1960, shortly followed by Caughey and O’Kelly in 1965
showed a more general result: it is the structure of the
commutant of the two matrices, or two operators, which
play a central role in the theory. Hence, not only polyno-
mials of this compound matrix prove admissible, but also
series of this matrix, hence the famous Caughey series.

The main idea of the work is to take advantage of
port-Hamiltonian framework, see e.g. van der Schaft and
Maschke (2004), and Duindam et al. (2009) for a guided
tour, to treat this question, and see how Caughey polyno-
mials, rational functions, or even more general functions
? The contribution of both authors has been done within the
context of the French National Research Agency sponsored
project HAMECMOPSYS. Further information is available at
http://www.hamecmopsys.ens2m.fr/.

can fit into it. The extension to systems of PDEs will be
looked at, with naive examples as well as new worked-out
examples.

The outline of the paper is as follows: in § 2, a general
second order n-d.o.f mechanical system is studied, with
a quite general damping matrix, we first put it into the
port-Hamiltonian framework, in order to introduce both
skew-symmetric and symmetric structural matrices J and
R. We first concentrate on the properties for the G-part
of the damping, responsible of the so-called gyroscopic
effects. Then, after an adequate change of coordinate has
been performed, we give the desirable properties for the
C-part of damping, in order to follow the so-called Basile
hypothesis, that is the damped system still has classical
normal modes. The nice result by Caughey, back to 1960,
made more precise in 1965, is fully recalled. Different
classes of solutions are examined : polynomial, rational
functions and more general functions of matrices, provided
a positivity constraint is fulfilled.

In § 3, we turn to the PDE case, and try to follow the same
approach as before: it turns out that the commutation
of operators (including the boundary conditions in their
domain) happens to be the key point of the result, as first
mentionned by the pioneering work by Caughey & O’Kelly



in 1965 : thus, we extend Rayleigh damping models to
Caughey type operators, which amount to polynomials,
rational functions or even more general functions (such as
fractional powers) of a compound operator : this can be
treated seriously e.g. in the case of unbounded operators
with compact resolvent, that are coercive and self-adjoint;
a nice exaple of those is provided by the coupling with an
elliptic PDE. In this section, a focus is made on worked-out
examples such as the Webster wave equation (that allow
for space-varying coefficients), and also Bernoulli beam
model.

Finally in § 4, we give many questions that this preliminary
work on damping has raised, many interesting perspectives
are listed, and some ideas towards solutions are also
provided, giving as broad as possible a perspective on this
difficult subject.

2. FINITE-DIMENSIONAL SYSTEMS: EQUIVALENT
DESCRIPTIONS AND INTRODUCTION OF

DAMPING MODELS

2.1 Harmonic oscillator

We start with the port-Hamiltonian formulation of the
n-d.o.f. finite dimensional harmonic oscillator. Dynamic
equation is usually written in the form:

Mẍ+ (C +G)ẋ+Kx = 0 , (1)

where x(t) ∈ Rn and M = MT > 0, K = KT ≥ 0 and
the damping matrix is decomposed into its symmetric part
C = CT , and its skew-symmetric part G = −GT . By using
as state variables the energy variables (ı.e. the position and
the momentum) and defining the Hamiltonian H0 as the
total energy of the system, i.e.:

X :=
[
q = x,
p = Mẋ

]
and H0(X) =

1
2
pT M−1 p+

1
2
qT K q ;

it is possible to rewrite (1) in the form of a port-
Hamiltonian system:

d

dt
X =

[
0 I
−I −(G+ C)

]
∂XH0(X) = (J −R) ∂XH0(X) .

where ∂XH0(X) =
[

Kq = Kx
M−1 p = ẋ = v

]
, and:

J :=
[

0 I
−I −G

]
and R :=

[
0 0
0 C

]
J is full rank 2n and skew-symmetric , whereas R is
symmetric positive (when C = CT ≥ 0), with rank equal
to at most n, thus not positive definite.

2.2 About the G matrix

This matrix is often not considered in modelling processes
of damping, why? Because in fact it has no damping
effect, of course, since the simple computation shows that,
whatever the value of G (skew-symmetric), when C = 0
(which is equivalent to R = 0), the system is conservative:
d
dtH0(X(t)) = 0.

Hence the question arises 1 : is it a naive generalizations by
mathematicians, or does there exist mechanical examples
of systems with such a matrix? Of course the dimension
must be n ≥ 2, otherwise g = 0. Let n = 3, and consider
the Coriolis force with rotational speed ω = (p, q, r)T ; then
the classical term ω ∧ ẋ is nothing but Gω ẋ, with

Gω :=

[ 0 −r q
r 0 −p
−q p 0

]
.

Finally, it is quite an easy exercise to prove how a simple
change of co-ordinates enables to reduce the conservative
part to the canonical symplectic structure (i.e. with G=0,
to put it shortly): it amounts to describe the dynamics in
the rotating axe system; hence, from now on, G = 0 is
taken for granted.

2.3 Structures for the C matrix: results, discussion and
examples

In Caughey (1960), setting N := M1/2, C̃ := N−1CN−1

and K̃ := N−1KN−1 (which are still symmetric positive
matrices), a sufficient condition is found for our prob-
lem, namely that C̃ be a series in K̃. Finally, taking
advantage of the well-known Cayley-Hamilton theorem in
finite dimension, it is found to be equivalent that C̃ be a
polynomial in K̃.

Note that the more general result, which is a necessary
and sufficient condition proved in Caughey and O’Kelly
(1965), is

[C̃, K̃] = 0
where [A,B] := AB − BA is the commutant; we then
recover the previous sufficient condition as a special case 2 .

In order to use the degrees of freedom given by Caughey,
some attempts have been made in e.g. Adhikari (2006),
but the right change of variable is not performed (M−1K
is never a symmetric matrix, hence the results of this paper
are highly questionable, at least from a mathematical
point of view), even if some results seem interesting for
applications.

2.3.1 The polynomial case Suppose we want to put
the C̃ :=

∑n−1
l=0 ql K̃

l damping model into the port-
Hamiltonian framework, first we must reinterpret this
relation as

C :=
n−1∑
l=0

qlKM
−1K · · ·M−1K ,

each term having l occurrences of K and l − 1 of M−1,
second we can put it in the dissipative framework used,
e.g. in Villegas et al. (2006), by introducing external effort
ep and flow variables fp, which are linked by a closure
relation ep = S fp, with S = ST ≥ 0. Let us focus on the
1 The first author would like to thank Prof. J. Kergomard for fuitful
discussion on this subject, first giving the right name to this term,
then giving the example of Coriolis effect in solid mechanics.
2 In fact, working this more general condition out shows that our
problem could have been not well-posed from the very beginning:
we should have been asking for invariance of eigen-subspaces, rather
than eigenvectors; this better way of rephrasing the problem will
have to be handled in future works.



first order developpment, that is C := q0M + q1K with
q0, q1 ≥ 0. Let

Gp :=
[

0 0
M1/2 K1/2

]
and S := diag(q0I, q1I) .

System (1) can now be written as:[
f
fp

]
=
[
J Gp
−GTp 0

] [
e
ep

]
and ep = S fp .

The feedback form does correspond to the following dy-
namics:

Ẋ = (J −GpSGTp ) ∂XH0(X) .
For higher order developpments, such as C := q0M +
q1K + q2KM

−1K, builind up Gp and S proves the same,
but presents the disadvantage of making explicit use of
M−1, which would be preferable not to compute in many
circumstances, at least from a numerical point of view 3

2.3.2. Other interesting parametrizations? For short, it
is a good idea to write C̃ := f(K̃), where function f is
well defined in the cone of symmetric positive matrices,
which readily amounts to diagonalize the transformation
in an orthonormal basis, and apply ci := f(ki) on each
coordinate, with ki ≥ 0. Now a condition for damping is
that f(R+) ⊂ R+, so as to ensure C̃ := f(K̃) ≥ 0, hence
C ≥ 0. As special cases, not using the Cayley-Hamilton
theorem from the beginning, it can be interesting to make
a distinction between:

(1) polynomials, defined explicitely by: C̃ := Q(K̃), such
as Rayleigh damping when deg(Q) = 1, see § 2.3.1,

(2) rational functions, which can also be defined im-
plictely by: P (K̃) C̃ := Q(K̃),

(3) irrational functions, such as C̃ = K̃α, see e.g. ap-
pendix A.

It seems that the second subclass, when coupled to the
global dynamics, has a link with Differential Algebraic
Equations, see e.g. Kunkel and Mehrmann (2006), and
also so-called Descriptor Systems in the field of automatic
control.

It is interesting to try to put also the last two parametriza-
tions into a pHs-like framework with dissipation, but so far
it seems an open question. Note that this question, which
could sound formal in finite dimension, should be answered
in a nice way before passing to the infinite-dimensional
setting, where no Cayley-Hamilton result of any kind can
be accounted for.

3. INFINITE-DIMENSIONAL SYSTEMS: THEORY
AND EXAMPLES

We now turn to PDE models, or continuous systems. It is
indeed the underlying geometric structure of PDEs which
must be considered and put forward in our studies, as in
Arnold (2004). We first give an example of the gyroscopic
effect for PDEs, and then turn to structuring the C oper-
atorm, which is the main purpose of this section. We start
in § 3.2.1 with the results of introducing Rayleigh damping
into the constant coefficient Euler-Bernoulli model of the
3 Another choice is possible, which circumvents this difficulty, with
S = diag(M, K) and G parametrized by

√
q0,
√

q1, but this
somewhat nicer decomposition does not generalize easily to PDEs.

beam, and show from an engineering point of view the
interest of tuning the two parameters of the first order
polynomial. Preliminary theoretical results are given in
§ 3.2.3, and are fully illustrated in two different new cases
in § 3.2.4: rational damping for Webster horn equation
with space-varying coefficients, and irrational damping
such as fractional Laplacian or bi-Laplacian.

3.1 Gyroscopic effects in infinite dimension?

Here is a simple example 4 : an ideal and incompressible
fluid is governed by d

dtv = −(v.grad)v − 1
ρ0

grad(p)
and div(v) = 0. After some computations, we find that
∀φ, ψ ∈ H1

0 (Ω),∫
Ω

ψ v.gradϕ dV = −
∫

Ω

(ϕv.gradψ + div(v)ϕψ) dV .

Hence, thanks to the divergence-free condition, the oper-
ator G : ϕ 7→ v.gradϕ is skew-symmetric w. r. t. L2(Ω):

(ψ,v.gradϕ)L2(Ω) = −(ϕ,v.gradψ)L2(Ω) ;
this non-uniform convection term definitely plays the role
of a gyroscopic term in infinite dimension.

3.2 Structuring the C operators: preliminary results, dis-
cussion and examples

3.2.1. Rayleigh damping for the Euler-Bernoulli beam:
sound examples of damped bars made of metal, glass
or wood Consider a dimensional version of the Euler-
Bernoulli’s beam model (see Graff (1975)), excited by the
force f at z = 0 and with free end at z = L, which includes
a fluid and a structural damping. For a constant cross-
section and a homogeneous material, it corresponds to the
following equations (see Hélie and Matignon (2001))

Y I∂4
zu+ ρS

[
a+b ∂4

z

]
∂tu(t, z) + ρS ∂2

t u = 0 (2)

∂2
zu(t, 0) = ∂2

zu(t, L) = 0 (no momentum) (3)

∂3
zu(t, 0) = f(t) (force) and ∂3

zu(t, L) = 0(no force). (4)
In this model, ρ and Y are the density and the Young’s
modulus of the material, respectively, and I = wh3

12 is the
geometrical momentum of the bar (w is the width and h
the height). Positive coefficients a and b quantify the effect
of the fluid and the structural dampings, respectively.

Simulations based on a modal decomposition has been
proposed in Hélie and Matignon (2001) for realistic sound
synthesis purposes, with the following sensible physical
values: L = 0.5 m (bar length), w = 0.05 m (width), h =
0.0117 m (height), Y =2.13 1010 Pa (Young’s modulus) ρ=
1015 Kg.m−3 (purple wood density). When no damping is
present, the first and last considered modes correspond to
frequencies f1 = 220 Hz and f12 = 15190 Hz, respectively.

As the damping coefficients are unknown, several physical
orders of magnitude are presented: three sounds are syn-
thetised and their respective spectrograms are presented
in figures 1. Qualitatively, these examples show that b is
representative of wooden bar sounds (marimba), whereas a
is more representative of metallic bar sounds (vibraphone).
4 The first author would like to thank Prof. L. Jezequel for fuitful
discussion on this subject, and mentioning the example of fluid
mechanics in a duct with convection.



Fig. 1. Rayleigh type dampings: spectrogram of ∂2
t u(t, L). (l): a = 4e − 2 and b = 3e − 9 (SI), sounds like a metallic

bar, (c): a = 2e− 2 and b = 5e− 8 (SI), sounds like a glass bar, (r): a = 1e− 2 and b = 5e− 7 (SI) sounds like a
wooden bar.

It can be heard that both dampings give rise to different
audible behaviours and provide a large set of sounds close
to percussive bar sounds.

The spectrograms show how, on a practical example,
such damping models can be used to improve the sound
synthesis realism: both a and b are required.

For Rayleigh damping on conservative PDEs, analyzed in
e.g. Jacob et al. (2008), a port-Hamiltonian formulation
is available in e.g. Villegas et al. (2006); we recall it here,
for sake of clarity. In a simplified way, denoting v = ∂tu,
the dynamics now reads ∂2

ttu + y(v) + ∂4
z4u = 0, with

damping term y(v) := q0v + q1∂
4
z4v. Classically, q = ∂2

z2u

and p = ∂tu, with Hamiltonian H0 = 1
2

∫ L
0

(q2 + p2) dz.
We can compute the variational derivatives δqH0 = q and
δpH0 = p, and check

d

dt

[
q
p

]
=
[

0 ∂2
z2

−∂2
z2 0

] [
δqH0

δpH0

]
−
[
0 0
0 C

] [
δqH0

δpH0

]
;

which has the desired (J − R) form, with J skew-
symmetric and R symmetric. In order to parametrize
R = GSG∗, we define next

G :=
[
0 0
1 ∂2

z2

]
and S := diag(q0I, q1I) ,

which helps describe the whole system, using the extended
efforts and flows :[

f
fp

]
=
[
J G
−G∗ 0

] [
e
ep

]
and ep = S fp .

The feedback form which is obtained corresponds indeed
to the damped dynamics:

Ẋ = (J − GSG∗) ∂XH0(X) .

3.2.2. Navier-Stokes equation perfectly fits into the dis-
sipative pHs framework Following van der Schaft and
Maschke (2001), we consider an irrotational and isentropic
fluid, in a bounded domain Ω ⊂ R3. Using standard
notations, the dynamical equations of the fluid can be
written as:

d

dt
ρ=−div(ρv) (5)

d

dt
v =−(v.grad)v − 1

ρ
gradp+

1
Re

∆v . (6)

where pressure p is derivable from a potential energy
density U(ρ), as p = ρ2 ∂U

∂ρ . Re is Reynold’s number.
Hence, with Hamiltonian

H0 :=
∫

Ω

(
1
2
ρv.v + ρU(ρ)

)
dV ,

we first compute the variational derivatives δvH0 = ρv
and δρH0 = 1

2v.v + h(ρ) (with h(ρ) := U(ρ) + ρ ∂U∂ρ being
the enthalpy), and then rewrite equations (5)-(6) as 5 :

d

dt

[
ρ
v

]
=
[

0 −div
−grad 0

] [
δρH0

δvH0

]
−
[
0 0
0 C

] [
δρH0

δvH0

]
;

with C = − 1
Re∆. It has the desired (J − R) form: J is

skew-symmetric, since the formal adjoint of div is −grad,
and R is symmetric and positive, since −∆ is. More
important, the parametrization R = GSG∗ is very easily
found to be 6 :

G :=
[

0
grad

]
, G∗ = [0 −div] , and S :=

1
Re

I .

3.2.3. More general damping models: preliminary theoreti-
cal results Once again, for second order in time models, a
sufficient condition proved in Caughey and O’Kelly (1965),
is given by commutation of the reduced operators, (includ-
ing their domain). Note that all the operators involved
(M, C, K) are supposed to be self-adjoints, M being
coercive, and K positive. Letting N := M1/2, we define
C̃ := N−1CN−1 and K̃ := N−1KN−1. Thus the condition
reads (including the domains of these reduced operators):

[C̃, K̃] = 0
The paper gives many counter-examples, either due to the
structure of the operators, or their domains; an example
is also provided.

As special cases, it proves very interesting to make a
distinction between:

(1) polynomials, defined explicitely by: C̃ := Q(K̃), such
as Rayleigh damping when deg(Q) = 1, see § 3.2.1,

(2) rational functions, which can also be defined im-
plictely by: P (K̃) C̃ := Q(K̃),

(3) irrational functions, such as C̃ = K̃α.

5 The identity (v.grad)v = grad( 1
2
v.v) is true, since rot(v) = 0.

6 The identity ∆v = grad(div(v)) is true, since −rot(rot(v) = 0.



3.2.4. More general damping models: new worked-out ex-
amples We now explore two examples as illustrations of
the more general classes, as suggested by the above theory:
when more functions than just polynomials are allowed, it
gives rise to a wider variety of behaviours.

3.2.4.1. Rational damping for Webster horn equation
This model is a wave equation, which has coefficients S(z)
variable in space, it is put in conservative form. A first
order rational function of K̃ = −∂z(S(z)∂z) is being used
for C̃: let v := ∂tu and define y(v) as solution to the elliptic
PDE:

p0y − p1∂z(S∂zy) = q0v − q1∂z(S∂zv) ,
where p1, q1 ≥ 0, and p0, q0 > 0. With boundary condi-
tions, this problem is well-posed, thanks to Lax-Milgram
theorem. The positivity condition,

∫ L
0
y(z) v(z) dz ≥ 0,

can be cheked thanks to a spectral mapping theorem and
f(R+) ⊂ R+ when f(z) := q0+q1 z

p0+p1 z
; but still, more precise

results can be proved. Using d := q1p0 − p1q0 6= 0, two
cases may occur:

(1) when d > 0, then v := p1
q1
y + w implies d

q1
y = q0w +

q1K̃w, just like Rayleigh damping, which garantees
(y, v) = p1

q1
‖y‖2 + (y, w) ≥ 0, since d

q1
(y, w) =

q0‖w‖2 + q1(K̃w,w) ≥ 0.
(2) when d < 0, then y := q1

p1
v + z implies p0z + p1K̃z =

− d
p1
v, which guarantees (y, v) = q1

p1
‖v‖2 + (z, v) ≥ 0,

since − d
p1

(z, v) = p0‖z‖2 + q1(K̃z, z) ≥ 0.

Recasting these two models in a port-Hamiltonian setting
does not prove straightforward, even using van der Schaft
and Maschke (2004).

3.2.4.2. Fractional Laplacian or bi-Laplacian: irrational
damping models Also of interest is the case of fractional
Laplacian or bi-Laplacian (still with ideal boundary con-
ditions), see Hansen (2000) and references therein for this
specific type of fractional damping model: C̃ = K̃α. We
refer to Matignon (2009) for careful definitions of such non
rational functions of operators 7 .

The main idea behing this somewhat quite general damp-
ing model, is to see the root locus it gives rises to: explicit
analytical computations can be carried out on y(v) :=
q0v + (−∆)αv, but we briefly show the root locus as a
function of the α parameter on figures 2 and 3:

• for 0 < α < 0.5, the dynamical system is of hyperbolic
type, the roots are located on a parabolic branch
=m(s) ∝ (−<e(s))ν with ν = 1

2α > 1,
• for α = 0.5, the asymptote is a straight line (ν = 1),
• for 0.5 < α, the dynamical system is of parabolic

or diffusive type, the roots are eventually located on

7 A key point is the compactness property: when it is present, this
property enables to write down things into series instead of finite
sums (with the celebrated sine, cosine or Fourier series on L2(I),
where I is a bounded interval), and this applies both to bounded
and unbounded operators in fact. When it is not present, general
integrals instead of series have to be considered: the celebrated
Fourier transform on L2(R) is also recalled.

R−, with only finitely many damped oscillating roots
(located on a circle when α = 1, Rayleigh damping).

4. CONCLUSION AND PERSPECTIVES

We have looked for a structuration of the damping models
which preserve the classical normal modes of the un-
damped structure, the Basile hypothesis. For discrete sys-
tems, or ODEs, the Caughey series has been put in the
formalism of port-Hamiltonian system, the different cases
have been examined and illustrated polynomial, rational
function and even more general functions satisfying the
positivity constraint. For continuous systems, or PDEs,
the general ideas behind Caughey series have also been
put into the port-Hamiltonian setting, at least formally,
and a few interesting examples have been treated.

Moreover, many points are to be looked at carefully, in the
continuation of this preliminary work on structuration of
damping, such as:

• how to formulate the implicit cases in a pHs setting?
• how to use these models for the purpose of identifica-

tion of damping parameters?
• use some operational calculus on non-normal oper-

ators? Think of Riesz basis as directely related to
Hilbert basis and then use this as a foundation for op-
erational calculus: is that too naive an idea? In which
case, how does the positivity constraint translates?
Into a positive real condition, such as <e(f(s)) ≥ 0
for <e(s) > 0?

And, last but not least, an objection could very much
be raised before going on: what is the real interest, and
on what physical ground, do we look for normal modes
in damped structures? Different answers are possible: one
could argue that eigenvalues are affected at the first order
when a slight damping is applied, whereas eigenvectors
or eigenfunctions are only moved up to the second order
of the damping parameter. Moreover, for many physical
problems, refined damping models are not available. For
instance, in applications such as in section 3.2.1 (see
e.g. Causse et al. (2011)), an engineering approach is
often used, which consists in computing the modal decom-
position of the conservative problem and introducing, a
posteriori, a specific damping for the dynamics of each
mode according to some heuristics. Damping models that
preserve the eigen-functions of the conservative problem
exactly address this issues but, in an intrinsic way, that
is, without having to derive the eigenstructure. This gives
both a formal framework and define an equivalence class
of damped models.

Finally, pHs formalism proves most useful when modelling
damping for PDEs: when non ideal boundary conditions
are present, not simply Dirichlet or Neumann, such as
Robin type or more general impedance boundary condi-
tions, there is a need to clarify the underlying structure,
which could very much be given, almost for free, by the
port variables in the pH framework: this is, at the best of
our knowledge, one of the most important reason to turn
to pHs for PDEs in order to build and define coherent
damping models.



Fig. 2. From left to right: α = 0 fluid, α = 0.1, 0.25, 0.4 hyperbolic type.

Fig. 3. From left to right: α = 0.5 limiting case, α = 0.8 diffusive type, and α = 1 Rayleigh type.
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Appendix A. FRACTIONAL POWERS OF MATRICES

We recall the Spectral Theorem for symmetric real-valued
matrices: if A = AT ∈ Mn×n(R), then there exists
a diagonal matrix Λ and an orthogonal matrix P , (i.e.
PT P = In), such thatA = P−1 ΛP . Then, ifA = AT ≥ 0,
i.e. A is positive, then one can uniquely define

Aα := P−1 Λα P ,
with Λα = diag(λα1 , ..., λ

α
n), since λi ≥ 0.


