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ABSTRACT

This work deals with the physical modelling of acoustic pipes
for real-time simulation, using the “Digital Waveguide Network”
approach and the horn equation. With this approach, a piece of
pipe is represented by a two-port system with a loop which in-
volves two delays for wave propagation, and some subsystems
without internal delay. A well-known form of this system is the
“Kelly-Lochbaum” framework, which allows the reduction ofthe
computation complexity. We focus this work on the simulation
of pipes with a convex profile. But, using the “Kelly-Lochbaum”
framework with the horn equation, two problems occur: first,even
if the outputs are bound, some substates have their values which
diverge; second, there is an infinite number of such substates. The
system is then unstable and cannot be simulated as such. The solu-
tion of this problem is obtained with two steps. First, we show that
there is a simple standard form compatible with the “Waveguide”
approach, for which there is an infinite number of solutions which
preserve the input/output relations. Second, we look for one solu-
tion which guarantees the stability of the system and which makes
easier the approximation in order to get a low-cost simulation.

1. INTRODUCTION

Contrarily to some accepted ideas, the case of convex pipes is fre-
quent for wind instruments. We can meet this case at the end of
some resonators: e.g. the oboe d’amore (cf. Fig. 1), the En-
glish horn, the bassoon, the recorder, and some primitive ornon-
western instruments. Besides, the vocal tract has some convex
parts. Hence, for the application of musical sound synthesis or
artificial speech production it is useful to study this particular case.

In [1] and [2], the physical modelling of acoustic wave prop-
agation in convex pipes has been studied, and these studies have
shown the presence of trapped modes. Similarly to the model of
cone connections with a negative change of slope (cf. e.g. [3]),
some problems of stability occur. Nevertheless these instabilities
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have no influence in aglobal point of view, and for the simula-
tion some solutions have consisted in considering the system in
a global point of view, using for example a modal approach or a
digital convolution with finite impulse response filters.

But, for digital simulations with low-cost computations, the
modal approaches need the truncation of modes, which involve
some problems of realism. And because of some long memory ef-
fects (of the diffusive type for visco-thermal losses for example)
the convolution methods are not adapted because the impulsere-
sponses decrease very slowly.

In [4], flared pipes have been modelled with theDigital Wave-
guide Networkapproach (cf. e.g. [5]) using the horn equation of
Webster(cf. [6]) and taking into account the visco-thermal losses
(cf. [7, 8]). The simulation framework ofKelly-Lochbaumhas
been obtained (cf. e.g. [9]). This system involves some delays
for wave propagation through pieces of pipe, and some recursive
filters for reflections and transmissions at junctions of pieces of
pipe. This model leads to real-time simulations. Nevertheless,
the application of the latter model to convex pipes producessome
stability problems. The aim of this work is to get a stable digital
realization for convex pipes, similar to the one of [4].

This paper is organized as follows. Section 2 presents the
acoustic model we use, theWebster-Lokshinmodel, and two equi-
valent systems for the simulation. In sec. 3, we study in the Laplace
domain the singularities of the transfer functions involved in this
model. In the case of convex pipes, some of these singularities
produce unstable substates, then the reason of their presence is ex-
plained. To solve this problem, first, in sec. 4 we propose a “gene-
ralized” framework. It describes the acoustic pipe with 2 degrees
of freedom which are 2 transfer functions of the system. Hence,
we can parameterize the modelling and we get an infinite num-
ber of solutions which preserve the input/output relations. Second,

Figure 1: Oboe d’amore (cf. [10]).
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in sec. 5 we search for 2 transfer functions (degrees of freedom)
which allow a stable digital simulation for convex pipes. The pro-
posed choice is compatible with theWaveguideapproach and it is
similar to [4]. The last section concludes this paper and deals with
perspectives.

2. ACOUSTIC MODEL AND SYSTEMS

2.1. The Webster-Lokshin model

TheWebster-Lokshinmodel is a mono-dimensional model which
characterizes the linear propagation of acoustic waves inside ax-
isymmetric pipes, with the weak hypothesis of quasi-sphericity of
isobares near the wall (cf. [8]), and taking into account thevisco-
thermal losses at the wall with the hypothesis of large tubes(cf.
[7, 11]). The acoustic pressureP and the volume flowU are gov-
erned by the following equations, given in the Laplace domain:

(
s2

c2
+2ε(ℓ)

s
3

2

c
3

2

+Υ(ℓ)− ∂2

∂ℓ2

){
r(ℓ)P (ℓ, s)

}
= 0, (1)

ρ s
U(ℓ, s)

S(ℓ)
+

∂

∂ℓ
P (ℓ, s)= 0, (2)

wheres∈C is the Laplace variable (ℑm(s) = ω is the pulsation),
ℓ is the curvilinear abscissa at the wall,r(ℓ) is the radius of the
pipe,S(ℓ) = πr(ℓ)2 is the section area,ε(ℓ)=κ0

√
1−r′(ℓ)2/r(ℓ)

quantifies the visco-thermal losses (m− 1

2 ) andΥ(ℓ)=r′′(ℓ)/r(ℓ)
represents the curvature of the pipe. Conical and flared pipes are
characterized byΥ ≥ 0 (e.g. a trumpet horn) and convex pipes by
Υ < 0. Equation (1) is theWebster-Lokshinequation, and (2) is
theEuler equation satisfied outside the boundary layer.

2.2. Two equivalent systems

We define a piece of pipe by a tube with a finite lengthL and with
constant coefficients of losses and curvature (ε andΥ). We will
build two systems which represent the acoustic effects of a piece
of pipe on the travelling waves given by:

φ± =
r

2

(
P ± ZU

)
, whereZ(ℓ) =

ρc

S(ℓ)
. (3)

In [4], the effects of a piece of pipe on the variablesφ± are rep-
resented by input/output systems for theWebster-Lokshinmodel.
Two equivalent forms (in an input/output point of view) are given.

A first form, so-called “global”, is given in Fig. 2-(a). Its 4
transfer functions represent global effects of the piece ofpipe on
the wavesφ±: Rl

g andRr
g are the left and right reflections respec-

tively, andTg is the global transmission through the piece of pipe.
“global” means that all internal acoustic effects are mixed, for ex-
ample the forwards and backwards components of wave propaga-
tion are taken into account.

A second form, so-called “decomposed”, is given by Fig. 2-(b).
This form is interesting because it isolates the internal acoustic ef-
fects inside some transfer functions. For example,Rle represents
the reflection ofφ+

0 at the left interface, andT represents the prop-
agation through the piece of pipe. Here the successive forwards
and backwards components are represented by the internal loop.
This form allows the recovery of theKelly-Lochbaumframework
which is well adapted for digital real-time simulation (cf.e.g. [9]).

(a) (b)

Rl
g

Tg

Tg

Rr
g

φ+
0 φ+

0

φ−
0 φ−

0φ−
L φ−

L

φ+
L φ+

L

QpQ QrQlRle Rli

1+Rle

1+Rli

Rre
Rri

1+Rre

1+RriT

T

Figure 2: Two-portQ (global form) and its decomposed form.

Let’s defineΓ(iω) = ik(ω), wherek(ω) is the standard com-
plex wavenumber. In the Laplace domain, the functionΓ is given
by

Γ(s) =

√(s
c

)2
+ 2ε

(s
c

) 3

2

+Υ. (4)

The analytical solving of (1) and (2) gives the functions ofQ

Tg = {AT cosh(ΓL) +BT sinh(ΓL) /Γ}−1 , (5)

Rl
g = {AR cosh(ΓL) +BRl sinh(ΓL) /Γ}Tg, (6)

Rr
g = {AR cosh(ΓL) +BRr sinh(ΓL) /Γ}Tg, (7)

whereAT , AR, BT , BRl andBRr are some known functions ofs
andΓ(s)2. With ζ = r′/r, the functions of the decomposed form
are given in [4]:

T (s)=e−Γ(s)L, (8)

Rle(s)=
s

c
−Γ(s)−ζl

s

c
+Γ(s)+ζl

, Rli(s)=−
s

c
−Γ(s)+ζl

s

c
+Γ(s)+ζl

, (9)

Rre(s)=
s

c
−Γ(s)+ζr

s

c
+Γ(s)−ζr

, Rri(s)=−
s

c
−Γ(s)−ζr

s

c
+Γ(s)−ζr

. (10)

With τ := L/c, note that we can writeTg(iω)=Dg(iω) e
−iωτ

andT (iω) = D(iω) e−iωτ , whereDg andD are two transfer
functions associated to causal systems (forΥ ≥ 0). Consequently,
the impulse responses ofTg andT are these ones ofDg andD
delayed byτ which corresponds to the time of propagation inside
the piece of pipe.

In the case of pipes with negative curvatures (Υ < 0) these
two forms present a paradox: whereas some numerical calculus
reveal that the global form of Fig. 2-(a) is stable, the transfer func-
tions of the decomposed form of Fig. 2-(b) have some singularities
in the Laplace domain which produces some instabilities. The aim
of the following section is a better understanding of the reasons
behind this problem.

3. ANALYSIS OF SINGULARITIES

3.1. Complex analysis ofΓ

The functionΓ(s) (associated to the wavenumberk(ω), cf. (4))
is defined as a square root of a complex number which depends
itself on a square root ofs. But there is an infinite number of
continuations of the positive square root defined onR

+ for the
complex plane, and we must choose one of them in order to define
in C the transfer functions of the system.

In [12, 13], the functionΓ is defined by the choice of curves
(calledcut) which link somebranching pointsto the infinity. These
cuts are continuous sets of singularities, which produce some dis-
continuities ofΓ. And the branching pointssn are the solutions of
Γ(s)2 = 0, ands0 = 0 (for

√
s).
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Υ=0: For cylindrical and conical pipes, the unique branching point
is s0 = 0.

Υ>0: For flared pipes,Γ has 3 branching points:s0 = 0, s1 and
s2=s1, with ℜe(s1)≤0.

Υ<0: For convex pipes,Γ has 2 branching points:s0 = 0, and
s1 ∈ R

+.

Whereas these branching points are fixed (they depend onc, ε and
Υ), the cuts have to be chosen.

ForΥ ≥ 0, since no branching point is in the right-half Laplace
plane (denotedC+

0 :={s∈C/ℜe(s)>0}), it is possible to define
an analytical continuation overC+

0 in order to respect the stability
of the transfer functions. For example, the case of horizontal cuts
is presented in Fig. 3.

However, forΥ < 0, one branching points1 is in C
+
0 , and so

it is not possible to define an analytical continuation overC
+
0 since

at least one part of the cut is inC+
0 . Figure 3 presents the case of

2 overlapped cuts onR−: ]−∞, 0] and]−∞, s1].
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Figure 3: Phase ofΓ(s) in the complex plane, branching points
and horizontal cuts.

3.2. Poles and physical interpretation

Whereas the transfer functions of the decomposed form (cf. (8-
10)) have the same type of singularities asΓ (of the cut type), the
3 global transfer functions (cf. (5-7)) only depends onΓ(s)2 and
not Γ(s) (they are invariant with the transformationΓ 7→ −Γ).
Thus these 3 transfer functions have only one cut which comes
from

√
s, and some other singularities of the pole type which are

associated to the resonance modes of the piece of pipe.
This last remark implies that only the transfer functions ofthe

decomposed form depend on the choice ofΓ. The input/output
relations do not depend on the choice of the cuts which start from
s1 ands2 (because of the curvature) but they only depend on the
cut which starts froms0 = 0 (because of the visco-thermal losses).
For this branching point, we will chooseR− for some reasons of
stability and hermitian symmetry.

In [14], Γ is given by
√
. defined by

√
. : s = ρ exp(iθ) 7→

√
s =

√
ρ exp(iθ/2), (11)

with (ρ, θ) ∈ R
+∗×]−π, π]. With this choice ofΓ, the set of

the cuts isR− ∪ C with C := {s ∈ C/ Γ(s)2 ∈ R
−}. With this

definition,Γ has the following property:

∀s ∈ C \ C, ℜe(Γ(s)) > 0. (12)

Consequently, whenL increases,

∀s ∈ C \ C, T (s) = e−Γ(s)L → 0, whenL → ∞. (13)

Thus, in the decomposed form of Fig. 2-(b),T (s) behaves as a
“circuit breaker” at the limit. And so, we prove the following result

∀s ∈ C \ C, lim
L→∞

Rl
g(s) = Rle(s). (14)

The functionRle is then interpreted as the global reflection of a
semi-infinite pipe (anechoic). A similar reasoning has been done
in [3] for cones.

We observe the convergence of poles and zeros ofRl
g towards

the cutC of Rle whenL increases. Thus, the cut can be inter-
preted as a densification of intertwined poles and zeros. Figure 4
illustrates this convergence withΥ > 0.
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Figure 4: Convergence of poles and zeros ofRl
g whenL → ∞

(with Υ > 0). Poles, zeros and branching points are represented
by white points, black points and red crosses respectively.

3.3. Interpretation for Υ < 0

For negative curvatures, because of the part of the cut on[0, s1] ⊂
R

+, the associated functions have an infinite number of singulari-
ties which produce instabilities. But some numerical observations
show that the global transfer functions of the piece of pipe which
do have not this cut, are stable as expected.

A pipe with constant and negative curvatureΥ = r′′/r has a
sinusoidal profiler(ℓ) which changes sign everyLcrit defined by

Lcrit := π
√

|Υ|. (15)

But we observe that whenL increases, a polepk of Rl
g becomes

unstable as soon as the lengthL of the piece of pipe exceedskLcrit

(with k ∈ N
∗). Figure 5 illustrates this.

In this case, whenL → ∞ there is a densification of an in-
finite number of unstable poles on[0, s1]. Thus, forL < Lcrit

the global transfer functions of the piece of pipe are stable, but
the transfer functions of the decomposed form, which are associ-
ated to a semi-infinite pipe, have an infinite number of unstable
singularities. This phenomenon comes from the decomposition
of Fig. 2-(b) which is well adapted to digital waveguide simula-
tions with positive curvatures. For negative curvatures wehave to
search for another decomposition which is adapted to waveguides
and which is stable forΥ < 0.
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+, with Υ < 0.

4. GENERALIZED FRAMEWORK

In this section, we show that the 2 forms (global and decomposed)
can be represented by a common framework which is parameter-
ized by 2 degrees of freedom which are 2 transfer functions ofthe
system. Then in the next section, we propose 2 parameters which
guarantee the stability.

4.1. Global form and decomposed form

We have seen that the piece of pipe can be modelled by 2 systems
(cf. Fig. 2). The first is given by the two-portQ and its 4 global
functions; and the second is given by a decomposed form with 10
transfer functions.

• Global form: No matter the sign of the curvature coeffi-
cientΥ, the transfer functionsRl

g , Rr
g, andTg are stable.

Moreover, we have seen that they have only one cut onR
−

because of the visco-thermal losses. Their simulation with
a modal approach, could allow a stable realization of the
piece of pipe. But low-cost computation requires the trun-
cation of modes, which involves some problems of realism.

• Decomposed form: This form is adapted to waveguide
modelling, but it implies some problems of stability. With
Υ < 0 an unstable part of the cut appears onR

+.

In the next section, we see that there is an infinite number of
forms of a piece of pipe, and then we get a parametrization in order
to find a stable realization which respects the waveguide forma-
lism.

4.2. Standard form of a piece of pipe

First, we represent the 2 forms of Fig. 2 with a common frame-
work: the framework of Fig. 6 is equivalent to the 2 forms (global
or decomposed) if the following equations hold:

• Global form:
Hl = Rl

g, Fl = Dg , Gl = 0,
Hr = Rr

g , Fr = Dg , Gr = 0.

• Decomposed form:
Hl = Rle, Fl = D(1 +Rri)(1 +Rle),
Hr = Rre, Fr = D(1 +Rli)(1 +Rre),

Gl =
RliD(1 +Rri)

1 +Rli
, Gr =

RriD(1 +Rli)
1 +Rri

.

whereD andDg correspond to the transmissionsT andTg with-
out delay: T (s) = D(s) e−τs andTg(s) = Dg(s) e

−τs. The
other functions of the decomposed form are given by (8-10).

Gl GrHl Hr

Fl

Fr

e−τs

e−τs

φ+
L

φ−
0 φ−

L

φ+
0

Figure 6: Standard form of a piece of pipe

4.3. Parametrization

In a general case, the standard form (Fig. 6) allows the representa-
tion of a piece of pipe if the following algebraic equations hold

Rl
g = Hl +

Fl Gr e−2τs

1− Gl Gr e−2τs
, (16)

Rr
g = Hr +

Fr Gl e
−2τs

1− Gl Gr e−2τs
, (17)

Dg =
Fl

1− Gl Gr e−2τs
, (18)

=
Fr

1− Gl Gr e−2τs
. (19)

We observe that this system of equations has 2 degrees of free-
dom. ChoosingGl andGr as degrees of freedom, the solving of
the system (16-19) gives

Hl = Rl
g −DgGr e

−2τs, (20)

Hr = Rr
g −DgGl e

−2τs, (21)

Fl = Dg

(
1− GlGr e

−2τs
)
, (22)

Fr = Dg

(
1− GrGr e

−2τs
)
. (23)

Consequently, it is possible to choose arbitrarily the functions
Gl andGr and to preserve the original input/ouput relations of the
system. And so we have a parametrization of the system with 2
functions. For example the global form corresponds to the choice:
Gl = 0, Gr = 0.

In the case of the decomposed form, the 6 transfer functions
have no internal delay, the modes of the piece of pipe are simulated
by the loop. For the global form,Gl = Gr = 0, the loop is open,
and the modes are simulated by the delays in the denominator of
the 4 other functions.

Remarks: For all causal and stableGl andGr, the 4 functionsHl,
Hr,Fl andFr defined by (16-19) are causal and stable. Moreover,
the choiceGl andGr such as|Gl(s)| < 1 and|Gr(s)| < 1, ∀s ∈
C

+
0 , allows the guarantee of the stability of the internal loop of the

system.

Now we have to findGl andGr which allow to guarantee the
stability and the passivity of the system, and to preserve thewave-
guideformalism.
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5. STABLE REALIZATION OF CONVEX PIPE

5.1. Stabilization of convex pipes

With the waveguide approach, the “ideal” choice is this one of the
decomposed form. With

R∗
li :=

Rli(1 +Rri)

1 +Rli

D and R∗
ri :=

Rri(1 +Rli)

1 +Rri

D, (24)

this “ideal” choice is given byGl = R∗
li andGr = R∗

ri. But these
functions depend onΓ and they have some unstable singularities
on [0, s1] with Υ < 0. We should make another choice.

5.1.1. What can be a “good choice”?

Qualitatively, in order to understand what is a “good choice” of Gl

andGr we can examine for example the expression of the function
Fl given by (22):

Fl(s) = Dg(s)
(
1− Gl(s)Gr(s) e

−2τs
)
.

The functionDg has a cut onR− because of losses, and an
infinite number of pairs of complex conjugate poles inC

−
0 . Every

pair corresponds to a mode of the piece of pipe. These poles are the
zeros of the denominator ofDg which is: 1 −R∗

liR
∗
ri e

−2τs. The
choiceGl = R∗

li andGr = R∗
ri, allows the exact compensation of

the poles ofDg. With this choice,Fl has no pole as singularity,
but only the cutC of Γ.

The idea we propose and test here, is to compensate the high
frequency poles (there is a infinite number) by the internal loop
of the framework with a choice such asGl(iω) ≈ R∗

li(iω) and
Gl(iω) ≈ R∗

ri(iω) when|ω| is high, but withGl andGr holomor-
phic inC

+
0 . Finally, the staying poles which are not compensated

in low frequencies are simulated as such in the 4 transfer functions
Hl, Hr, Fl andFr given by (20-23).

5.1.2. How to find a “good choice”?

For simplification, we artificially modify the functionsR∗
li andR∗

ri

with a mappings 7→ γ(s) of the complex plane:

Gl(s) := R∗
li(γ(s)), and Gr(s) := R∗

ri(γ(s)). (25)

Now the choice ofGl andGr is done by the choice of this “map-
ping”. To guarantee a good behavior in high frequency (Gl(iω) ≈
R∗

li(iω) andGl(iω) ≈ R∗
ri(iω)), we chooseγ such as:

∀s ∈ C
+
0 with |s| high: γ(s) ≈ s. (26)

Remark: The expression “|s| high” is voluntarily imprecise. In
practice, we want thatγ(iω) goesquickly towardsiω when |ω|
increases.

5.1.3. Properties of a “good mapping”

Not only doesγ have to verify (26), but it is also interesting to
control the singularities ofGl andGr with the choice ofγ. First,
the chosen mapping has to guarantee the stability and the passivity
of Gl andGr, and if possible it has to reduce the set of their sin-
gularities. To guarantee the good definition of these functions, we
give some constraints:

P1: γ is hermitian (for real signals),

P2: γ is analytical inC+
0 ,

P3: ]−∞, s1] ∩ γ
(
C

+
0

)
= {∅},

P4: ∀s ∈ C
+
0 , |R∗

li(γ(s))| < 1 and|R∗
ri(γ(s))| < 1.

With these properties, the choiceGl(s) := R∗
li(γ(s)) and

Gr(s) := R∗
ri(γ(s)) defines some hermitian functions (P1), holo-

morphic inC+
0 (P2, P3 and becauseR∗

li andR∗
ri are holomorphic

onC \ ]−∞, s1]) and P4 guarantees the stability of the loop.
Note that the set of the cuts ofGl and Gr becomesC† :=

{s ∈ C/ γ(s) ∈]−∞, s1]} (with C† ⊂ C
−
0 thanks to P3). Thus

the mappingγ allows the “rejection” of the unstable part of the cut
of Γ ([0, s1] ⊂ R

+) in C
−
0 , and this stabilizes the transfer func-

tions.

5.2. Stable digital realization

Now we give some results of stable realizations of a piece of pipe
with a negative curvature. We use the previous idea, but withsome
empirical considerations.

The procedure is summarized by the following steps:

• We choose the parameter functionsGl andGr using a map-
pingγ.

• We deduceHl, Hr, Fl andFr.

• We approximate the 6 transfer functions using standard re-
cursive filters.

5.2.1. Definition of the mapping

In practice, instead of looking for a well definedγ in C, we limit
the search iniR (Fourier domain). Thus, we look for a contour
given byγ(iR).

In high frequencies, the contour must get closer to the imagi-
nary axis (cf. (26)), and so we choose it such asγ(iω) = iω with
|ω| > ω0, whereω0 is a pulsation we can namejunction pulsation.

In lower frequencies, this contour has not only to get around
the part[0, s1] of the cut (to guarantee P3), but also to get around
the set ofs ∈ C such as|R∗

li(s)| > 1 and|R∗
ri(s)| > 1 (P4).

Moreover, this contour must verify a constraint ofC∞-regula-
rity on iR (necessary condition for P2). Thus, the “junction” at
ω = ±ω0 between low and high frequencies must has the conti-
nuity of all its derivatives.

In order to simulate only the 2 first modes of the piece of pipe,
the junction pulsationω0 is chosen equal toℑm(p2) wherep2 is
the pole associated to the second mode of the piece of pipe.

Figure 7 illustrates the contourγ(iω) which gets around the
cut, and the contour line of 1.
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5.2.2. Approximation and results

Previously, we have chosen a mappingγ which defines the param-
eter functionsGl andGr. Then, we deduceHl, Hr, Fl andFr

which preserve the input/output relations of the system using (20-
23). For a given piece of pipe this choice allows the definition of a
system composed by stable transfer functions, and which contains
a stabilized delay loop (|Gl| < 1 and|Gr| < 1 in C

+
0 ), cf. Fig. 6.

For the digital realization of the system, first the transferfunc-
tions Gl and Gr are approximated by standard recursive filters.
This type of approximation is presented in [12, 13, 16]; hereit
needs a placement of some poles onR

−.
For Hl, Hr, Fl andFr, the same type of approximation is

realized. Here, with|ω| > ω0, Gl(iω) = R∗
li(iω) andGr(iω) =

R∗
ri(iω), in consequence the modes with frequencies higher than

ω0 are simulated by the internal loop of the system. Then, there
are two staying modes (in low frequencies) which are simulated
by 2 pairs of complex conjugate poles.

For evaluation, we have built the realization of a convex piece
of pipe with the following parameters:r0 = 7 cm, rL = 10 cm,
Υ = −100 m−2,L = 15 cm, andε = 0.0033 m− 1

2 . The junction
pulsation is fitted according to the second mode of the piece of
pipe which corresponds to a pair of poles atω0 ≈ 17 103 rad.s−1

(F0 = ω0/(2π) ≈ 2700 Hz). Every transfer functionGl or Gr

is simulated by 6 stable poles (onR−) and every function among
the 4 other by 6 stable real poles and 2 pairs of complex conjugate
poles. The delays of the framework of Fig. 6 are simulated by low-
cost digital delays (circular buffers) of19 samples (FsL/c ≈ 19
with Fs = 44100 Hz is the sample rate).

Figure 9 illustrates the frequency response ofHl and its ap-
proximation. We observe 2 lobes which correspond to the 2 first
resonances of the piece of pipe which are not simulated by the
internal loop.
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The result of the simulation is illustrated in Fig. 10 by the fre-
quency response of the global transfer functionRr

g and of its sim-

ulated versioñRr
g. Note that the maximal error is almost 1.9 dB,

and its mean is 0.3 dB.
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6. CONCLUSION

In this paper, we have seen in the case of convex pipes that theuse
of the simulation framework of [4] produces some problems ofsta-
bility, because of the presence of unstable singularities which are
not of the pole type, but of thecut type. After an explanation of
the problem, we have proposed a “generalized” framework which
parameterizes the system with 2 degrees of freedom which are2
transfer functions. Then in part 5 we have done a choice whichsta-
bilizes the system and preserves the approach of [4]. This choice
allows the “rejection” of the unstable singularities to theleft-half
Laplace plane, and this stabilizes them. Finally, the digital sim-
ulation of a piece of pipe has been realized with 2 delays and 6
standard recursive filters.

The stable simulation is obtained thanks to two key points:
first, the piece of pipe is represented with the new decomposition
proposed in Fig. 6; second, the two degrees of freedom of this
decomposition (here, chosen asGl andGr) are tuned through a
parameterized contourω 7→ γ(iω) so that the internal reflection
functions do not contain singularities inC+

0 and have their modu-
lus smaller than1 in C

+
0 . In future work, the choice of the mapping

γ could be improved to guarantee additional properties such thatγ
maps all the singularities toR− only.

Moreover, only the stability of one piece of pipe is done. For
the simulation of a whole virtual pipe, which is the concatenation
of several pieces of pipe, it is necessary to study the stability of
the whole system. This could be achieved proving the passivity of
the digital system for a piece of pipe, and proving that this passiv-
ity property is preserved after the connection with anotherpassive
system.
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