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Abstract 

The aim of the study is to transpose and extend to a set of environmental sounds the notion of sound 

descriptors usually used for musical sounds. Four separate primary studies dealing with interior car 

sounds, air-conditioning units, car horns and closing car doors are considered collectively. The corpus 

formed by these initial stimuli is submitted to new experimental studies and analyses, both for revealing 

meta-categories and for defining more precisely the limits of each of the resulting categories. In a second 

step, the new structure is modeled: common and specific dimensions within each category are derived 

from the initial results and new investigations of audio features are performed. Furthermore, an automatic 

classifier based on two audio descriptors and a multinomial logistic regression procedure is implemented 

and validated with the corpus. 

 

Keywords 

environmental sounds, perception, perceptual space, acoustic features, perceptual validation, automatic 

classification. 

 

 

 



  2 

Introduction 

The purpose of this study is to transpose and extend the timbre description principles of musical sounds to 

environmental sounds considered, by nature, as non-musical. More precisely, environmental sounds were 

first defined by Vanderveer [1] as "... any possible audible acoustic event which is caused by motions in 

the ordinary human environment. (...) Besides 1) having real events as their sources (...), 2) [they] are 

usually more 'complex' than laboratory sinusoids, (...), 3) [they] are meaningful, in the sense that they 

specify events in the environment. (...), 4) the sounds to be considered are not part of a communication 

system, or communication sounds, they are taken in their literal rather than signal or symbolic 

interpretation." 

Within the restricted framework given by the scope of the primary research upon which the present study 

is based (see Sec. 1), the final aim is also to automate indexing and classification of environmental sounds. 

This goal is actually essential for sound quality measurements, as well as for further sound-content-based 

searching and browsing methods that use perceptual models of environmental sounds and often require 

measurements based on perceptually relevant acoustical similarities. Indeed, in the sound-quality field, 

most studies use acoustical/psychoacoustic descriptors such as loudness or roughness, in order to explain 

unpleasantness ratings, whereas several studies have shown that no "universal" descriptors exist for all 

classes of everyday sounds. 

The work detailed in this article starts from four primary industrial studies on sound attributes dealing 

with sounds produced by car engines (Susini et al. [2, 3, 4], McAdams et al. [5]), air-conditioning units 

(Susini et al. [6]), car horns (Lemaitre et al. [7, 8]) and closing car doors (Parizet et al. [9]). The aim of 

these studies was to apply the methodology developed to study the timbre of musical sounds to a specific 

category of environmental sounds. The standard methodology used in these studies was based on a 

multidimensional scaling technique (MDS) applied to dissimilarity judgments. 

The MDS technique is a fruitful tool for studying perceptual relationships among sounds and for 

determining the underlying auditory attributes used by participants to rate the perceived similarity among 

sounds. The term auditory attribute is used to describe the perceived properties or qualities of the sounds. 

Well-known auditory attributes include loudness, pitch, duration, sharpness, etc. The MDS technique does 

not require a priori assumptions concerning the number of auditory attributes or their nature, unlike 

semantic differential methods that use ratings along specific dimensions, such as roughness, for example. 

The MDS technique represents the perceived similarities in a low-dimensional Euclidean space (referred 

to as the perceptual space), so that the distances among the stimuli reflect the perceived dissimilarities. 

Each dimension of the space (called a perceptual dimension) is assumed to correspond to a perceptual 

continuum that is common to the whole set of sounds. Thus the main hypothesis with the MDS technique 
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is that the sounds under study can be compared on auditory attributes that are shared by all sounds in the 

corpus. In other words, this technique is appropriate for characterizing sounds that are comparable along 

continuous auditory attributes of a homogenous corpus of sounds, i.e. composed of sounds produced by 

the same type of source (musical instruments, car sounds, vacuum cleaner noises, etc.). Considering 

musical sounds, the most common timbre space found by several studies (among which Grey [10], 

Krumhansl [11], McAdams et al. [12] and Marozeau et al. [13]) consisted of three dimensions correlated 

with acoustic features in order to associate a measurable sound parameter with each perceptual dimension 

of timbre. The assumption of this approach rests on the model suggested by McAdams [14], who 

postulates that the recognition of the sound sources arises from a process of analysis, computation and 

extraction of a certain number of auditory features related to the acoustic parameters of the signals. Then, 

in many of these musical timbre studies, the three dimensions were found to be significantly correlated 

with a spectral feature that most often represented auditory brightness (energy distribution along the 

frequency scale), a temporal feature that characterized attack and a spectro-temporal feature corresponding 

to spectral variations over time. The MDS technique has been shown to be an efficient tool for revealing 

and describing the unknown auditory attributes underlying the timbre of musical sounds. 

In the present context, environmental sound studies, experimental data, analyses and acoustic parameters 

have been reviewed and compared from the four initial studies. An investigation of these combined data 

was conducted, and an attempt to model the resulting structures on the basis of the primary results was 

made using generalized toolboxes (essentially, "Ircamdescriptor" from Peeters [15] and "Auditory 

Toolbox" from Slaney [16]) in order to unify – and in some cases to improve – the description of the 

initial data. Here we will first introduce and describe all the studies taken into account in this review, their 

stimulus sets, the experiments performed, the resulting perceptual spaces and the correlated acoustic 

features. Then, in order to contribute to environmental sound perception, we will first present this overall 

stimulus set organization in terms of the main environmental sound classes, propose both inter-class and 

intra-class structure descriptions, and finally initiate an automatic classification modeling approach within 

the restricted scope of the present study but on the basis of perceptually relevant data and results gathered 

during its experimental parts. 

1. Primary studies 

We present in this section the frameworks, motivations and results of the four experimental studies that 

represent the starting point of our meta-analysis. These studies focus on the sounds from: 

A.- Car interiors (Susini et al. [2, 3, 4], McAdams et al. [5]) 

B.- Interior air-conditioning units (Susini et al. [6]) 

C.- Car horns (Lemaitre et al. [7, 8]) 
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D.- Closing car doors (Parizet et al. [9]) 

These four studies all addressed the issue of sound quality and shared a common approach: they studied 

the timbre of the different types of sounds. More precisely, they use a common methodology and share 

similar analysis techniques. This procedure relies on the psychoacoustic definition of timbre: "Timbre is 

that attribute of auditory sensation in terms of which a listener can judge that two sounds similarly 

presented and having the same loudness and pitch are dissimilar." (American national standard acoustical 

terminology" (1994). American National Standards Institute, ANSI S1.1-1994 (R1999); see also 

Krumhansl [11]). Timbre is thought to be multidimensional, encompassing several perceptual attributes 

that are collectively referred to by this term. In order to uncover the attributes of timbre, the methodology 

used in the studies was based on the procedure developed to study the timbre of musical sounds 

(McAdams et al. [12]). It has three main steps, the first one being sometimes preceded by an preliminary 

step (labeled "0" below) used to reduce the number of sounds to be tested in the first step: 

0. Because the following step of the methodology needs a small number of sounds to be 

experimentally feasible, a preliminary step is sometimes used in order to reduce the original 

corpus to an acceptable number of stimuli (usually not more than 20 samples). Free-sorting tasks 

and cluster analyses (see Sec. 2.1 for further details) are used to attain this goal. A free-sorting 

task consists in asking participants to sort the sounds of the set into as many categories as they 

wish. Thus, they identify the main categories of sounds that are studied and allow for the selection 

of representative subsets of sounds by homogeneously sampling across the categories. 

1. A dissimilarity rating experiment collects the perceived dissimilarities among the sounds, which 

are then used as proximity data. It consists in asking the participants to rate directly the 

dissimilarity between both sounds of each possible pair within the set of sounds. The evaluation is 

made on a continuous scale labelled "Very Similar" at the left end and "Very Dissimilar" at the 

right end. It has the great advantage that it does not impose any predefined rating criteria on the 

listener.  

2. The proximity data are modeled with a multidimensional scaling (MDS) analysis that fits 

distances in a geometrical space to the dissimilarity data. The dimensions of this space represent 

the perceptual dimensions underlying the proximities. Different levels of complexity exist in the 

MDS approach depending on the model and associated algorithm (see Appendix A); in the present 

case, two particular MDS techniques were used in the studies: the INDSCAL (Individual 

Difference Scaling) and CLASCAL (Latent Class Approach) models. 

3. The final step of a timbre study is to give a physical interpretation of the perceptual dimensions 

revealed by the MDS analysis. This is usually done by submitting the perceptual dimensions to 

linear regression analyses with relevant acoustic features. Some of them are psychoacoustic 
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descriptors, i.e. acoustic features that have been found to correspond to auditory sensations. 

Models that compute psychoacoustic descriptors are usually based on a model of the peripheral 

auditory system. 

1.1 Studies A (A1, A2): car interior [2, 3, 4, 5] 

Context 

The main goal of this study was to analyze the timbre of the sounds of car interiors in a given driving 

condition from the driver/passenger point of view. 

Stimuli 

The sounds were recorded in 16 different vehicles at two different engine modes. The engine modes 

defined two sub-studies: study A1 involved sounds produced when the engine was running in 3rd gear at 

4000 RPM (Round Per Minute) and study A2 involved sounds produced when the engine was running in 

5th gear at 3500 RPM. A preliminary experiment showed that loudness was the main auditory cue used by 

the participants to rate the dissimilarity. Thus, in order to let other auditory attributes emerge, loudness 

was equalized. Both stimulus sets were composed of 16 stereophonic sounds that were 4.1 seconds in 

duration. Their levels – after loudness equalization – varied between 69 and 80 dB SPL (Sound Pressure 

Level). 

Participants 

For each engine mode stimulus set, a dissimilarity rating experiment was conducted with 30 participants.  

Analysis and Results for Study A1 

A CLASCAL analysis (see Appendix A) of the data yielded a 1-latent class, 3-dimensional space with 

specificities. Figures B1.1 to B1.3 in Appendix B represent the projections of the space, and Table B1 

reports the correlation coefficients of the acoustic features best fitting the perceptual dimensions. The first 

dimension is correlated [r(14)=-0.81, p<0.01] with a feature corresponding to the relative balance of the 

harmonic (motor) and noise (air turbulence) components. The second dimension is correlated [r(14)=-

0.70, p<0.01] with a variation of the spectral centroid with the frequency dimension represented in ERB-

rate (see Appendix B for more details). The third dimension is significantly correlated [r(14)=-0.83, 

p<0.01] with an acoustic feature quantifying the spectral decrease of the harmonic part of the sound. 

Analysis and Results for Study A2 

A CLASCAL analysis (see Appendix A) yielded a 1-latent class, 2-dimensional space with specificities. 

Figure B2.1 in Appendix B represents the perceptual space and Table B2 reports the correlation 

coefficients of the acoustic features best fitting the perceptual dimensions; the features that are the best 

correlated with the two dimensions are also reported in Table B2. The first dimension is correlated 

[r(12)=0.93, p<0.01] with an acoustic feature conveying the relative balance between two groups of 
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partials of the the harmonic part of the signal (see Appendix B for more details). The second dimension is 

correlated [r(12)=0.86, p<0.01] with the spectral centroid computed on the C-weighted version of the 

signal (see Appendix B for more details) 

1.2 Study B: interior air‐conditioning units [6] 

Context 

This study focused on the sound quality of interior air-conditioning units.  

Stimuli 

The initial set consisted of 43 sounds produced by units of different brands. A free-sorting experiment was 

first conducted to select an homogeneous subset of sounds representative of the existing range for this 

type of sounds. The results of this experiment also showed that three categories were made mainly by 

grouping together sounds with similar loudness levels. As in study A, in order to prevent loudness from 

dominating the ratings (possibly masking more subtle effects), the sounds were selected in the category 

corresponding to a medium loudness level (average level: 46.5 dB SPL, 2.2 dB standard deviation). An 

informal experiment was then performed with only 5 participants to get an initial estimate of the 

perceptual space structure. The outcome of the MDS analysis was that the space was not homogeneously 

sampled. Therefore synthesized sounds were added and redundant sounds were removed in order to 

produce a more homogeneously distributed stimulus set. The synthesized sounds were created on the basis 

of features of the sounds in the stimulus set, using a geometric interpolation within the space. The 

resulting stimulus set consisted of 19 sounds: 15 recordings of air-conditioning units and 4 synthesized 

sounds. They were all 5.9 seconds in duration with levels varying between 44 and 52 dB SPL. 

Participants 

The dissimilarity rating experiment was conducted with 50 participants. 

Analysis and Results 

A CLASCAL analysis (see Appendix A) of the dissimilarity ratings yielded a 5-latent class, 3-dimensional 

space with specificities. Figures B3.1 to B3.3 in Appendix B represent the projections of the 3-

dimensional space, and Table B3 presents the correlation coefficients of the features that are the best 

correlated with the perceptual dimensions. The first dimension is correlated [r(17)=-0.97, p<0.01] with a 

feature corresponding to the relative balance of the harmonic (motor) and noise (air turbulence) 

components. The second dimension is correlated with a frequency-weighted variation of the spectral 

centroid of the noise component [r(17)=0.73, p<0.01]. The third dimension is correlated with loudness 

[r(17)=0.84, p<0.01]. Indeed, even though the selected sounds are in the same range of loudness, they 

were not equalized in loudness.  
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1.3 Study C: car horns [7,8] 

Context 

This study concerned the timbre of car horns in order to define specifications for the design of new 

sounds. The initial stimulus set consisted of 43 recordings of current car horn sounds. These sounds can be 

either monophonic (one note) or polyphonic (two or three notes to make a chord) and are produced by two 

different mechanisms: a metal plate or a folded horn that acts as a resonator and is attached to the 

membrane of an electroacoustic driver. Both produce very specific timbres. A preliminary sorting 

experiment highlighted 9 main categories of sounds connected with these different mechanisms and 

properties. 

Stimuli 

A sample of 22 sounds was chosen among the 9 categories. Among these 22 sounds, 13 were monophonic 

and 9 were polyphonic, 10 were produced by "plate" resonators and 12 by "horn" resonators. All sounds 

lasted between 0.6 and 2.2 seconds. Their levels varied between 63 and 77 dB SPL. 

Participants 

A dissimilarity rating experiment using this set of sounds was conducted with 41 participants.  

Analysis and Results 

The dissimilarity ratings were submitted to a CLASCAL analysis (see Appendix A), resulting in a 6-latent 

class, 3-dimensionial space with specificities. Figures B4.1 to B4.3 in Appendix B represent the 

projections of the 3-dimensional space, and Table B4 reports the best-correlated features (see [7], for more 

details on the acoustic features). The first dimension is correlated [r(20)=-0.9, p<0.01] with roughness. 

The second dimension is correlated [r(20)=0.9, p<0.01] with a variation of the spectral centroid 

integrating a perceptual approach to compute this parameter (ERB scale, see Marozeau et al. [13]). The 

third dimension is correlated [r(20)=-0.8, p<0.01] with an acoustic feature related to the fine structure of 

the spectral envelope. 

1.4 Study D: car door closing [9] 

Context 

The main goal was to study the timbre of car door closing sounds in the context of evaluating their sound 

quality. 

Stimuli 

An initial set of 27 stereophonic recordings (16 sounds from different cars and 11 sounds from two cars 

with modified seals) was submitted to a sorting experiment with 31 participants in order to select a 

representative subset of 12 sounds. Among these 12 sounds, 4 were recorded from cars with modified 
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seals. The durations of the sounds varied between 0.3 and 0.5 seconds, and their levels varied between 66 

and 84 dB SPL. 

Participants 

A dissimilarity rating experiment was conducted with 40 participants. 

Analysis and Results 

The dissimilarity data were submitted to an INDSCAL analysis (see Appendix A). A 3-dimensional space 

was found. Figures B5.1 to B5.3 in Appendix B represent its projections, and Table B5 reports the 

correlation coefficients of the features best correlated with the perceptual dimensions. The first dimension 

is correlated with a feature corresponding to sharpness, as defined by Aures [36] [r(10)=-0.90, p<0.01], as 

well as to the spectral centroid [r(10)=-0.93, p<0.01]. The second dimension is correlated [r(10)=0.87, 

p<0.01] with an indicator related to the temporal evolution of instantaneous loudness, according to 

Zwicker’s model [20]. No descriptor was found that correlated significantly with the third dimension. 

1.5 Comparisons and discussion 

The studies reported in the previous subsections identify the perceptual space of sounds contained in five 

separate stimulus sets (labelled A1, A2, B, C and D), associated with different kinds of environmental 

situations, mainly related to car and appliance industries. The results of these studies are summarized in 

Table 1 below. 

 

 A- Car interior B- Air-conditionning units C- Car horns D- Car door closing 

Corpus A1: 16 snds 3rd gear, 4000 rpm 

A2: 14 snds, 5th gear, 3500 rpm 

19 sounds (4 synthesized) 22 sounds  12 sounds 

Analysis CLASCAL CLASCAL CLASCAL INDSCAL 

Results A1: 3 dim., specif., 1 lat. class. 

A2: 2 dim., specif., 1 lat. class. 

3 dim., specif., 5 lat. class. 3 dim., specif., 6 lat. class. 3 dim. 

Descriptors A1, dim.1: RAPmv-A 

A1, dim.2: CGg-ERB 

A1, dim.3: Dec 

A2, dim.1: rad_2N/0.5N 

A2, dim.2: CGg-C 

dim.1: NHR-A 

dim.2: Scn-B 

dim.3: N (Loudness) 

dim.1: Roughness 

dim.2: Spectral centroid 

dim.3: Spectral deviation 

dim.1: Spectral centroid 

dim.2:Cleanness 

 indicator 

dim.3: … 

Table 1: Table recapitulating methodological context and main results for studies A1, A2, B, C, and D (see corresponding sections 

above and Appendix B for further details) 

 

A comparison of the acoustic features correlated with the dimensions of these four perceptual spaces 

yields some interesting facts: 
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• In every study, at least one dimension in the perceptual space resulting from the MDS analysis is 

found to be related to a spectral centroid feature, usually describing the "brightness" of a sound. 

This "brightness" attribute seems therefore incontrovertible when trying to compare two sounds of 

any of these kinds of sources. However, this attribute seems to take different forms acoss the 

studies: 

o It can be computed with a frequency weighting representing the variation in sensitivity of 

the human ear over the audible frequency range at different presentation levels (A-, B- 

and C-weightings). 

o It can introduce a much more sophisticated model of the hearing process (ERB filters). 

o It is sometimes only computed on a particular part of the signal (noise part). 

The subsidiary questions are: will all these "brightness" predictors be as efficient for all studies? If 

not, is there a particular calculation that fits all of the spaces equally well? 

• In 3 studies, relevant acoustic features appear to include separate calculations for the harmonic 

and noise parts of the signals. The signal processing needed for this separation is quite complex 

and often includes the setting of several initial algorithm parameters. Again, the question raised is: 

will a common set of these parameters result in the same efficiency of separation for the 

correlation scores in the 3 studies? 

• For the 2 other studies, the correlation results exhibit specific relevant acoustic features. This fact 

confirms that a universal low-dimensional perceptual space describing all sounds does not exist. It 

would also tend to agree with McAdams et al [5] and McAdams [21] who observed that when 

sounds are produced by too different kinds of sources, the dissimilarity judgments may be based 

on cognitive factors rather than on perceptual signal-related ones, which results in a strongly 

categorical description. 

2. Meta‐processing: complementary experimental investigations 

The MDS technique is appropriate to characterize a set of sounds caused by very similar sound sources, 

but not for different and obviously identified sources. For instance, McAdams et al [5] applied an MDS 

analysis to an extremely heterogeneous set of environmental sounds (trains, cars and planes). The analysis 

yielded a strongly categorical perceptual structure: listeners identified the sound sources rather than 

comparing them along continuous perceptual dimensions. In that case, participants based their perception 

on a predominant cognitive factor: recognition, classification, and identification of the sound source (see 

McAdams [21]). In other words, when the sounds under consideration are similar, which means that they 

are provided by the same type of sources, listeners are able to compare them on continous perceptual 

dimensions, otherwise they are categorized by association with the type of source. As a consequence, the 
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perceptual organization of the five groups of stimuli may be based on a 2-level structure displaying both 

categorical and continuous levels (see Figure 1, for illustration): 

- a categorical (discrete) level corresponding to the main sound event categories, each of them being 

related to a distinct physical cause or source; 

- a continuous level that will associate each of these categories with a perceptual space with salient 

dimensions that can be either specific to the given category or shared with the others. 

 

 
 Figure 1: Schematic representation of the proposed 2-level organisation structure. 

 

In order to evaluate the consistency of this structure and to validate it within the scope of the present 

research, an additional experimental investigation was conducted consisting of two successive 

experiments: 

1. a free-sorting task to identify the main sound event categories composing the overall sound corpus, 

combined from the initial corpora presented in Sec. 1; 

2. a forced-choice sorting task on more heterogeneous sounds (extracted from commercial sound 

librairies) in order to extend and determine more precisely the boundaries of these categories. 

The results of these experiments will then be used in the last part of the study (see Sec. 3) in order to 

define new ways of modeling the structure on both discrete and continuous levels, as defined in our 

hypothesis, that describes the main sound event categories and perceptual dimensions attached to each of 

those categories, respectively. 

2.1 Experiment: Free sorting task on the initial corpora 

In order to identify the main perceptual categories among the sounds under consideration in this study, a 

free-sorting experiment with this complete stimulus set was conducted. 

 

Method 

 Participants. Twenty participants (8 women and 12 men) volunteered as listeners for this 
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experiment and were paid for their participation. All reported having normal hearing. 

 Stimuli. The resulting unified stimulus set is a collection of 83 sounds distributed as follows: 16, 

14, 19, 22 and 12 sounds from studies A1, A2, B, C and D, respectively. See the Stimuli subsections of 

Sec. 1 for more details on the sounds. In order to prevent the listeners from sorting the sounds according to 

their loudnesses, a preliminary loudness-equalization experiment was conducted with 7 participants 

working at IRCAM, resulting in an 83-sound loudness-equalized corpus. 

 Apparatus. Testing took place in a double-walled IAC sound-isolation booth. The sounds were 

played over Sennheiser HD 520 II headphones through a RME Fireface 400 audio card plugged into a 

Macintosh Mac Pro (Mac OS X v10.4 Tiger) workstation. The test was run using a Graphical User 

Interface (GUI) specifically developped in Matlab (v7.0.4) including stimulus control, data recording and 

sound play-back1. 

 Procedure. At the beginning of the procedure the participants were given written instructions 

briefly presenting the context of the study and detailing the task to be performed. The task was to classify 

the 83 sounds of the corpus in as many categories as they wished according to their own criteria and, in a 

second step, to select the most representative sound – the prototype – for each of the classes (see Sec. 2.2 

for the definition of a prototype by Rosch [24]). In the GUI, the sounds were represented as dots that could 

be either played (double-click) or moved (drag and drop) in the dedicated area of the screen in order to 

graphically compose the categories (see Figure C1 in Appendix C for an illustration of the interface). 

 

Results 

 Analysis. The experimental data consist in individual incidence matrices (coding the set partitions 

of each subject) that are summed to form a co-occurrence matrix. The co-occurrence matrix represents 

how many subjects have placed each pair of sounds in the same category. This can also be interpreted as a 

proximity matrix (Kruskal [17]). In the present case, we derived a hierarchical tree representation from 

these data using an unweighted arithmetic average clustering (UPGMA) analysis algorithm (see Legendre 

et al. [22] for computational details). In such a representation, the distance between two sounds is 

represented by the height of the node which links them. Among the 91,881 triplets that can be formed out 

of 83 sounds, 94% follow the ultrametric inequality, which shows the adequacy of the tree representation 

for these data (see Legendre et al. [22]). The tree representation is shown in Figure 2. It can be clearly 

seen that 3 main categories constitute the unified corpus. Looking in detail at the items inside each of 

them, we can observe that these 3 categories correspond respectively to studies A and B (right part of 

Fig. 2), study C (left part of Fig. 2) and study D (middle part of Fig. 2). Moreover, listening to these items 

led us to propose a semantic labeling for each of these 3 categories: "motor", "instrument-like", and 

                                                        
1 This GUI was developped by Vincent Rioux. 



  12 

"impact", respectively. 

 

   
 Figure 2: Experiment 1, dendrogram resulting from the cluster analysis - 

 representation of the 3 main categories: motor (right part), instrument-like 

 (left part) and impact (middle part). 

 

We subsequently extracted the prototypic sound for each of the 3 categories by a specifically developed 

algorithm. Each listener selected prototypes with regard to her/his own categories, which are not 

necessarily the 3 categories extracted from the cluster analysis. Consequently, we had to consider the 

prototype selection for each pair of sounds, as follows: 

• In an individual 83 X 83 matrix, for each pair of sounds, if the sound j was selected by a listener 

as prototype of a category that contains a sound i, then the cell (i,j) is incremented (but not the cell 

(j,i)). 

• After summing the matrix over the panel of listeners, a sub-matrix is extracted, for each of the 3 

final categories with the rows and lines indexed by the sounds constituting the category. 

• Each obtained sub-matrix is averaged over its rows, and the highest score gives the index of the 

prototype. 

With this method, the selection by a listener of a sound as prototype for sounds that do not belong to the 

same final category does not influence the final selection of prototypes. The 3 selected sounds will be used 

in Experiment 2 (Sec. 2.2) as a definition of the 3 categories. 

 Discussion. As a result, the five initial corpora can be reorganized into 3 main categories on the 

basis of the perceptual results (Experiment 1). Obviously, these categories are strongly defined by the 

initial studies from which they were drawn. In other words, there is no overlap between the initial corpora 

and the final structure: studies A1, A2, B belong to a first category, study C to a second category and 
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study D to a third one. However, this fact was intuited before the experiment just by listening to the 

sounds. According to the sound production type, we semantically defined these categories as: 

• "motor" (first category): sounds from both car interior (studies A1 and A2) and air-conditioning unit 

(study B) corpora. These sounds have two discriminable components: a harmonic part with a quite low 

fundamental frequency produced by a “motor” and a noisy part produced by air turbulence. 

• "instrument-like" (second category): sounds that correspond to the car horn corpus (study C), which are 

defined by one or several higher tones, closer to those produced by musical instruments than those 

generated by motors. 

• "impact" (third category): sounds of the car door closing corpus (study D). Actually, one can easily 

discriminate these sounds from the others because of their temporal structure. This idea is consistent with 

the discrimination of percussive and sustained sounds among musical timbres. Indeed, impact sounds of 

the environment are quite close to musical percussive sounds in terms of sound production. 

This categorization is consistent with the product sound classification proposed by Özcan et al. [23] 

defined by 6 sound categories: air, alarm, cyclic, impact, liquid and mechanical. Even though these 

product sounds were from a domestic context, Özcan et al. found an impact category; they also found an 

alarm category that can correspond to the present instrument-like category with regard to basic 

similarities in pitch, harmonic structure or stationary aspects of the sounds; and finally, the present motor 

category can be linked to both their air and mechanical categories. 

2.2 Experiment 2: Forced‐choice sorting task on an extended corpus 

On the basis of the previous results (3 main categories of environmental sounds within the scope of the 

unified corpus, with an associated prototype for each), a second experiment was conducted in order to 

generate a more heterogeneous corpus that would better represent the range of variation of each category. 

This was done by means of a forced-choice procedure, the main choices being the categories found in 

Experiment 1. These 3 categories were each identified by their respective prototypic sound extracted from 

Experiment 1, instead of being verbally defined as it is usually done in this kind of procedure. The notion 

of prototype is based on psychological principles related to the way one organizes knowledge of the 

surrounding world. For Rosch [24], a prototype is the element of a group that is the most similar to all 

items inside the group and, at the same time, that is on average the most different from all items of all the 

other groups. The notion of prototype used in the present study is directly derived from Rosch’s concept. 

Furthermore, the outcome of this second experiment will also provide perceptually validated data for the 

modeling part of the present study in order to implement an automatic classifier (see Sec. 3.2). 
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Method 

 Participants. Twenty-one participants (8 women and 13 men) volunteered as listeners for this 

experiment and were paid for their participation. All reported having normal hearing. 

 Stimuli. A new extended corpus was created on the basis of the main categories found in the 

previous experiment. Several sounds were added to each category in order to make the stimulus set more 

complete and heterogeneous. We therefore chose various new sounds with quite extreme cases for each 

category from commercial sound libraries (Hollywood Edge Premiere Edition I, II and III, Sound Ideas 

General Series 6000 and Blue Box Audio Wav). Here are some examples of sounds added in each 

category: 

- for motor sounds: truck, aircraft, motorbike, helicopter, crane, vacuum cleaner, fridge, blender, electric 

shaver, lawn mower; 

- for instrument-like sounds: phone ringing, dishes squeak, door creak, alarm, bell; 

- for impact sounds: glass shock, various doors closing (fridge door, house door, etc.), computer keyboard, 

water drop, tennis ball. 

Again, the sounds needed to be equalized in loudness so that the judgements would not be based on this 

auditory attribute. However, considering the high number of sounds, a preliminary experiment of loudness 

equalization would have been quite long. As a consequence, the sounds' loudnesses were equalized with 

regard to the value given by the loudness model of Zwicker et al. [28]. 

The final corpus was composed of 150 loudness-equalized sounds with an equal distribution of 50 sounds 

in each category. 

 Apparatus. The same technical equipment as in Experiment 1 was used. However, the study was 

run using a GUI specifically developped in the PsiExp v3.4 experimentation environment including 

stimulus control and data recording (Smith [25]). The sounds were played with Cycling ’74’s Max/MSP 

software (v4.6). 

 Procedure. At the beginning of the experiment, the participants were given written instructions 

briefly presenting the context of the study and detailing the task to be performed. They were asked to 

classify the 150 sounds of the new corpus into 3 unnamed categories associated with their respective 

prototypical sounds by clicking on the corresponding button. A fourth button labeled "other" allowed 

participants to not choose any of the 3 main categories (see Figure C2 in Appendix C for an illustration of 

the interface). The specifity of the present paradigm was to make the categories explicit with the prototype 

sounds found in Experiment 1 – with the obvious exception of the class "other" – instead of naming them 

directly. This implementation was chosen in order to avoid any ambiguity in the understanding of the 

arbitrary semantic attributes that did not result from verbalization analyses. 

 



  15 

Results 

 Analysis. Table 2 presents the sound distribution, i.e. mean and standard deviation of the number 

of sounds placed by the participants in each category. Note that these data are strongly influenced by the 

choices of sounds added by the experimenter, and that these numbers mainly show the adequacy or 

inadequacy of these choices. However, the following points may be emphasized: 

• The high standard deviation of the number of rejected sounds ("other") might be related to differences in 

strategy among the participants who did not use the same selectivity threshold, or the same granularity, to 

group the sounds. 

• The high mean number of sounds combined with a relatively low standard deviation for the motors 

shows a consensus among the participants that proves the adequacy of the selection of sounds for this 

category. 

• On the contrary, the relatively high standard deviations for the two other categories show some 

variability in the listeners' judgements, which is probably due to the quite large variety of chosen sounds 

for these categories. For the "instrument-like" category, the variability seems to be related to the difficulty 

of theoretically defining this type of sound, whereas for the impacts, it could be explained by the too-

general character of this category. 

Nevertheless, after computing a percentage of belonging to the categories for each sound of the 150-item 

corpus, we observed that these disparities in classification were concentrated on certain sounds only, 

which were then rejected (26 sounds under a threshold of about 65% of belonging to a category). We thus 

obtained a selection of the extended corpus leading to a 124-sound stimulus set: 50 "motor", 27 

"instrument-like", 47 "impact". Note that this final distribution corresponds roughly to that of Tab. 2. 

 

 Prototype #1 

(motor) 

Prototype #2 

(instrum-like) 

Prototype #3 

(impact) 

 

"other" 

mean  48.7 32.6 45.9 22.7 

std 5.5 8.3 13.2 15.5 

 Table 2: Experiment 2 – distribution of the sounds in the experimental categories. 

 

 Discussion. The partitioning of the data across the 3 categories shows a good consensus on a 

certain number of sounds for each class. With this result, we are then able to make a selection of sounds 

that are clearly associated with one of the 3 categories revealed in Experiment 1. This leads to the 

constitution of a perceptually validated sound corpus with regard to the motor, intrument-like and impact 

categories, which is now large and representative enough to consider the conception and validation of a 

predictive tool for automatic classification of environmental sounds in these three categories. 
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2.3 Discussion 

Within the restricted scope of environmental sounds studied here (industrial sounds from cars and 

machines), we are now faced with the following structure: 

- a motor category including 49 sounds from 3 different corpora (A1, A2, B), each of them being 

described by a perceptual space and augmented with 50 perceptually validated new sounds, for a total of 

99 items, 

- an instrument-like category including 22 sounds from corpus C described by a perceptual space and 

augmented with 27 perceptually validated new sounds, for a total of 49, 

- an impact category including 12 sounds from corpus D described by a perceptual space and augmented 

with 47 perceptually validated new sounds, for a total of 59. 

In the next step, this corpus will serve as input for the implementation of the automatic classifier detailed 

in Sec. 3.2. 

3. Meta‐processing: modeling the description structure 

This section was designed to confirm the second part of the starting hypothesis, which stipulates that both 

inter-category and intra-category properties exist, i.e. dimensions shared by the all categories and specific 

dimensions related to their mutual discriminating differences. Furthermore, the knowledge of these 

discriminating features could facilitate the implementation of a predictive tool capable of automatically 

recognizing whether a new item belongs to one of the 3 meta-categories. Note that every acoustic feature 

mentioned in this section is extracted either from the Ircamdescriptor toolbox (CUIDADO project, Peeters 

[15]) or from the Auditory Toolbox (Slaney [16]). 

3.1 Continuous level: unifying the perceptual space dimensions 

In this first part, we investigate the shared and specific properties across the categories by considering the 

data coming from the corpus described by perceptual space dimensions (corpuses A to D). The main idea 

is to unify these data by recomputing the acoustic features explaining the different perceptual dimensions 

in a more systematic manner, in order to point out regularities and singularities among the given spaces. 

The implementation of these acoustic features is detailed in Appendix D. 

Note that some of the stimulus sets contain only monophonic sounds, whereas others contain only 

stereophonic sounds, and, although the acoustic features are calculated on both channels in the latter case, 

the salience of an indicator in one channel compared to the other depends on the recording context. For 

example, if a car interior sound has been recorded from the driver’s seat, the most relevant channel for a 

given sound feature will probably not be the same as if it had been recorded from the passenger’s seat. 
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Accordingly, the features in the correlation tables can be either from the left or the right channel, or from 

the mean of both channels. 

3.1.1 MDS analyses compatibility 

The two models giving rise to the perceptual spaces that will be unified in this section are INDSCAL and 

CLASCAL (see Appendix A). As both models remove the rotational invariance of the obtained spaces, 

one could assume that both models would result in similar main perceptual dimensions (even if possible 

slight differences on items’ position or axes’s orientation may be due to the precision of the model). 

However the presence of specificities in the latter can modify the psychological meaning of the 

dimensions. Indeed, the fact that a part of the Euclidean distances is explained by those specificities leads 

to a modification of the proportion explained by the dimensions. Thus the dimensions obtained by both 

models will not necessarily be the same. 

All the same, the only sound corpus for which the INDSCAL method was used (study D) corresponded to 

a different sound category than those of the other corpora (see Sec. 2.1). As a consequence, the fact that 

the dimensions were obtained differently from the other studies is not a problem. Indeed, this perceptual 

space will be studied separately from the others. 

3.1.2 Motor category 

One of the main characteristic of this kind of sound is that it contains two different simultaneous parts. 

The first one corresponds to a harmonic pattern that can be easily modeled by a sum of sinusoids, and the 

second one corresponds to the noise resulting from the air turbulence. Perceptually, these two parts are 

highly discriminable. Consequently, unlike the other two categories, both parts need to be taken into 

account independently when estimating the acoustic features This is the reason why harmonic separation 

methods were tested and used in order to describe both parts, as well as their mutual interaction. 

This meta-category regroups stimulus sets A1, A2 and B, presented in Secs. 1.1 and 1.2. Those stimulus 

sets' MDS analyses resulted in 3-dimensional perceptual spaces, except for that of study A2, which gave a 

2-dimensional space. Because of the relative proximity of the sounds coming from these 3 stimulus sets, 

two shared dimensions were found. The first one is related to the harmonic/noise ratio, while the second is 

related to the spectral centroids of both parts with some interactions. Finally, the stimulus sets of studies 

A1 and B differ in their third dimension (the stimulus set of study A2 only gave a 2-dimensional space), 

most likely because of a practical particularity of the experimental protocol: the sounds of set A1 were 

first loudness-equalized, unlike those of set B. The correlation scores between dimensions of the motor 

sound stimulus sets and the best-fitting acoustic features (see Appendix D) are presented in Tab. 3. 
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—————————————————————————————————–––––––––––––––– 

     Dimension 1  Dimension 2  Dimension 3 

—————————————————————————————————–––––––––––––––– 

-- study A1 -- 

HNR     -0.93**   0.12   -0.22 

Complex brightness   0.09   0.86**   -0.17 

PSS     0.07   -0.15   0.83** 

—————————————————————————————————–––––––––––––––– 

-- study A2 -- 

HNR     0.83**   -0.17 

Complex brightness   -0.34   0.90** 

—————————————————————————————————–––––––––––––––– 

-- study B --- 

HNR     0.91**   -0.07   0.47 

Complex brightness   -0.52   0.81**   0.00 

Loudness    0.42   -0.07   0.84** 

—————————————————————————————————–––––––––––––––– 
Table 3: Correlations between acoustic features and dimensions of the motor category / studies A1, A2, B (df = 14, 12, 17, 

respectively, ** p < 0.01). 

 

• Dimension 1: Harmonic emergence (HNR) 

For all three stimulus sets, several acoustic features correlate highly with this shared dimension, but they 

were of quite different types, and not all of them were significant. Furthermore, only one feature 

correlated well with this first dimension for the three stimulus sets: the Harmonic-to-Noise Ratio (HNR). 

Perceptual differences in the sounds along this dimension are related to the amount of harmonic (or 

pseudo-harmonic) energy in the signal. The HNR linear regressions with the first dimension of every 

motor stimulus set are shown in Figs. 3.1 to 3.3. The other features that correlated highly with this 

dimension were usually spectral envelope features. Actually, those high correlation scores are 

consequences of the HNR correlation. Indeed, the spectral envelopes of both parts of the sounds have 

quite different behaviors, and when the proportion of both parts is modified, the overall spectral aspect of 

the sound is also modified. 
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 Fig. 3.1: Linear regression between dim. 1 and HNR, Fig. 3.2: Linear regression between dim. 1 and HNR, 

 motor class / study A1. motor class / study A2.  
 

  
 Fig. 3.3: Linear regression between dim. 1 and HNR, 
 motor class / study B. 
 

• Dimension 2: Complex brightness 

For the three stimulus sets, when listening to the sounds along this scale, brightness features, such as 

spectral centroid or sharpness, seem to explain the dimension. However, for the two stimulus sets in which 

the harmonic part is most prevalent, i.e. sets A1 and B, the perception of brightness seems to depend on 

the harmonic proportion. Indeed, the brightness perception of a predominantly noisy sound is not the same 

as that of a predominantly harmonic sound, all the more because both parts have quite different spectral 

behaviors: the energy of the harmonic part is quite concentrated in the low frequencies for this type of 

sounds. It is thus essential to take into account both the harmonic and noise parts in the brightness 

estimation. That is the reason why multidimensional linear regression theory (see Legendre et al. [22]) is 

applied in order to characterize that dimension with a unique feature depending on the brightnesses of 
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both parts. Therefore, for each of the three stimulus sets, a linear combination of 3 components is found to 

be significantly correlated: Complex brightness = α.x1 + β.x2 + γ.x3, where  x1 is the Perceptual Spectral 

Centroid of the harmonic part, x2 is that of the noise part and x3 is the overall Perceptual Spectral Spread 

(see Appendix D). Both harmonic and noise parts were separated with the method and MATLAB code 

taken from Ellis [26]. The linear regressions of the obtained "complex brightness" with the second 

dimensions of the motor meta-category are shown in Figs. 4.1 to 4.3. However, no common combination 

was found to be correlated for every stimulus set. Tab. 4 shows the coefficients of this "Complex 

brightness" for each stimulus set. 

 

    
 Fig. 4.1: Linear regression between dim. 2 and Fig. 4.2: Linear regression between dim. 2 and 

 Complex Brightness, motor class / study A1. Complex Brightness, motor class / study A2. 

 

  
 Fig. 4.3: Linear regression between dim. 2 and  

 Complex Brightness, motor class / study B. 
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Study α β γ 
    

A1 +3.82e-3 1 -89.7 

A2 +1.15e-2 1 -25.8 

B -1.08e-2 1 -63.0 

 Table 4: Coefficients of the linear combination 

 defining Complex brightness for studies A1, A2 and B. 

 

• Dimension 3 

 Study A1. This dimension seems to be well correlated with the Perceptual Spectral Spread – 

PSS (see Appendix D) calculated with logarithmic scales for both magnitude (level) and frequency. The 

linear regression of this feature with the third dimension of the perceptual space of this study is shown in 

Figure 5. 

 

   
  Fig. 5: Linear regression between dim. 3 and  
  Perceptual Spectral Spread, motor class / study A1. 

 

 Study B. Unlike study A, the sounds were not initially loudness-equalized in study B. Quite 

logically, the last dimension of this MDS analysis result is found to be significantly correlated with 

Loudness (see Appendix D). The linear regression between Loudness and the third dimension of the study 

B perceptual space is shown in Figure 6. 
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  Fig. 6: Linear regression between dim. 3 and Loudness, 

  motor class / study B. 

 

Loudness is a perceptually strong characteristic that can easily prevent slight variations of other features 

from emerging. Moreover, the fact that no third perceptual dimension was obtained for stimulus set A2 

can be related to the predominance of the noisy part, which can mask some variations of other features. 

On the contrary, when the sounds are loudness-equalized and when the harmonic part is not entirely 

masked by the noise, such as in stimulus set A1, a third perceptual dimension (PSS, Perceptual Spectral 

Spread) seems to emerge and matches that of the perceptual space of (pseudo-)harmonic instrument-like 

sounds (see Sec. 3.1.2 – Dimension 3). For these reasons, we were not able to unify this third dimension 

along the three corpora (A1, A2 and B). 

3.1.3 Instrument‐like category 

This sound category corresponds to the stimulus set of study C. Its MDS analysis resulted in a 3-

dimensional perceptual space presented in Sec. 1.2.3. According to the correlation scores in Tab. 5, those 

3 dimensions are related to three different acoustic features presented below: 

 

—————————————————————————————————–––––––––––––––– 

     Dimension 1  Dimension 2  Dimension 3 

—————————————————————————————————–––––––––––––––– 

Roughness    -0.93**   -0.06   0.37 

Simple brightness (PSC)  0.04   0.97**   0.05 

PSS     0.05   -0.11   -0.90** 

—————————————————————————————————–––––––––––––––– 
Table 5: Correlations between acoustic features and dimensions of the instrument-like category / study C (df = 20, ** p < 0.01). 
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• Dimension 1: Roughness 

 Study C. This dimension seems to discriminate the monophonic from the polyphonic sounds. 

When listening to the sounds along this scale, one goes from perfectly harmonic tones to successively 

pseudo-harmonic tones (tones with inharmonicity relationships between their partials) and polyphonic 

sounds (with several tones). Consistently, roughness correlates significantly with this dimension (see 

Appendix D). The linear regression of roughness onto the first dimension is shown in Figure 7. 

 

   
  Fig. 7: Linear regression between dim. 1 and  
  Roughness, instrument-like class / study C. 

 

• Dimension 2: Perceptual Spectral Centroid (PSC) – Simple brightness 

 Study C. When listening to the sounds along this scale, the relation to the brightness of the sounds 

seems quiet obvious. This brightness is well quantified by the spectral centroid all the more when a 

perceptual model is used. Consistently, the Perceptual Spectral Centroid gives the best correlation score 

(see Appendix D). We call it Simple brightness because it can be formally seen as the degenerated form of 

the Complex brightness defined in the previous section, when harmonic and noise part of the signal are not 

separated. The PSC linear regression with the second dimension is shown in Figure 8. 
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  Fig. 8: Linear regression between dim. 2 and  
  Perceptual Spectal Centroid, instrument-like class / study C. 

 

• Dimension 3: Perceptual Spectral Spread (PSS) 

 Study C. This dimension is the one whose interpretation is the most difficult just by listening to 

the sounds along the scale. However, it could be associated with their "richness". It correlates quite well 

with the Perceptual Spectral Spread (see Appendix D). The linear regression of PSS onto the third 

dimension is shown in Figure 9. 

 

   
  Fig. 9: Linear regression between dim. 3 and 

  Perceptual Spectral Spread, instrument-like class / study C. 

 

3.1.4 Impact category 

This sound category corresponds to the stimulus set of study D. Its MDS analysis resulted in a 3-

dimensional perceptual space presented in Sec. 1.4. According to the correlation scores in Tab. 6, those 3 

dimensions are related to three different acoustic features presented below: 
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—————————————————————————————————–––––––––––––––– 

     Dimension 1  Dimension 2  Dimension 3 

—————————————————————————————————–––––––––––––––– 

Simple brightness (PSC)  -0.89**   0.05   0.08 

Cleanness indicator   -0.18   0.90**   0.24 

RMS value    -0.27   0.18   0.88** 

—————————————————————————————————–––––––––––––––– 
Table 6: Correlations between acoustic features and dimensions of the impact category / study D (df = 10, ** p < 0.01). 

 

• Dimension 1: Perceptual Spectral Centroid (PSC) – Simple brightness 

 Study D. The feature that best suits this dimension is the Perceptual Spectral Centroid (PSC) that 

includes a hearing model (see Appendix D). Indeed, this dimension describes the sounds' brightness. We 

call it Simple brightness for the same reasons presented in Sec. 3.1.2, regarding the second dimension of 

the instrument-like category. The linear regression between the PSC feature and the first perceptual 

dimension is shown in Figure 10. However, it is noticeable that there is a categorization phenomenon 

along this dimension, as the sounds labeled 9, 11 and 12 are much lower on that dimension than the other 

ones. This phenomenon comes from the MDS analysis results and is not only related to the tested features. 

Nonetheless, it tends to improve the correlation score. 

 

   
  Fig. 10: Linear regression between dim. 1 and 

  Perceptual Spectral Centroid, impact class / study D. 

 

• Dimension 2: Cleanness indicator 

 Study D. It seems, when listening to the sounds along this scale, that this dimension is linked with 

the cleanness of the sounds. More precisely, it discriminates sounds containing only one impulse such as 
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the sounds numbered 1, 2 and 3, from those in which one or more impulses follow the main one (rattle, 

bounce...), such as the sounds numbered 10, 8 and 7. The acoustic feature (Cleanness indicator) that best 

suits this dimension is an estimator of the short-term loudness variability of the sounds (see Appendix D). 

This linear regression of the Cleanness indicator onto the second dimension is shown in Figure 11. 

 

   
  Fig. 11: Linear regression between dim. 2 and 

  Cleanness indicator, impact class / study D. 

 

• Dimension 3: Sound level 

 Study D. The RMS value is correlated with this dimension. Indeed, the dimension seems to be 

somehow related to pulse amplitude. The linear regression of this feature onto the perceptual dimension is 

shown in Figure 12 

 

   
  Fig. 12: Linear regression between dim. 3 and  

  Sound level, impact class / study D. 
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3.1.5 Discussion 

Looking for regularities and singularities among the 3 important categories of environmental sounds 

derived from the first part of this study, we finally identified: 

• One feature, Brightness, that is preponderant for the description of all sound categories (i.e., 1 dimension 

of the 5 perceptual spaces)., This feature is actually a combination of different spectral envelope features: 

the perceptual spectral centroid of both harmonic and noise parts of the signal (PSCh and PSCn) – or 

perceptual spectral centroid of the whole signal (PSC) – and perceptual spectral spread (PSS). And no 

unique combination has been found to describe uniformly this dimension. So this feature still remains a 

generic notion of brightness and cannot be transformed into a real metric for quantifying this dimension. 

• One or two features, in each category, that are related to specificities of the corresponding sounds: 

– motor sound perception is largely characterized by the mixture of two highly discriminable parts, in 

terms of either energy or spectral content; 

– instrument-like sounds present timbre features that have been found previously for musical sounds 

(essentially, roughness); 

– an important part of the perceptual discriminability of impact sounds is related to a temporal behavior 

feature, describing the sounds' cleanness. 

3.2 Categorical level: building an automatic classifier 

Now that we have identified the inter-category specificities, we must address the development of a 

predictive tool able to automatically classify the sounds on the basis of a perceptually validated corpus. In 

other words, the aim here is to use the results presented in Sec. 3.1 as relevant cues in order to find a 

limited number of acoustic features that would be efficient for the implementation of an automatic 

perceptual classifier. 

3.2.1 Specificities of the categories 

Before considering the implementation of such a tool, it is essential to identify which features are used 

when listening to the sounds in order to discriminate the three categories. As partially concluded in Sec. 

3.1.4, we can assume that: 

• Impact sounds differ from the other ones in their temporal structure: they are quite short because they are 

damped, while the other sounds are as long as desired because they are sustained; 

• Instrument-like sounds differ from the other ones in their spectral structure: their spectrum energy is 

usually localized in the middle frequencies and their spread is quite low, because they are harmonic 

sounds whose degree of spectral envelope decrease is high. To the contrary, the spectrum energy of the 

other sounds is localized in much lower frequencies with a much higher spread and a lower degree of 
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spectral envelope decrease. 

Thus, it seems obvious that the cue that discriminates motor sounds from impact sounds, for instance, is 

very different from the one that discriminates motor sounds from instrument-like sounds. As a 

consequence, it is quite certain that a unique feature will not be enough to describe the categories, and it is 

more likely that we will have to use a pair of temporal and spectral features. 

According to these preliminary obervations, a large set of temporal/spectral feature pairs could be used in 

order to discriminate the category to which a given sound belongs. Spectral and temporal features that 

seem to be good candidates for dealing with this problem are listed below. Their terminology and 

computing techniques are taken from Peeters [15]: 

• Temporal features: Log-Attack-Time (LAT), Temporal Increase (TI), Temporal Decrease (TD), 

Temporal Centroid (TC), Effective Duration (ED), Energy Modulation Frequency (EMF) and Energy 

Modulation Amplitude (EMA); 

• Spectral features: mean component of Spectral Centroid (SC), Spectral Spread (SSp), Spectral Skewness 

(SSk), Spectral Kurtosis (SK), Spectral Slope (SSl), Spectral Decrease (SD), Spectral RollOff (SR) and 

Spectal Variation (SV). 

3.2.2 Classification modeling tool: the multinomial logistic regression 

Now that we have identified the feature combinations that are likely to discriminate the three sound 

categories, we need a regression modeling tool able to predict the values of a qualitative and polytomous 

dependent variable Y (i.e., the sound category) by a combination of quantitative independent variables X1, 

... , Xk (i.e., acoustic features). This tool is the multinomial logistic regression (see Legendre et al. [22] and 

Woodcock [27]). In its basic definition, logistic regression is used to discriminate only two different 

attributes (or values) of a binary dependent variable Y (with values 0 and 1). With the probability notation 

π(x) = P(Y = 1|X = x) of the event where the Y variable has the value 1, given the x = (x1, ... , xk) value of 

the X = (X1, ... , Xk) set of variables, both event probabilities are related to each other by Eq. 1: 

€ 

π (x) = P(Y =1 | X = x) =1− P(Y = 0 | X = x) (1) 

 

A logistic regression tool models the π(x) probability by a logistic function, formulated in Eq. 2. This 

function, which exhibits a sigmoid curve (“S-shaped” curve), is defined as the cumulative distribution 

function of a logistic probability distribution (similar to the normal distribution). 

€ 

π (x) =
1

1+ e−u
=

eu

1+ eu
 (2) 

where u is a linear combination of the values of x: 

€ 

u = ß0 + ß1x1 +…+ ßkxk  
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Its inverse function, the “logit” function, corresponds to the natural logarithm of the odds' ratio in Eq. 3: 

€ 

logit(π (x)) = log( π (x)
1−π (x)

) = ß0 + ß1x1 +…+ ßkxk  (3) 

 

When the dependent variable Y corresponds to a polytomous nominal response (i.e., that has more than 

two different unordered values), the generalized logit models are used. In our case, the dependent variable 

Y corresponds to a 3-valued response: ‘0’ for impact, ‘1’ for motor and ‘2’ for instrument-like. With the 

notation πi(x) = P(Y = i|X = x), the multinomial logistic regression consists in modeling the relationship 

between the set of independent variables X = (X1, ... , Xk) and the generalized logits, log(π1(x)/π0(x)) and 

log(π2(x)/π0(x)). The model assumes a linear relationship for each logit as in Eq. 4: 

€ 

log π1(x)
π 0(x)

= ß10 + ß11x1 +…+ ß1k xk

logπ 2(x)
π 0(x)

= ß20 + ß21x1 +…+ ß2k xk
 (4) 

 

The regression tool searches iteratively for the best-fitting solution (βik coefficients) using the Newton-

Raphson method and maximum log-likelihood as a convergence criterion. The predicted probabilities are 

then given by Eqs 5.1 to 5.3: 

€ 

π1(x) =
eu1

1+ eu1 + eu2
   (5.1) 

€ 

π 2(x) =
eu2

1+ eu1 + eu2
   (5.2) 

€ 

π 0(x) =1− (π1(x) + π 2(x))   (5.3) 

where

€ 

u1 = ß10 + ß11x1 +…+ ß1k xk  and 

€ 

u2 = ß20 + ß21x1 +… + ß2k xk  

3.2.3 Model selection 

This tool is applied to the perceptually validated sound corpus established at the end of Sec. 2, in order to 

predict the belonging of a sound to one of the 3 identified categories. This corpus is large enough (207 

sounds) to make the results of such a procedure relevant. According to the set of acoustic features selected 

in Sec. 3.2.1, we can compute a classification model for each pair of spectral/temporal features. The best 

model’s selection is made on the basis of their respective log-likelihoods. The log-likelihood LL is a 

statistical feature that corresponds to the sum of each natural logarithm of the predicted probability π(x) 

that a sound belongs to its supposed category, as described in Eq. 6: 

€ 

LL = log(π (x))
x
∑  (6) 
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However, the log-likelihood value depends on the number of elements within the stimulus set, and having 

the same value with stimulus sets of different size is not as relevant. A way to take this into account is to 

calculate a likelihood ratio that quantifies the gain in correct prediction of the model compared to the 

"intercept only" model, where only the β0 constant coefficients are used2. The likelihood ratio feature LR 

is obtained with the relation defined in Eq. 7: 

€ 

LR = −2∗ (LLn − LL)  (7) 

 

where LLn is the "intercept only" model log-likelihood. This statistical feature allows us to compare the 

effectiveness of each model (i.e., each feature pair) in predicting the category to which a given sound 

belongs. The higher the LL and LR values are, the more efficient the model is (see Legendre et al. [22]). 

The LR value for each feature pair is shown in Tab. 7, where we can see that the SSp/ED model seems to 

best suit the data. 

 

 LAT TI TD TC ED EMF EMA 

SC 167.1 252.7 333.5 373.0 380.5 289.8 101.8 

SSp 187.0 257.1 354.6 399.2 407.3 317.5 122.7 

SSk 106.1 180.2 314.5 373.1 385.7 235.5 35.7 

SK 110.2 188.3 318.9 374.6 386.9 245.1 43.3 

SSl 167.1 252.7 333.5 373.0 380.5 289.8 101.8 

SD 108.7 187.0 295.9 355.9 369.9 215.8 22.1 

SR 98.3 177.9 295.2 353.9 368.3 223.5 43.3 

SV 115.6 171.1 306.8 360.9 376.1 224.6 74.0 

 Table 7: LR value for each spectral/temporal feature pair. 

 Spectral features are in rows and temporal features are in columns. 

3.2.4 Model validation 

In order to test the robustness of the selected model using SSp and ED features (see Sec. 3.2.3), a usual 

method consists of: 

i/ re-estimating the model on a randomly selected reduced part of the stimulus set, 70% of it for instance 

(144 sounds with respect to the distribution in the 3 categories), 

ii/ calculating the estimated probabilities on the remaining 30% (63 sounds), 
                                                        
2 This means that the “intercept only” model will give the same probabilities whatever the data. In the present case, it will give a 
99/207=0.48 probability of belonging to the motor category, a 49/207=0.24 probability of belonging to the instrument-like 
category and a 59/207=0.28 probability of belonging to the impact category. 
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iii/ evaluating the error percentage3. 

This procedure was performed 100 times with a different random selection of sounds each time. This 

method tests whether the effectiveness of the model prediction will hold when applied to other sounds 

than those used to estimate its coefficients. 

When estimated on the whole 207-sound stimulus set, the best-fitting model makes 7 errors, which 

corresponds to an error percentage of 3.3%. Over the 100 times we performed the procedure explained 

above, we obtained the results presented in Tab. 8, calculated on the recall number (total number minus 

number of errors) of every remaining 30% selection of the stimulus set. One may observe that the mean 

recall percentage (95.9%) is rather high, not even much smaller than when obtained on the whole stimulus 

set (96.7%), which proves the model's adequacy for this dataset. 

 

Minimum recall number 57 

Minimum recall percentage 90.5% 

Maximum recall number 63 

Maximum recall percentage 100% 

Recall number standard deviation 1.3 

Mean recall number 60.4 

Mean recall percentage 95.9% 

Mean recall percentage interval 93.8% — 97.9% 

 Table 8: Results of the predicting tool based on SSp/ED features, 

 after 100 runs of a 70%-learning/30%-predicting loop on the 

 207-sound perceptually extended corpus (Experiment 2). 

3.2.5 Discussion 

The selected model tested on a 207-sound stimulus set (augmented corpus established in Experiment 2, 

Sec. 2.2) gives significant stable results in terms of automatic classification with only around 4% mean 

error in the prediction, with only 2 predicting acoustic features. This is a rather encouraging result, even if 

this tool is built with only 3 main sound categories of quite different kinds (motor, intrument-like and 

impact). It could be extended to other categories in order to cover a larger scope of environmental sounds. 

Other automatic classification methods exist that are much more complex and that use much more input 

information about the sounds. But considering the significant results of this relatively simple method, 

                                                        
3 We consider as an error the case of a sound for which the probability of belonging to its supposed category is smaller than one of 
the two other probabilities. This means that if the model has to choose the category to which the sound belongs, it will choose a 
wrong one. 
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exploring these algorithms further is quite pointless. However, with more than 3 categories, these methods 

may outperform the one presented here and could therefore be useful for efficient automatic classification. 

From a larger point of view, other classification approaches also exist that are less time consuming with 

regard to the available data needed for performing them: they usually consist in defining sound classes, 

collecting training examples for each class, computing a large set of spectral and temporal features on 

sounds and letting a machine learning method pick features that are efficient in discriminating the classes. 

But, the main difference between this approach and the one proposed in the present paper relies on the fact 

that in the former, the classes are arbitrarily defined (or at least, are the result of a single expert’s 

analysis), whereas in the present paper the classes are deduced from an experimental procedure, which is 

more time consuming but allows them to be considered as perceptually relevant. This is one of the original 

contributions of this study with regard to traditional methods based on a priori sound categories and 

powerfull learning techniques (e.g., like the ones used in the Music Information Retrieval research4) 

3.3 Summary 

We have built a 2-level description structure of environmental sounds that consists of: 

• a categorical level that considers the different sound categories corresponding to particular sound 

production mechanisms, 

• a continuous level that defines, within each of these categories, the perceptual space of the sounds 

allowing the represention of the perceptual dissimilarity between two sounds of the same kind. 

This description is associated with automatic processing of acoustic features. When considering a new 

sound of one of these kinds, this processing allows: i) the identification of the sound category to which it 

belongs, with regard to the probabilities estimated by the logistic regression model, and ii) its correct 

placement along several perceptual dimensions. 

Conclusion 

This work originally aimed to extend timbre description principles, usually used for musical sounds, to 

environmental sounds and to apply them in a more systematic manner to this class of sounds. It is based 

on a first step of re-examination and comparison of four primary studies mainly dealing with industrial 

(car and machine) sounds. An inventory of their respective contexts, motivations, procedures and results 

gave us input data consisting of 5 coherent stimulus sets with their associated low-dimensional perceptual 

spaces. It also allowed us to intuit some regularities and singularities among the different kinds of sounds 

under consideration. Within the restricted scope of these 5 stimulus sets, a 2-part experimental approach 

                                                        
4 http://www.ismir.net/ 
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revealed 3 meta-categories (motor, instrument-like and impact) and precisely defined them in a larger 

scale by extending their respective contents. This categorical description structure is also coherent with the 

categories of product sounds that Özcan et al. [23] found. Finally, a modeling approach was designed to 

describe more precisely the intuited regularities and singularities of these 3 categories. This includes 

comparing the initial perceptual spaces by means of systematically correlated acoustic features, which can 

be summarized by two important facts: 

• One feature is preponderant for the description of all sound categories, i.e., the brightness feature, 

usually based on spectral envelope features. Therefore, this perceptual feature appears to describe 

musical sounds as well as environmental sounds. 

• One or two features, in each category, are related to a specificity of the corresponding sounds: 

o motor sound perception is largely characterized by the mixture of two highly 

discriminable parts, in terms of either energy or spectral content, 

o instrument-like sounds present timbre features, originally derived for the description of 

musical sounds, 

o an important part of the perceptual discriminability of impact sounds is related to a 

temporal behavior feature, describing the sounds' cleanness. 

This modeling approach also includes the building of a predictive tool based on logistic regression able to 

classify automatically and rather efficiently (with only a 4% mean error) this meta-structure with regard to 

the 3 categories under consideration. 

Note that contrary to musical timbre for which attack time is an important cue of the perceptual space, the 

studies revealed no temporal features corresponding to the two first categories. This may be mainly due to 

the quasi-stationary nature of these sounds. Nonetheless, a temporal parameter, associated with a spectral 

one, appeared to be fairly efficient in automatically discriminating impulsive environmental sounds (car 

door closing) from non-impulsive ones. 

However, according to Özcan et al. [23], other major sound categories, such as liquid or cyclic sounds, 

exist and need a definition as well, and their main perceptual features must be investigated. Furthermore, 

they focused their study on domestic "product sounds", while we were more interested in industrial (cars 

and machine) sounds. Considering environmental sounds in a more general sense may again reveal other 

categories that would also need to be taken into consideration when building an overall environmental 

sound description structure, in terms of either definition or automatic description. 

From an application point of view, the revelant acoustic features obtained for the three categories of 

sounds will allow us to conceive of perceptually relevant oganisation structures of large environmental 

sound collections and to propose retrieval systems using an intuitive query process by searching for 

sounds that are similar to a target sound in that kind of database. The search will be based on similarity 
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metrics computed from the acoustics features, stored with the sounds in the database as proposed by 

previous studies for musical sounds (Blum et al. [33]; Misdariis et al. [34]; Qi et al. [35]). In a larger 

perspective, these results should also contribute to the elaboration of a functional Computer-Aided Sound 

Design framework as they will help users to describe, associate, compare, share and finally manipulate 

sounds that can be considered as prototypes or initial ideas of concepts that the designer has in mind and 

tries to materialize in the framework of a specific project. 
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Appendix A. 

MultiDimensional Scaling (MDS) analysis’ principles 

MDS models 

MDS techniques represent the dissimilarity data by distances in a geometrical space. The simplest model 

represents the dissimilarity Dij between two sounds i and j, averaged across the participants’ ratings, by a 

Euclidean distance in a geometrical space with R dimensions (Eq. A1): 

€ 

Dij = (xir − x jr )
2

r=1

R

∑  (A1) 

where xir is the coordinate of sound i on the rth dimension. 

In this model, the space is rotationally invariant, which means that rotating its axes will not intrinsically 

change the space structure as long as they remain orthogonal. 

The increasing sophistication of MDS techniques has led to a refinement of the initial model. This model, 

called INDSCAL (Individual Difference Scaling) (Caroll et al [18]), also considers the possibility that 

subjects weight the dimensions differently. It represents the dissimilarity Dij between two sounds i and j, 

for each subject s by Eq. A2: 

€ 

Dijs = wsr ⋅ (xir − x jr )
2

r=1

R

∑  (A2) 

where wsr is the weighting given by subject s to the dimension r. 

Another refinement is proposed by the CLASCAL model (Latent Class Approach) (Winsberg et al. [19]). 

The dissimilarities are modeled as distances in an extended Euclidean space of R dimensions. Thus, the 

CLASCAL model postulates common dimensions shared by all stimuli, attributes particular to each 

stimulus (so-called specificities), and latent classes of subjects. Specificities account for the possibility that 

a sound may possess some unique feature that other sounds of the set do not share. Latent classes have 

different saliences or weightings for each of the common dimensions and for the whole set of specificities. 

For latent class t, the distance between two sounds i and j within the perceptual space is thus computed 

according to: 

€ 

Dijt = wtr ⋅ (xir − x jr )
2 + vt (si + s j )

r=1

R

∑  (A3) 

In Eq. A3, Dijt is the distance between sound i and sound j, t is the index of the T latent classes, xir is the 

coordinate of sound i along the rth dimension, wtr is the weighting of dimension r for class t, R is the total 

number of dimensions, vt is the weighting of the specificities for class t, and si is the specificity of sound i. 
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The class structure is latent: there is no a priori assumption concerning the latent class to which a given 

subject belongs. The CLASCAL analysis yields a spatial representation of the N stimuli on the R 

dimensions, with the specificity of each stimulus, the probability that each subject belongs to each latent 

class, and the weightings or saliences of each salient perceptual dimension for each class. 

Moreover, in the INDSCAL and CLASCAL models, the presence of dimension weightings that differ 

between subjects or classes of subjects removes the rotational invariance of the obtained spaces, because 

the dimensions are fixed by the use of those weightings. As a consequence, it is assumed in both models 

that the dimensions of the space are perceptually meaningful. 
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Appendix B. 

Complementary data and initial results related to the four primary studies. 

Data related to study A1 

 

—————————————————————————————————–––––––––––––––– 

     Dimension 1  Dimension 2  Dimension 3 

—————————————————————————————————–––––––––––––––– 

RAPmv-A    -0.81**   0.32   -0.33 

CGg-ERB    0.35   -0.7**   -0.14 

Dec (266-2300)    -0.32   0.00   -0.83** 

—————————————————————————————————–––––––––––––––– 
Table B1: Correlation coefficients between the perceptual dimensions of study A1 and psychoacoustic descriptors (df =14, ** 

p<0.01). 

 

• RAPmv-A: A-weighted harmonic-to-noise ratio. Both harmonic and noise parts were separated using 

additive analysis/synthesis (see Rodet [31], for more detail on the separation technique). The feature is the 

ratio of their levels expressed in dB(A).  

• CGg-ERB: ERB Spectral centroid. The frequency dimension is represented in ERB-rate (distance in 

terms of Equivalent-Rectangular Bandwidth (ERB) filters; see Patterson et al. [32] and Slaney [30]).  

• Dec: Harmonic spectral decrease. This feature is related to the shape of the spectral envelope computed 

from the harmonic components of the signal. In the present case, this feature is computed on the 

bandwidth of the spectrum, but represents the relative decrease in the envelope of the harmonic spectrum 

only between 266 Hz and 2300 Hz. 
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 Fig. B1.1: Study A1 perceptual space projected onto Fig. B1.2: Study A1 perceptual space  projected onto 

 dimensions 1 and 2. dimensions 2 and 3.  

 

  
 Fig. B1.3: Study A1 perceptual space projected onto 

 dimensions 3 and 1. 
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Data related to study A2 

 

—————————————————————————————————–––––––––––––––– 

     Dimension 1  Dimension 2 

—————————————————————————————————–––––––––––––––– 

rad_2N/0.5N    0.93**   -0.29 

CGg-C     -0.51   0.86** 

—————————————————————————————————–––––––––––––––– 
Table B2: Correlation scores between the perceptual dimensions of study A2 and acoustic features (df =12, ** p <0.01). 

 

• rad_2N/0.5N: 2N and 0.5N harmonics ratio, where N is deduced from the RPM value of engine 

rotation. 

• CGg-C: Spectral centroid, with linear frequency using C-weighting. 

 

 

   
  Fig. B2.1: Study A2 perceptual space projected onto 

  dimensions 1 and 2. 
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Data related to study B 

 

—————————————————————————————————–––––––––––––––– 

     Dimension 1  Dimension 2  Dimension 3 

—————————————————————————————————–––––––––––––––– 

NHR-A    -0.97**   0.11   -0.26 

SCn-B     -0.32   0.73**   -0.15 

N     0.26   0.04   0.84** 

—————————————————————————————————–––––––––––––––– 
Table B3: Correlation coefficients between the perceptual dimensions of study B and acoustic features (df =17, ** p <0.01). 

 

• NHR-A: Feature corresponding to the relative balance of the harmonic (motor) and noise (air 

turbulence) components. The best correlation is obtained with the A-weighted version of this parameter. 

• SCn-B: B-weighted spectral centroid of the noise component. For this dimension, the emergence of a 

spectral pitch led us to consider the spectral centroid (SC). More precisely, we compute the SC of each of 

the two parts of the sound: the noise component (SCn) and the harmonic component (SCh). The best 

correlation with Dimension 2 is obtained for SCn using B-weighting. 

• N: Loudness. Indeed, even though the selected sounds are in the same range of loudness, they were not 

equalized in loudness. 

 

    
 Fig. B3.1: Study B perceptual space projected onto Fig. B3.2: Study B perceptual space projected onto 

 dimensions 1 and 2. dimensions 2 and 3.  
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 Fig. B3.3: Study B perceptual space projected onto 
 dimensions 3 and 1. 
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Data related to study C 

 

—————————————————————————————————–––––––––––––––– 

     Dimension 1  Dimension 2  Dimension 3 

—————————————————————————————————–––––––––––––––– 

Roughness    -0.9**   -0.1   0.3 

Spectral centroid   0.0   0.9**   0.1 

Spectral deviation   0.3   -0.4   -0.8** 

—————————————————————————————————–––––––––––––––– 
Table B4: Correlation coefficients between the perceptual dimensions of study C and the best-correlated psychoacoustic 

descriptors (df =20, ** p<0.01). 

 

• Roughness: Feature modeled by the amplitude modulation rate of the temporal envelope (expressed in 

asper) and related to the sensation of auditory roughness.  

• Spectral centroid: Feature describing the spectral distribution of the energy of the sound, computed 

from a frequency decomposition on the ERB scale (Marozeau et al. [13]). It has been identified as 

corresponding to the sensation of "brightness". 

• Spectral deviation: Feature related to the fine structure of the spectral envelope. It is computed based on 

the smoothness of the outputs of the filter-bank (Marozeau et al. [13]) 

 

    
 Fig. B4.1: Study C perceptual space projected onto Fig. B4.2: Study C perceptual space projected onto 

 dimensions 1 and 2. dimensions 2 and 3.  
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 Fig. B4.3: Study C perceptual space projected onto 

 dimensions 3 and 1. 
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Data related to study D 

 

—————————————————————————————————–––––––––––––––– 

     Dimension 1  Dimension 2  Dimension 3 

—————————————————————————————————–––––––––––––––– 

Sharpness    -0.90 

Spectral centroid   -0.93 

Cleanness indicator      0.87 

………………          ……… 

—————————————————————————————————–––––––––––––––– 
Table B5: Correlation coefficients between the perceptual dimensions of study D and acoustic features (df =10). 

 

• Spectral centroid: Feature describing the spectral distribution of the energy of the sound. 

• Sharpness Feature defined by Aures [36], similar to spectral centroid with perceptual modeling. 

• Cleanness indicator: Indicator that is derived from the temporal loudness calculation according to 

Zwicker’s model [20]. The algorithm takes into account temporal integration and temporal masking. The 

proposed indicator is based on the temporal evolution of the curve. 

 

    
 Fig. B5.1: Study D perceptual space projected onto Fig. B5.2: Study D perceptual space projected onto 

 dimensions 1 and 2. dimensions 2 and 3.  
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 Fig. B5.3: Study D perceptual space projected onto 

 dimensions 3 and 1. 



  48 

Appendix C. 

Illustration of the experimental graphical user interfaces used in Experiments 1 and 2. 

Screenshot of Experiment 1 ‐ GUI 

 
Fig. C1: Experiment 1 - GUI for free-sorting task.  
 

Screenshot of Experiment 2 ‐ GUI 

 
Fig. C2: Experiment 2 - GUI for the forced choice sorting task. 
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Appendix D. 

Details of acoustic features calculation 

RMS value 

The estimation of the RMS (Root-Mean-Square) value of the signal is frame-based and is calculated every 

60 ms with a Blackman window. The feature is the mean value over time. 

Loudness 

Loudness is the intensive attribute of human hearing. It thus describes the subjective aspect of the intensity 

of a signal by considering masking effects that occur over the whole spectrum and the filtering steps of the 

hearing path. The loudness model used is the ISO 532-B model from Zwicker et al. [28]. 

Harmonic emergence feature 

This feature is a Harmonic-to-Noise ratio, designed to convey the relative amounts of harmonic (or 

pseudo-harmonic) energy and noise energy in the signal. It is based on the Pm2 partial extraction method 

(see Bogaards al. [29]). Once both harmonic and noise parts of the signal are extracted, the feature simply 

consists of the ratio of their respective loudnesses Nh and Nn as formalized in Eq. D1: 

€ 

HNR = Nh Nn  (D1) 

Spectral centroid 

The spectral centroid is a weighted mean frequency of the spectrum of the signal. The calculation of this 

feature can be more or less complex. Its definition is quite similar to Zwicker et al.'s [28] sharpness 

feature. It uses a gammatone filterbank (from Auditory Toolbox, Slaney [16]) that is based on the ERB-

rate scale z (see Marozeau et al. [13] for more details). The resulting feature is the Perceptual Spectral 

Centroid as defined in Eq. D2: 

€ 

PSC = f z ⋅ Nz
z
∑ Nz

z
∑  (D2) 

where Nz is the specific loudness in each channel (obtained by each gammatone filter) and fz is the 

corresponding center frequency. 

Spectral spread 

The spectral spread describes how the spectrum is spread around its mean value, i.e. the spectral centroid 
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defined above. The associated perceptual feature uses the same perceptual modeling as the PSC feature, 

thus giving the Perceptual Spectral Spread PSS, as defined in Eq. D3 

€ 

PSS = ( fz − PSC)
2 ⋅ Nz

z
∑ Nz

z
∑  (D3) 

Complex Brightness 

This feature estimates the brightness sensation of a sound that combines a noisy and a harmonic part. It 

simply corresponds to the linear combination of the PSC values of both noisy and harmonic parts 

(respectively PSCh and PSCn) and the PSS value of the whole signal, as defined in Eq. D4: 

€ 

Complex  brightness =α ⋅ PSCh + β ⋅ PSCn + γ ⋅ PSS  (D4) 

where α, β and γ are linear coefficients. 

Roughness 

Roughness is a feature that quantifies the perceived modulation or graininess of a sound. When 

inharmonicity is strong, amplitude modulations can generate beating in some cases. When the beating 

becomes fast enough so that the modulations are no longer discriminated by the human ear, they seem to 

give a rough aspect to the sound. This roughness feature (also defined in Grey et al. [10]) mainly consists 

in estimating a modulation index at the output of every auditory filter, which is called the partial 

roughness. The overall roughness is the sum of all the partial roughnesses. From each auditory filter 

output, the modulation frequency fmodi and the modulation depth mi are estimated with a temporal envelope 

calculation. The partial roughness is proportional to the product of the modulation frequency and the depth 

fmodi . mi. The roughness R is then calculated as the sum of the Ri, as mentioned in Eq. D5: 

€ 

Ri = K ⋅ fmod i ⋅mi ; R = Ri
i
∑  , where K is the proportionality coefficient. (D5) 

Cleanness indicator 

This feature represents the short-term variations in the loudness of the signal. These variations, which 

usually occur between 20 and 100 Hz, are slow enough to be heard as a temporal phenomenon, but they 

are too fast to be heard as separate sound events (e.g., bounces, rattles, etc.). The feature corresponds to 

the amplitude of the spectrum of the instantaneous loudness N(t), which is estimated every 3.3 msec., 

within this frequency band (see Eq. D6). 

€ 

Cleanness  indicator = FFT256(N(t))
20−100Hz
∑  (D6) 

where FFT256 is the 256-point Fast Fourier Transform. 
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