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ABSTRACT

We present a methodology for the real time alignment of mu-
sic signals using sequential Montecarlo inference techniques.
The alignment problem is formulated as the state tracking
of a dynamical system, and differs from traditional Hidden
Markov Model - Dynamic Time Warping based systems in
that the hidden state is continuous rather than discrete. The
major contribution of this paper is addressing both problems
of audio-to-score and audio-to-audio alignment within the
same framework in a real time setting. Performances of the
proposed methodology on both problems are then evaluated
and discussed.

Index Terms— sequential montecarlo, particle filtering,
real time systems, music alignment, score following

1. INTRODUCTION

A music alignment system aims at finding a mapping between
two music signals, possibly of different nature, that associate
all the parts of each signal to music events. In this paper,
we focus our attention on the alignment of a streaming audio
signal of a music performance, that is a signal fed as input
to the system incrementally in real time, against a symbolic
score (the digitized version of traditional music notation) or
another audio recording.

Scientific research has focused over the years on real
time alignment against a symbolic score (usually referred
to as score following). Approaches have evolved from pat-
tern matching techniques in the earliest works dating back to
the mid-80s to Dynamic Time Warping (DTW) approaches
and Hidden Markov Models (HMM); a review of these ap-
proaches, which deal mostly with monophonic signals, can
be found in [1]. Similar techniques are also employed in
other fields such as gesture following, where HMM map real
time motion capture data to reference gestures [2]. Recent
work on score following, focusing on polyphonic signals,
also proposed hybrid graphical models [3] and Hidden Hy-
brid Markov/semi-Markov models [4]] which deal with tempo
(i.e., speed of performance) estimation explicitly, and repre-
sent the state of the art systems.
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Audio to audio alignment received less attention, and has
been investigated most notably in [5] which adopts a real
time version of DTW. In particular, a common trend in many
approaches to score following is to synthesize the reference
score and to align the incoming audio against what is, effec-
tively, an audio signal.

Our approach presents a unified methodology for the real
time alignment of audio to both a symbolic score and an audio
reference by exploiting sequential Montecarlo inference tech-
niques, also known as particle filtering [6]. The advantages of
our approach, besides the powerful statistical framework and
inherent simplicity of the algorithm, are twofold: unlike most
systems, tempo is an explicit parameter within the stochastic
framework defined through musical motion equations; more-
over, both symbolic and audio alignment problems can be for-
mulated within the same framework by exploiting a continu-
ous representation of the reference media as depicted in Fig.
for the symbolic case.
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Fig. 1. From a discrete (one state per event) to a continuous
(one region per event) score representation.

In the following sections we present in detail the method-
ology used for both score and audio alignment, and provide
experimental evaluation on a hand-labeled test collection that
is challenging for current state of the art software. We con-
clude with an overview of future research directions.



2. METHODOLOGY

Given a music stream and a reference medium, in the form of
either a symbolic score or an audio recording, we formulate
the alignment problem as a tracking problem, where the cur-
rent position of the audio stream along the reference is mod-
eled using traditional motion equations.

The system state is modeled as a two-dimensional vector
x = (s,t), representing the current position in the reference
media and tempo respectively. In the case of audio to au-
dio alignment, s is measured in seconds and ¢ is the playback
speed ratio, while in the case of a symbolic score reference, s
is measured in musical time from the beginning of the score,
and ¢ in quarter notes per second (i.e. bpm/60). The incom-
ing signal processing frontend is based on spectral features
extracted from the FFT analysis of an overlapping, windowed
signal representation, with hop size AT

In order to use Sequential Montecarlo methods to esti-
mate the hidden variable x;, = (sg, tx) using observation z
at time frame k, we assume that the state evolution is Marko-
vian (i.e. depends only on the previous state and the current
observation) and define the following quantities:

o p(zg|xy) is the likelihood of observing an audio frame
21, given the current position along the reference sg.
We consider a simple spectral similarity measure, de-
fined as the Kullback-Leibler divergence between the
power spectrum at frame & and the power spectrum
at time sj in the reference audio, or, in the symbolic
case, a template spectrum associated to the score event
which is active at score position x. Past experience
with realtime score following suggests that the power
spectrum is a better feature for similarity computation
than chroma, as it preserves octave information.

o p(xg|rp_1) is the state transition likelihood; we make
use of tempo estimation in the previous frame and as-
sume that tempo is circa equal:
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Intuitively, this corresponds to a performance where it
is expected that the tempo is rather steady but can fluc-
tuate; the parameters o2 and o2 control the variability
of tempo and the possibility of local mismatches that
do not affect the overall tempo estimate (e.g., a single
note played with some delay).

o q(xg|rK_1, 2K) is the particle sampling function. In our
implementation this corresponds to the transition prob-
ability density function.

Sequential Montecarlo methods work by recursively ap-
proximating the current distribution of the system state us-
ing the technique of Sequential Importance Sampling: a ran-
dom measure {z}, wi}fvzsl is used to characterize the poste-
rior pdf with a set of points over the state domain and asso-
ciated weights, and is updated at each time step as in Algo-
rithm[I] An optional resampling step is used to address the de-
generacy problem, common to particle filtering approaches;
this is discussed in detail in [6l [7]. The decoding of position
and tempo is carried out by computing the expected value of
the resulting random measure as Zi\; zhwi.
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3. EXPERIMENTAL RESULTS

The first set of experiments investigates the ability to adapt to
tempo changes by using a synthesized note sequence, while
the remaining ones make use of real music recordings, specif-
ically a collection of Chopin’s mazurkas annotated with the
onset times for the events in the score; in particular, we used
a subset of the collection created by C. Sapp for the Mazurka
Projecﬂ consisting of 8 mazurkas for which 4 different per-
formances were annotated. Due to space constraints we omit
comparison with other approaches, relegating them to evalua-
tion campaigns such as MIREXEI, and investigate instead spe-
cific situations that benefit from peculiarities of our approach.

3.1. Synthetic Data Alignment Evaluation

A random monophonic note sequence was synthesized using
a clarinet patch from an orchestral sample library. As the
alignments plotted in Fig. 2] show, tempo increases linearly at
every quarter note (Fig. 2(a)) or suddenly (Fig.[2(b)), starting
from 60 bpm. We measured the average and maximum align-
ment error for the score events; such error is defined to be the
delay or anticipation of the first detection of the event w.r.t.
the nominal onset time. Results are summarized in Table[I]

In all the tests a local misalignment can be seen around
score position 5; this is due to the fact that two subsequent
notes are repeated and no form of onset detection is used. In-
creasing the number of particles (to 2000) leads to a more
robust tempo estimation and consequently avoids this prob-
lem. It should be noted that the average error is comparable
to the analysis window hop size.

"http://www.mazurka.org.uk/
Zhttp://www.music-ir.org/mirex/wiki/MIREX_HOME
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Fig. 2. Alignment to a synthetic track.

3.2. Audio to Score Alignment Evaluation

The symbolic scores were extracted from MIDI files down-
loaded from the Web, thus increasing the difficulty of the
problem because of the many imperfections that are often
present (i.e., skipped notes and incorrect notation); another
significant issue is related to the intrinsic difficulty in formal-
izing music aspects like embellishments — which are exten-
sively used in Chopin’s music and realized differently by per-
formers — in a format like MIDI.

Chopin mazurkas form a suitable test set for two reasons:
they are complex polyphonic pieces challenging for state of
the art score following softwares, and their executions are
characterized by substantial tempo oscillations not explicitly
notated in the score [8]].

Results are provided in Table [2] using the same evalu-
ation methodology and parameters that were used with the
synthetic dataset; subsequently we treat particular cases in
separate paragraphs for the mazurkas marked by an aster-
isk. A close analysis of the results, obtained inspecting the
alignment plots, reveals that most of the times the maximum
alignment error occurs on the very last beats of the pieces,
characterized by a significant rallentando.

tempo change avg. error (S) max. error (s)

steady 0.12 0.71
3 bpm linear 0.13 0.63
6 bpm linear 0.09 0.34
9 bpm linear 0.09 0.23
15 bpm sudden 0.12 0.71
30 bpm sudden 0.11 0.52

Table 1. Audio to score alignment - synthetic data set.

avg. error (S) max. error (s)

Op. 6n. 4 0.11 1.24
Op. 7n. 2% 0.16 2.65
Op. 17n. 4 0.19 2.01
Op.24n.2 0.19 3.89
Op.30n. 2 0.13 2.32
Op. 63 n. 3 0.18 2.89
Op. 67n. 1 0.21 231
Op. 68n. 3 * 0.34 4.42

Table 2. Audio to score alignment - Chopin’s Mazurkas.

3.2.1. Handling of Optional Repetitions

Even though recorded interpretations of classical music usu-
ally respect the composer’s instructions regarding repetitions,
performers often choose to skip some of those repetitions, as
is the case for one of the recordings of mazurka Op. 7 n. 2.
The ability to follow optional repetitions can in principle be
extended to the case where the performance can, at certain
pre-defined points in the score, skip ahead (or go back) to
other sections of the music, thus creating an open form inter-
active score, a common practice in contemporary music.

The particle filtering scheme is easily adapted to this sit-
uation, by allowing the particles to “jump” via a simple mod-
ification of the sampling step and transition pdf. Figure [3]
compares two performances, where the skip of the repetition
is clearly visible.

3.2.2. Tempo Change Issues

The analysis of the alignments of mazurka Op. 68 n. 3
pointed out a situation which is at the moment problematic
for our score following system: between bars 31 and 32 there
is a tempo change indicated by the composer, followed by 12
repetitions of the same chord that render an estimation of the
new tempo not possible without some form of onset detec-
tion. As Figure ] shows, the alignment is correct again when
the melody starts, because of the added diversity to the har-
monic content.

(a) Repetitions as in the score (b) Skipped repetitions

Fig. 3. Alignment of a performance with optional repetitions.
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Fig. 4. Uncertainty in tempo estimation.

3.3. Audio to Audio Alignment Evaluation

For the audio to audio alignment experiments, the test col-
lection of Section [3.2] was reused. In Table [3] we report the
average and maximum alignment error for the score events;
such error is defined to be the euclidean distance of the
ground truth label from the closest alignment point. A sim-
ilar parametrization as for the audio to score case was used,
however only 200 particles are employed.

An interesting case is that of the repetitions in mazurka
Op. 7 n. 2, investigated in Section on the symbolic
score following side. In the audio to audio case it is impos-
sible to define possible jump points automatically, since the
score is not known; however in some cases the alignment was
nevertheless “correct”, i.e., resembling the alignment curve of
Figure this is possible only if the variance of the transi-
tion pdf is not too low.

avg. error (S) max. error (s)

Op. 6n.4 0.18 0.59
Op. 7n.2% 0.18 1.06
Op.17n. 4 0.17 2.14
Op. 24n. 2 0.29 9.41
Op. 30n. 2 0.13 0.58
Op. 63 n. 3 0.15 1.23
Op. 67 n. 1 0.16 1.36
Op. 68 n. 3 0.19 2.12

Table 3. Audio to audio alignment - Chopin’s Mazurkas.

4. CONCLUSION AND FUTURE WORK

A system for the alignment of a music audio stream to both
symbolic and audio references using a unified methodology
was presented and its validity demonstrated by its application
to a collection of polyphonic music performances.

As anticipated in the analysis of experimental data, the
subject of future research will revolve around the ability to
follow open-form interactive scores, a priority that will have
immediate application because of the already active collabo-
ration with composers on works that are going to exploit this
aspect explicitly in their artistic conception.

Another important aspect, currently under investigation,
is the dynamic tuning of the model parameters o, o; using
extended Kalman filtering techniques to increase accuracy.
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