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Abstract
This works present a movement following system based on Hidden Markov Mod-els and Motion descriptors extracted from video. the primary applicationis inperforming arts such as dance but the methodology remains general enough tobe applied in other contexts as long as appropriate descriptors are available.
Di�erent motion features, segmentations, decoding methods and data analysissuch as Principal Components analysis have been performed and are comparedin order to show how they a�ect the following system. Both contemporary dancesand synthetic animations have been used in order to evaluate the system.
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Chapter 1
Introduction
Performing arts often requires the synchronization between performers, music,video and lightening. The simplest solution is to ask performers to follow themusic and technicians to follow the performers. But when a �ne{grained tem-poral interaction is required and lots of di�erent events have to be generated inresponse to what's happening on the stage, the task becomes quickly un man-ageable, even for teams of talented professionals. Tradeo�s have to be made inorder make the performance realizable. We aim at using computer vision anmachine{learning techniques to delegates to the computer the task of the doingthe following.
Though machine{learning techniques have been used for a long time in applica-tions such as Robotics, Speech recognition or DNA classi�cation, their use formotion and gesture recognition has only been made possible recently because ofthe memory requirements and cpu power required by the algorithms. Most of theresearches and applications have been focused on hand-sign recognition [27] andgait characterization [21] for applications such as communication, rehabilitationand surveillance.
An overview of Human motion analysis and gesture recognition can be found in[12], [9] and [22] where the common problems such as detection, classi�cation,recognition are exposed as well as the tools that are usually used to solve them.One can also note that �nite-state machines [16], Markov chains [3], HiddenMarkov Model[2], [20] or their derivatives [6], [10] are heavily used to model thetemporal dimension of motion or more generally the sequences of gestures.
The use of these techniques for artistic applications is still emergent. One impor-tant tool called Eyesweb [1] has been made available with the European projectMEGA1 with a strong involvement toward multimodal analysis of expressive ges-1Multisensory Expressive Gesture Applications.
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3
tures [26]. It was very helpful to us fo extracting the motion descriptors since allthat we needed was already included in it and we were thus able to concentrateourselves on the interpretation of these parameters.
In the same time, Ircam has been involved since 1984 in following systems withthe score{following with the works of Barry Vercoe and Miller Puckette [24], [25],[17]. It was refactored later by Nicolas Orio who introduced the use of HMMto perform the following [13], [14], and a master thesis [15] was done last yearto evaluate the possibility to extend it to perform text following in the case oftheater applications and to help following singing voice.
The work that is being reported in this paper is part of a new research projectbeing developed at Ircam dedicated to performing Arts whose scope and goalsare described in [8] and we have dedicated it particulary to dance performance.
The works being exposed in [11] and [7] which are technically close to our workwith respect to the methods used, di�er from ours because we are concerned bythe following{synchronization problem rather than the classi�cation of elemen-tary gestures for dance notation and because we want our system to be able towork in real{time.
The fact that we want to apply this research to artistic context will always imposeus the following constraints:

� The number of available examples used to trained our model(s) will alwaysbe limited and thus the validity of the statistics hypothesis too.
� We won't be able to use non causal or cpu intensive algorithms such asViterbi or the forward{backward procedure. Refer to [18] for explanationsabout these methods.

We will �rst expose the system we have used to perform the following with thede�nition of the motion descriptors, the de�nition of the HMM, the segmentationmethods and the decoding strategies, then we will expose di�erent results relatedto each of these aspects and we will �nally present the future directions thatcould be explored using this work as a base.
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Chapter 2
Methodology

2.1 Video Material
We have used short dances videos 300x200 and less than 1 minute long gatheredfrom choreographer Herv�e Robbe that have been recorded at the Centre Nationalde Dance du Havre with DV cameras. Each dance has been performed twice bytwo di�erent dancers. Which gives us 4 di�erent examples per dance.
To evaluate our work we've also generated synthesis dances animations based onmotion capture data { from optical motion capture system Vicon {. The anima-tions were generated in order to have di�erent time-line.

Figure 2.1: snapshots from one of the video dances

Figure 2.2: snapshots from one of the animation
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2.2 Hypothesis 5
2.2 Hypothesis
During all this work, we have supposed that:

� We have a 3D motion projected on a 2D surface
� the camera is �xed and the focal plan doesn't change
� the lightening is constant
� there is a single single dancer in the scene
� the only motion is the human one over a constant background
� the silhouette is commensurable with the image.

2.3 motion features
A 300x200 RGB image would represent 180000 parameters/dimensions per frame.Using a dimension reduction technique such as PCA directly on the sequence ofimages would be very interesting, but we couldn't try it because of memory limi-tations. It was thus mandatory for us to choose a restricted number of parametersto represent the motion occurring in the image and leave the information con-cerning the rest of the image.
I'll present here a set of motion descriptors that we have used during this workthat were all provided by the image processing and analysis software EyesWeb [1]
The blob analysis uses the silhouette which is a binary image divided into back-ground (black 0) and silhouette (white 1). This is the most simple way of com-puting it.

Sk = threshold(Imagek �Background) (2.1)It's also possible to use a better estimate as de�ned in [26]
Sk = threshold(Imagek �Background;Background) (2.2)Where the threshold function uses the histogram of the background.

In the case of a changing background { which is not our case { it would stillbe possible to update the background with an adaptive low-pass �lter or have a
IRCAM Tutors: Frederic Bevilacqua, Monique Chiollaz CREATIS



2.3 motion features 6
more sophisticated and robust segmentation. but this is out of the scope of thisdocument.
2.3.1 skeletonThis is a particular aspect of blob analysis. Eyesweb has a module trying tomatch a face human skeleton to the image silhouette by dividing the blob inmultiple areas and computing the centroid of each area. It gives the followingdata:

� Bounding rectangle x,y,width,height
� Head x,y
� Center of gravity x,y
� Left{Right Hand x,y
� Left{Right elbow x,y
� Left{Right shoulder x,y
� Left{Right knee x,y
� Left{Right foot x,y

Most of the time, the dancer doesn't face the camera, therefore the computedpoints hardly match the human body parts but they still are interesting to beconsidered as a multi{resolution description of the blob, reminiscent of quad{treedecomposition and with a small (22) set of points.
2.3.2 Image momentsAnother way of characterizing the silhouette, is to use moments.
cartesian spatial momentsThe �rst that can be considered are the cartesian moments:

mpq = MX
x=1

NX
y=1 xpyqI(x; y) (2.3)
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2.3 motion features 7

Figure 2.3: blob centroids used to compute the skeleton
Eyesweb only provides moments m00;m01; : : : ;m30;m03. One can note that m00gives the surface of the blob, m01 and m10 gives its centroid. And m22, m11 andm02 gives its variance and its orientation.
Normalized momentsthey are scale invariant.

�pq = mpqm
00 
 = p+ q2 + 1 8p; q � 2 (2.4)
Eyesweb only provides �00; �01; : : : ; �30; �03
central cartesian moments

�pq = MX
x=1

NX
y=1(x� x)p(y � y)qI(x; y) (2.5)

This is a variant which is translation invariant. Eyesweb only provides moments�00; �01; : : : ; �30; �03
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2.3 motion features 8

Figure 2.4: skeleton on a real silhouette
normalized central moments

�pq = �pq�
00 
 = p+ q2 + 1 8p; q � 2 (2.6)
These moments are scale and translation invariant.
Hu momentsI1 = �20 + �02I2 = (�20 � �02)2 + 4�211I3 = (�30 � 3�12)2 + (3�21 � �03)2I4 = (�30 + �12)2 + (�21 + �03)2I5 = (�30 � 3�12)(�30 + �12)�(�30 + �12)2 + 3(�21 + �03)2�+(3�21 � �03)(�21 + �03)�3(�30 + �12)2 � (�21 + �03)2�I6 = (�20 � �02)�(�30 + �12)2 � (�21 + �03)2+4�11(�30 + �12)(�21 + �03)�I7 = (3�21 � �03)(�30 + �12)�(�30 + �12)2 + 3(�21 + �03)2�+(�30 � 3�12)(�21 + �03)�3(�30 + �12)2 � (�21 + �03)2�These moments have the good property (if required by the application) to bescale, translation and rotation invariant and to be orthogonal.
We have only exposed here instantaneous motion descriptors but there are manysystems using accumulation of images over a time window to recognize gestures
IRCAM Tutors: Frederic Bevilacqua, Monique Chiollaz CREATIS



2.4 Principal Components Analysis 9
[4] [5]. However we have decided no to show them because they introduce a delayin the following system. It's important to keep in mind that 1 frame at a rateof 25 images per second represents 40 milliseconds which is already much morethan the delay the hear can perceive, especially if rhythmic musical events haveto be synchronized to the dance.
2.4 Principal Components Analysis
Most of the features we use are correlated and can be a�ected by di�erent kindsof perturbations due to variations in the lightening conditions DV compressionand bad silhouette segmentation. We want to evaluate the advantage of usinga Principal Components Analysis decomposition both as a dimension reductiontechnique and as perturbation reduction tool (supposing that the perturbation islow compared to the signal). It can also be an powerfull allowing us to projectthe datat set inthe two or three most signi�cant components of the features spacein order to have a visual understanding of how the data set is distributed. Referto [23] for more information on PCA.
If we have a sequence of parameters fPtg that we can represent by a matrix Pwhere Pt is a vector of parameters.

P = [P1P2 : : :PT ] (2.7)
P is of dimension N � T and N is the number of parameters.To perform PCA, we deduce the mean of the data set for each parameter in orderto have centered data.

P 0 = P � �P �P =
0
B@ �p1...�pN

1
CA

then we search a reduced set of R orthogonal vectors ei which will best describethe data set in a least-squares sense, i.e. the Euclidian projection of the error isminimized. The common method of computing the principal components is to�nd the eigenvectors of the covariance matrix C of size N �N such that:
C = P 0P 0T (2.8)and
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2.5 Hidden Markov Model 10
Cei = �iei (2.9)It can be done using a singular value decomposition. Then the last step consiststo keep the R eigenvectors that have the highest eigenvalues �i. We can thenproject our original sequence in the eigensubspace.

P 00 = UTP; U = [ei : : : eR] (2.10)We then have the sequence fP00t g that we can use as the observations of our fol-lowing system instead of using directly the parameters given by the video analysis.
We have also considered using Kernel PCA [28] because it can handle inherentnonlinear variation of the data set and transform it to a linear variation thusmaking the separation of the classes easier with linear tools, but that was toolate to be made in practice.
2.5 Hidden Markov Model
HMMs are probabilistic �nite-state automata, where transitions between statesare ruled by probability functions. At each transitions, the new state emits avalue with a given probability. Emmissions can be both symbols from a �nite al-phabet and continuous multidimensional values. In markovian process, transitionprobabilities are assumed to depend only on a �nite number of previous transi-tions (usually one) and they may be modeled as a Markov chain. The presenceof transition with probability equal to zero de�nes the topology of the model,limiting the number of possible paths. For more in formation on HMM see [18].
2.5.1 StructureWe've used a very simple left-right structure associating one state with a segmentof the video.The graph can be represented by the following transition matrix:

A =
0
BBBBB@

a11 a12a22 a23. . . . . .aN�1N�1 aN�1NaNN

1
CCCCCA
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2.5 Hidden Markov Model 11

1 2 N

a11 a22 ann

a12 a23 an-1n

Observations
O = {01,...,0m}

...

Figure 2.5: left-right HMM
With aij being the probability of going from state i to state j and N the numberof states.

aij = P (qt+1 = Sjjqt = Si) 1 � i; j � N (2.11)It models implicitly the probability of staying a time t in a given state as anexponential distribution.
pi(d) = (aii)d�1(1� aii) (2.12)with d being the duration in state i. But we could extend it as in [18],[13], [14]and [15] to multiple states giving more degrees of freedom to model the durationor/and re�ne the segmentation in subsegments.

2.5.2 ObservationsIn our model, each state of the model emits a vector of continuous observationsper video frame.
O = fo1; o2 : : : ; oMg (2.13)with M being the number of observations per state. The state is characterizedby its probability distribution.

bj(O) = '[O; �j;Uj] 1 � j � N (2.14)with mean vector �j and the covariance matrix Uj in state j and ' being log{concave to ensure the convergence of the re-estimation procedures.
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2.5 Hidden Markov Model 12
We then have a model � = [A;B; �] of our dance with B = fbjg and � being theinitial state probability distribution.
These observations can be any set taken among the motion features exposedbefore and we will compare their respective advantages and drawbacks in thenext chapter.
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Figure 2.6: skeleton parameters for a dance

2.5.3 Temporal segmentationOnce we have one or several executions of a dance, in order to build a HMM,we have to divide it into several segments that can be associated to states of theHMM. Since we've used a simple left{right model, there is a one-to-one mappingbetween a segment and a state.
manualMost of the temporal segmentation of the dances in this work has been donemanually either by looking at some key gestures{postures in the dances, or bylooking at the parameters extracted from the video in order to create states well
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2.5 Hidden Markov Model 13
localized in the feature-space.
In the case of the synthetic dances, as we had the information relative to thefootsteps for all the variations, we have use them as the markers for the segmen-tation. Therefore we were able to compare the same segments across the di�erentanimations with no error introduced by a bad segmentation.
automaticWhen drawn in the feature-space, the point distributions generated by the dancesseemed hard to cluster using an algorithm such as K-means. They would betterviewed as trajectories with local changement of direction.
Therefore we have used a criterion � based on the directness of the trajectoryas de�ned by Volpe [26]. i.e. the ratio between the direct path between the 2extreme points and the trajectory path.

�t = kPt+N �Pt�Nk2Pt+N�1i=t�N kPi+1 �Pik2 (2.15)
and used the local minimums of the directness as markers.
2.5.4 InitializationOnce we have a segmentation for all the dances, we are able to compute the meanvector and the covariance matrix for each state and then model the probabilitydensity function per state.
We've used gaussian distributions but it could be improved since the experimentaldistribution we have are far from being gaussian but are better seen as trajecto-ries segment in the feature space.
We are also able to compute the mean duration for each state and then createthe transition matrix using the following equation.

�di = 1X
d=1 dpi(d) =

1X
d=1 d(aii)d�1(1� aii) = 11� aii (2.16)
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2.5 Hidden Markov Model 14
2.5.5 FollowingAs for the score{following, we want our system to be implemented in real-timethus we have only used the forward procedure which has the advantage to becausal and that can be implemented iteratively.

�t(i) = P (O1O2 : : :Ot; qt = Sij�) (2.17)i.e. the probability of the partial observation sequenceO1O2 : : :Ot and state Si at time t given the model �
It can be computed using the following equation:

�1(i) = �ibi(O1) 1 � i � N (2.18)
�t+1(j) = � NX

i=1 �t(j)aij
�bj(Ot+1); 1 � t � T � 1; 1 � j � N (2.19)

If we follow this procedure we can then compute the probability of the observa-tion sequence until time t given the model:
P (O1O2 : : :Otj�) = NX

i=1 �t(i) (2.20)
And if we scale the �i such that

�̂t(i) = �t(i)P (O1O2 : : :Otj�) (2.21)
we then have for each t the state distribution probability.

�̂t(i) = P (qt = SijO1O2 : : :Ot; �) (2.22)Now that we are able to have the state distribution for each time instant t, wehave to take a decision about the state that we consider the more likely for eacht, that is what is called decoding. We have used two strategy that are exposedbelow and that will be compared in the next chapter.
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2.5 Hidden Markov Model 15
max decodingIn the max decoding, we simply select the most probable state ~qt so that:

~qt = argmaxf�̂t(i)gi (2.23)
and it is possible to go a little further and use maxf�̂t(i)g as the quality of theestimation.
barycenter decodingIt is also possible to use the barycenter of f�̂t(i)g:

~qt = 1N
NX
i=1 i�̂t(i) (2.24)

which has a smoother behaviour when there is uncertainty among di�erent states.
It would be possible to use other strategies using prior knowledge and restric-tions on the possible paths but we've restricted ourselves to these two methods.In artistic applications, the decoding step could be left to the �nal application tobetter adapt to the context.
It's important to note that using the forward procedure, the decoded path can benon-optimal with respect to the path that would be decoded o�ine by the viterbialgorithm. It can even not be allowed by the HMMs topology.
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Chapter 3
Results
In order to clarify the results that are going to be exposed in this chapter, I willde�ne the di�erent measures of error we have used and explain their advantagesand drawbacks.
First we have used the mean rms error : mre

mre = 1TN
vuut TX

t=1 (~qt � qt)2 (3.1)
and the mean absolute error : mae

mae = 1TN
TX
t=1 j~qt � qtj (3.2)

They both give an average measure of the how much the recognized path di�ersfrom the original one.
We have also used the max error : me

me = max j~qt � qtjN (3.3)
It gives an idea about what the worse case error can be, which is of extremeimportance in live performance.
Since these three errors are normalized by the number of states N they should betreated with care when comparing segmentations with di�erent number of states.
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And we have �nally used the mean binary error : mbe

mbe = 1T
TX
t=1 b~qt � qtc (3.4)

with
bxc = 1 if jxj � 0:50 otherwiseWe could have called it the coincidence rate instead, it gives an idea of how muchthe recognized path coincide with the original one. It is very sensitive because ofthe binary threshold and is only useful when the two paths are very close fromeach other. Otherwise the quickly becomes very high. For example a perfectrecognition but with a pure delay would lead to a very bad result.
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3.1 features 18
3.1 features
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Figure 3.1: moments vs skeleton
Though we have tried many kinds of parameters during this work, we have mainlyused the skeleton parameters and image moments. We will compare here theskeleton parameters with the Normalized Moments taken on the silhouette imagethat we will shorten to SNM. We could use the Hu moments or the cartesian mo-ments but the results are quite similar and we won't expose them here becauseof space. We have used HMM trained on the four examples to follow each exam-ple individually and have averaged the results to give a global mark to the feature.
We can see on �gure 3.1 that the skeleton gives signi�cantly better results thanthe SNM for the di�erent kind of errors. That can be explained by the fact that:

� The SNM only goes until order 3, which only conveys lows spatial frequencyinformation whereas the skeleton is a kind of multi{resolution descriptionof the silhouette and thus catches more of its spatial frequency contents.
� We have 22 parameters for the skeleton and only 9 for the SNM. If weconsider that each parameter brings the same amount of information {which is not the case since they are correlated { the skeleton has morechance to give us a discriminant description.In the rest of the results exposed in this chapter, we have used either the SNM,the skeleton or both depending on what we wanted to highlight.
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3.2 learning 19
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Figure 3.2: learning
3.2 learning
In this chapter, in order to evaluate the e�ect of learning on the following perfor-mance without being disturbed by the similarities and dissimilarities between thedi�erent examples. We have computed all the possible couples (L;R) where L isthe set of examples used for the learning step and R is the set of examples beingrecognized. For example when learning on 3 examples we have the following pos-sibilities: (f1; 2; 3g; f1; 2; 3; 4g), (f1; 2; 4g; f1; 2; 3; 4g) and (f2; 3; 4g; f1; 2; 3; 4g).Then all the results have been averaged in order to a have a unique error for eachlearning situation1. For �gure 3.2 we have used the skeleton parameters on theset of real videos dances.
On the �gure 3.2 we can see that the di�erent errors are very high (about 76%for the me!) when the learning is only performed on one example. In fact themodels is over-�tted to the particular example and is totally unable to recognizethe other examples2. Then the errors quickly fall very low (5.55% for the me11 example, 2 examples, 3 examples and 4 examples.2In some cases, the �t(i) are so low that they exceed the machine's precision range.
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3.2 learning 20
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Figure 3.3: learning
and 1.04% for the mbe) giving very good results even with three examples andimproving slighly with four. Because of the limited number of example we are notable to know if the error would rise with more examples or if it would converge toa stable point. In comparison, the snm, which are not put in this chapter becauseof space, gives almost constant results across the di�erent possible training butwith greater errors as it can be seen on �gure 3.1.
Note that when learning on three examples and recognizing the remaining onewhich is the situation we would meet in live performances but that we won't showbecause of space, the results are slightly lesser, between 5% and 15% for the mbe,than when the example belong to the training set but it stays very usable. Butwhen the learning is performed on only 2 examples and following and examplethat is not in the training set, the results are very bad, 60% for the mbe and theerror is maximum when the dancers are di�erent.
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3.3 Decoding
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Figure 3.4: decoding evaluation
We wanted to evaluate how the decoding strategy a�ects the recognition perfor-mance. Optimizing the decoding strategy improves the overall recognition rate.This becomes particularly apparent when using a suboptimal set of features suchas the SNM taken on the silhouette, as shown in �gure 3.3. We used both thereal dances and the animations and only used tests where HMMs where trainedwith the four examples.
We can see in table 3.3 that the barycenter method has lower mre, me and mbethan the max method. The di�erence is particulary striking with the mbe. How-ever the mae is in favour of the max method. Since the mre penalize the distanceto the original path more than the mae it means that the barycenter method staycloser to the original path.
In the rest of this document, if not mentioned explicitely, the decoding methodwill always be the barycenter.
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3.4 PCA 22
max barycentermean rms error (%) 1.74 1.61max error (%) 6.75 5.16mean abs error (%) 1.20 1.41mean binary error (%) 38.89 14.47

Table 3.1: decoding evaluation
3.4 PCA
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Figure 3.5: trajectories of each video dance projected on the 2 �rst principalcomponents of the 4 dances data set
We can see on �gure 3.4 that the four di�erent examples have very similar tra-jectories when projected on the �rst two principal components. The di�erentsegments are well localized in the feature space and the manual segmentation isconsistent across the examples. It is even possible to view that A1 ex1 and A1ex2 have more in common than A1 bis ex1 and A1 bis ex2. In fact it matcheswith the fact that they correspond to two di�erent dancers.
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Figure 3.6: pca dimension reduction e�ect on error, animation data
We wanted to know how the use of PCA as a preprocessing step would help im-prove following results and reduce the number of required parameters to performthe computation.
We have used both tests with HMMs being trained with an example and follow-ing the same example and tests with HMMs being trained with the four di�erentexamples and following these four examples successively. Then for each dimen-sion the respective errors have been averaged in order to give a global result foreach dimension.
We can see in �gures 3.4 and 3.4 { as we would have expected { that the errorsdecrease almost monotonously with the number of dimensions in both animationsand real dances. We can also note that there is no real bene�t to use more thanabout height parameters for the real dances and twelve for the animations whenthe original number of parameter for the skeleton is 22. It is easily explained bythe fact that most of the skeleton parameters are correlated as it can be seen in�gure 2.5.2.
We can also note that in the case of the real dances which were subject to di�er-ent kind of perturbations because of the lightening condition the DV compressionand the silhouette segmentation step, the PCA doesn't help improve the results,there is no minimum in the error curves for which the perturbations would havebeen removed while keeping the useful signal.
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Figure 3.7: pca dimension reduction e�ect on error, real data
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3.5 Segmentation
We wanted to evaluate the in
uence of the segmentation method on following.Because we couldn't have an automatic segmentation having the same meaningacross di�erent dances, we have only used HMMs trained on one example andrecognizing the same example. This way we should have the best results possiblesince the model is �tted to this example, and only evaluate the in
uence of thesegmentation method.
We have also taken care of the number of states in each segmentation so thatthey either match or are similar in order to be able to compare the errors.
Animations
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Figure 3.8: segmentation evaluation on animation data
For the animations, we already had a kind of manual segmentation given by thefootsteps of the character, that had been used to generate the animation. Fur-thermore, their use can be justi�ed by the fact that they are associated to wellde�ned instants of the movement and can be considered as a \natural" segmen-tation.
In table 3.5 and �gure 3.5 we can see that the error rates are signi�cantly lowerwhen using the footsteps to segment the animation, than when using an automaticsegmentation. This shows that the footsteps allows for an e�ective segmentation
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automatic footstepsmean rms error (%) 1.42 1.17max error (%) 1.13 0.94mean abs error (%) 4.40 3.56mean binary error (%) 5.24 1.90

Table 3.2: segmentation evaluation on synthesis data
of the movement.
Videos
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Figure 3.9: segmentation evaluation on real data
For the videos, the manual segmentation was made by searching some key in-stants and postures simultaneously in the di�erent examples, and the automaticsegmentation was still made using the the curvature of the trajectory in the fea-ture space.
In table 3.5 and �gure 3.5 we can see that in this case the automatic segmen-tation has better results. It is easily explained by the fact that the automaticsegmentation, is designed in order to have each state associated to { as much aspossible{ non overlapping regions of the feature space.
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automatic manualmean rms error (%) 1.42 1.17max error (%) 1.13 0.94mean abs error (%) 4.40 3.56mean binary error (%) 5.24 1.90

Table 3.3: segmentation evaluation on real data
Furthermore, in this experiment we have forced the automatic segmentation touse the same number of state as the manual one in order to compare them equally.But the natural number of states given by the automatic segmentation was orig-inally about twice the number of states given by the manual one. It means thatthe manual segmentation is under-speci�ed with respect to the data set.
It would be interesting to investigate a mixed multilevel segmentation with thetop layer being de�ned manually by the choreographer with respect to some keyinstants in the dance { the ones to be retrieved with precision { and let the sys-tem de�ne automatically a �ner grained structure inside those states in order toease the following task.
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Chapter 4
Summary and conclusion
We have presented a general following system applied to dance with whom wehave had good results on both on animations and real videos dances using theskeleton features. Our methodology has proven to be valid which can let us sup-pose that it could be transposed succesfully in other domains of application.
We have showed that the system can be exposed to over-learning when there aretoo few examples but that it converge quickly to good results even with only4 examples. It suggests that when there is no possibility of collecting severalexamples we should �nd a way to give the system more tolerance, that could beachieved by forcing the covariance in each state to bigger that is is really, but Itwould need to be evaluated in detail.
We have also showed that tough PCA is not required to have good results, itcould help reduce the number of required dimensions. As the eigenvectors of thecovariance matrix can be pre-computed before launching the following, it couldhelp reduce the cpu cost of the HMM decoding at the expense of a preprocessingcomputation. Again, this would need to be investigated in details.
Though the automatic segmentation of the data we have used can be better thanthe manual one, the manual segmentation has proven to be e�ective both foranimations and for real dances and to allow easy and accurate training on severalexamples. Di�erent kinds of automatic segmentation allowing the training shouldalso be investigated. We could imagine using the HMM as in [19] to perform thesegmentation for us.
We have also shown that the barycenter decoding resulted in smoother paths thanthe max decoding in the presence of ambiguities among di�erent states. This ispreferable in the case of live performance because we don't want our system tomove back and forth alternatively between di�erent states. But we consider thatthe decoding strategy should be choosen or designed on a case by case basis de-
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pending on the application in order to achieve optimal results.
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