Human Motion Following using Hidden Markov Models
and application to dance performance

Remy Muller
Remy.Muller@ircam.fr

mars-june 2004
Abstract

This work presents a movement following system based on Hidden Markov Models and Motion descriptors extracted from video. The primary application is in performing arts such as dance but the methodology remains general enough to be applied in other contexts as long as appropriate descriptors are available.

Different motion features, segmentations, decoding methods and data analysis such as Principal Components analysis have been performed and are compared in order to show how they affect the following system. Both contemporary dances and synthetic animations have been used in order to evaluate the system.
Contents

1 Introduction 2

2 Methodology 4
 2.1 Video Material 4
 2.2 Hypothesis 5
 2.3 motion features 5
 2.3.1 skeleton 6
 2.3.2 Image moments 6
 2.4 Principal Components Analysis 9
 2.5 Hidden Markov Model 10
 2.5.1 Structure 10
 2.5.2 Observations 11
 2.5.3 Temporal segmentation 12
 2.5.4 Initialization 13
 2.5.5 Following 14

3 Results 16
 3.1 features 18
 3.2 learning 19
 3.3 Decoding 21
 3.4 PCA 22
 3.5 Segmentation 25

4 Summary and conclusion 28

Bibliography 30
Chapter 1

Introduction

Performing arts often requires the synchronization between performers, music, video and lightening. The simplest solution is to ask performers to follow the music and technicians to follow the performers. But when a fine-grained temporal interaction is required and lots of different events have to be generated in response to what’s happening on the stage, the task becomes quickly unmanageable, even for teams of talented professionals. Tradeoffs have to be made in order make the performance realizable. We aim at using computer vision and machine-learning techniques to delegate to the computer the task of the doing the following.

Though machine-learning techniques have been used for a long time in applications such as Robotics, Speech recognition or DNA classification, their use for motion and gesture recognition has only been made possible recently because of the memory requirements and cpu power required by the algorithms. Most of the researches and applications have been focused on hand-sign recognition [27] and gait characterization [21] for applications such as communication, rehabilitation and surveillance.

An overview of Human motion analysis and gesture recognition can be found in [12], [9] and [22] where the common problems such as detection, classification, recognition are exposed as well as the tools that are usually used to solve them. One can also note that finite-state machines [16], Markov chains [3], Hidden Markov Model[2], [20] or their derivatives [6], [10] are heavily used to model the temporal dimension of motion or more generally the sequences of gestures.

The use of these techniques for artistic applications is still emergent. One important tool called Eyesweb [1] has been made available with the European project MEGA with a strong involvement toward multimodal analysis of expressive ges-

1Multisensory Expressive Gesture Applications.
It was very helpful to us for extracting the motion descriptors since all that we needed was already included in it and we were thus able to concentrate ourselves on the interpretation of these parameters.

In the same time, Ircam has been involved since 1984 in following systems with the score—following with the works of Barry Vercoe and Miller Puckette [24], [25], [17]. It was refactored later by Nicolas Oriol who introduced the use of HMM to perform the following [13], [14], and a master thesis [15] was done last year to evaluate the possibility to extend it to perform text following in the case of theater applications and to help following singing voice.

The work that is being reported in this paper is part of a new research project being developed at Ircam dedicated to performing Arts whose scope and goals are described in [8] and we have dedicated it particularly to dance performance.

The works being exposed in [11] and [7] which are technically close to our work with respect to the methods used, differ from ours because we are concerned by the following—synchronization problem rather than the classification of elementary gestures for dance notation and because we want our system to be able to work in real—time.

The fact that we want to apply this research to artistic context will always impose us the following constraints:

- The number of available examples used to trained our model(s) will always be limited and thus the validity of the statistics hypothesis too.

- We won’t be able to use non causal or cpu intensive algorithms such as Viterbi or the forward—backward procedure. Refer to [18] for explanations about these methods.

We will first expose the system we have used to perform the following with the definition of the motion descriptors, the definition of the HMM, the segmentation methods and the decoding strategies, then we will expose different results related to each of these aspects and we will finally present the future directions that could be explored using this work as a base.
Chapter 2

Methodology

2.1 Video Material

We have used short dance videos 300x200 and less than 1 minute long gathered from choreographer Hervé Robbe that have been recorded at the Centre National de Dance du Havre with DV cameras. Each dance has been performed twice by two different dancers. Which gives us 4 different examples per dance.

To evaluate our work we’ve also generated synthesis dances animations based on motion capture data – from optical motion capture system Vicon –. The animations were generated in order to have different time-line.

![Figure 2.1: snapshots from one of the video dances](image1)

![Figure 2.2: snapshots from one of the animation](image2)
2.2 Hypothesis

During all this work, we have supposed that:

- We have a 3D motion projected on a 2D surface
- the camera is fixed and the focal plan doesn’t change
- the lightening is constant
- there is a single single dancer in the scene
- the only motion is the human one over a constant background
- the silhouette is commensurable with the image.

2.3 motion features

A 300x200 RGB image would represent 180000 parameters/dimensions per frame. Using a dimension reduction technique such as PCA directly on the sequence of images would be very interesting, but we couldn’t try it because of memory limitations. It was thus mandatory for us to choose a restricted number of parameters to represent the motion occurring in the image and leave the information concerning the rest of the image.

I’ll present here a set of motion descriptors that we have used during this work that were all provided by the image processing and analysis software EyesWeb [1].

The blob analysis uses the silhouette which is a binary image divided into background (black 0) and silhouette (white 1). This is the most simple way of computing it.

\[
S_k = \text{threshold}(Image_k - \text{Background})
\] (2.1)

It’s also possible to use a better estimate as defined in [26]:

\[
S_k = \text{threshold}(Image_k - \text{Background},\text{Background})
\] (2.2)

Where the threshold function uses the histogram of the background.

In the case of a changing background – which is not our case – it would still be possible to update the background with an adaptive low-pass filter or have a
2.3 motion features

more sophisticated and robust segmentation, but this is out of the scope of this document.

2.3.1 skeleton

This is a particular aspect of blob analysis. Eyesweb has a module trying to match a face human skeleton to the image silhouette by dividing the blob in multiple areas and computing the centroid of each area. It gives the following data:

- Bounding rectangle $x,y,width,height$
- Head x,y
- Center of gravity x,y
- Left–Right Hand x,y
- Left–Right elbow x,y
- Left–Right shoulder x,y
- Left–Right knee x,y
- Left–Right foot x,y

Most of the time, the dancer doesn’t face the camera, therefore the computed points hardly match the human body parts but they still are interesting to be considered as a multi-resolution description of the blob, reminiscent of quad-tree decomposition and with a small (22) set of points.

2.3.2 Image moments

Another way of characterizing the silhouette, is to use moments.

cartesian spatial moments

The first that can be considered are the cartesian moments:

$$m_{pq} = \sum_{x=1}^{M} \sum_{y=1}^{N} x^p y^q I(x,y)$$ \hspace{1cm} (2.3)
2.3 motion features

Eyewitness only provides moments $m_{00}, m_{01}, \ldots, m_{30}, m_{03}$. One can note that m_{00} gives the surface of the blob, m_{01} and m_{10} gives its centroid. And m_{22}, m_{11} and m_{02} gives its variance and its orientation.

Normalized moments

they are scale invariant.

$$
\gamma = \frac{p + q}{2} + 1 \quad \forall p, q \geq 2
$$

(Eq. 2.4)

Eyewitness only provides $\nu_{00}, \nu_{01}, \ldots, \nu_{30}, \nu_{03}$

central cartesian moments

$$
\mu_{pq} = \sum_{x=1}^{M} \sum_{y=1}^{N} (x - \bar{x})^p (y - \bar{y})^q I(x, y)
$$

(Eq. 2.5)

This is a variant which is translation invariant. Eyewitness only provides moments $\mu_{00}, \mu_{01}, \ldots, \mu_{30}, \mu_{03}$
2.3 motion features

Figure 2.4: skeleton on a real silhouette

normalized central moments

\[\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}} \quad \gamma = \frac{p + q}{2} + 1 \quad \forall p, q \geq 2 \]

These moments are scale and translation invariant.

Hu moments

\[
egin{align*}
I_1 &= \eta_{20} + \eta_{02} \\
I_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\
I_3 &= (\eta_{20} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\
I_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\
I_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[\eta_{30} + \eta_{12}]^2 + 3(\eta_{21} + \eta_{03})^2 \\
&\quad + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{20} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\
I_6 &= (\eta_{30} - \eta_{02})[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\
&\quad + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\
I_7 &= (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[\eta_{30} + \eta_{12}]^2 + 3(\eta_{21} + \eta_{03})^2 \\
&\quad + (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})[3(\eta_{20} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]
\end{align*}
\]

These moments have the good property (if required by the application) to be scale, translation and rotation invariant and to be orthogonal.

We have only exposed here *instantaneous* motion descriptors but there are many systems using accumulation of images over a time window to recognize gestures.

IRCAM Tutors: Frederic Bevilacqua, Monique Chiollaz CREATIS
However we have decided not to show them because they introduce a delay in the following system. It’s important to keep in mind that 1 frame at a rate of 25 images per second represents 40 milliseconds which is already much more than the delay the ear can perceive, especially if rhythmic musical events have to be synchronized to the dance.

2.4 Principal Components Analysis

Most of the features we use are correlated and can be affected by different kinds of perturbations due to variations in the lighting conditions, DV compression and bad silhouette segmentation. We want to evaluate the advantage of using a Principal Components Analysis decomposition both as a dimension reduction technique and as a perturbation reduction tool (supposing that the perturbation is low compared to the signal). It can also be a powerful allowing us to project the data set into the two or three most significant components of the features space in order to have a visual understanding of how the data set is distributed. Refer to [23] for more information on PCA.

If we have a sequence of parameters $\{P_t\}$ that we can represent by a matrix P where P_t is a vector of parameters.

$$P = [P_1P_2...P_T]$$

(2.7)

P is of dimension $N \times T$ and N is the number of parameters.

To perform PCA, we deduce the mean of the data set for each parameter in order to have centered data.

$$P' = P - \bar{P}$$

$$\bar{P} = \begin{pmatrix} \bar{p}_1 \\ \vdots \\ \bar{p}_N \end{pmatrix}$$

then we search a reduced set of R orthogonal vectors e_i which will best describe the data set in a least-squares sense, i.e. the Euclidian projection of the error is minimized. The common method of computing the principal components is to find the eigenvectors of the covariance matrix C of size $N \times N$ such that:

$$C = P'P'^T$$

(2.8)

and
2.5 Hidden Markov Model

HMMs are probabilistic finite-state automata, where transitions between states are ruled by probability functions. At each transitions, the new state emits a value with a given probability. Emmissions can be both symbols from a finite alphabet and continuous multidimensional values. In markovian process, transition probabilities are assumed to depend only on a finite number of previous transitions (usually one) and they may be modeled as a Markov chain. The presence of transition with probability equal to zero defines the topology of the model, limiting the number of possible paths. For more in formation on HMM see [18].

2.5.1 Structure

We've used a very simple left-right structure associating one state with a segment of the video.

The graph can be represented by the following transition matrix:

\[
A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1N} \\
 a_{21} & a_{22} & \cdots & a_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{N-1,1} & a_{N-1,2} & \cdots & a_{N-1,N} \\
 a_{N,1} & a_{N,2} & \cdots & a_{NN}
\end{pmatrix}
\]

\[
C e_i = \lambda_i e_i \tag{2.9}
\]

It can be done using a singular value decomposition. Then the last step consists to keep the \(R \) eigenvectors that have the highest eigenvalues \(\lambda_i \). We can then project our original sequence in the eigensubspace.

\[
P' = U^T P, \quad U = [e_1 \ldots e_R] \tag{2.10}
\]

We then have the sequence \(\{P'_t\} \) that we can use as the observations of our following system instead of using directly the parameters given by the video analysis.

We have also considered using Kernel PCA [28] because it can handle inherent nonlinear variation of the data set and transform it to a linear variation thus making the separation of the classes easier with linear tools, but that was too late to be made in practice.
With a_{ij} being the probability of going from state i to state j and N the number of states.

$$a_{ij} = P(q_{t+1} = S_j | q_t = S_i) \quad 1 \leq i, j \leq N$$ \hspace{1cm} (2.11)

It models implicitly the probability of staying a time t in a given state as an exponential distribution.

$$p_i(d) = (a_{ii})^{d-1}(1 - a_{ii})$$ \hspace{1cm} (2.12)

with d being the duration in state i. But we could extend it as in [18],[13],[14] and [15] to multiple states giving more degrees of freedom to model the duration or/and refine the segmentation in subsegments.

2.5.2 Observations

In our model, each state of the model emits a vector of continuous observations per video frame.

$$O = \{o_1, o_2, \ldots, o_M\}$$ \hspace{1cm} (2.13)

with M being the number of observations per state. The state is characterized by its probability distribution.

$$b_j(O) = \varphi[O, \mu_j, U_j] \quad 1 \leq j \leq N$$ \hspace{1cm} (2.14)

with mean vector μ_j and the covariance matrix U_j in state j and φ being log-concave to ensure the convergence of the re-estimation procedures.
We then have a model \(\lambda = [A, B, \pi] \) of our dance with \(B = \{b_j\} \) and \(\pi \) being the initial state probability distribution.

These observations can be any set taken among the motion features exposed before and we will compare their respective advantages and drawbacks in the next chapter.

![Figure 2.6: skeleton parameters for a dance](image)

2.5.3 Temporal segmentation

Once we have one or several executions of a dance, in order to build a HMM, we have to divide it into several segments that can be associated to states of the HMM. Since we’ve used a simple left–right model, there is a one-to-one mapping between a segment and a state.

manual

Most of the temporal segmentation of the dances in this work has been done manually either by looking at some key gestures–postures in the dances, or by looking at the parameters extracted from the video in order to create states well
localized in the feature-space.

In the case of the synthetic dances, as we had the information relative to the footsteps for all the variations, we have use them as the markers for the segmentation. Therefore we were able to compare the same segments across the different animations with no error introduced by a bad segmentation.

automatic

When drawn in the feature-space, the point distributions generated by the dances seemed hard to cluster using an algorithm such as *K-means*. They would better viewed as trajectories with local changement of direction.

Therefore we have used a criterion δ based on the directness of the trajectory as defined by Volpe [26], i.e. the ratio between the direct path between the 2 extreme points and the trajectory path.

$$
\delta_t = \frac{\|P_{t+N} - P_{t-N}\|_2}{\sum_{i=t-N}^{t+N-1} \| P_{t+i+1} - P_{t+i} \|_2}
$$

and used the local minimums of the directness as markers.

2.5.4 Initialization

Once we have a segmentation for all the dances, we are able to compute the mean vector and the covariance matrix for each state and then model the probability density function per state.

We’ve used gaussian distributions but it could be improved since the experimental distribution we have are far from being gaussian but are better seen as trajectories segment in the feature space.

We are also able to compute the mean duration for each state and then create the transition matrix using the following equation.

$$
\delta_i = \frac{\sum_{d=1}^{\infty} d P_i(d) (a_{ii})^{d-1} (1 - a_{ii})}{\sum_{d=1}^{\infty} a_{ii} (1 - a_{ii})} = \frac{1}{1 - a_{ii}}
$$

IRCAM Tutors: Frederic Bevilacqua, Monique Chiozzlaz CREATIS
2.5 Hidden Markov Model

2.5.5 Following

As for the score-following, we want our system to be implemented in real-time thus we have only used the *forward procedure* which has the advantage to be causal and that can be implemented iteratively.

\[\alpha_t(i) = P(O_1, O_2 \ldots O_t, q_t = S_i | \lambda) \]
(2.17)

i.e. the probability of the partial observation sequence \(O_1, O_2 \ldots O_t \) and state \(S_i \) at time \(t \) given the model \(\lambda \)

It can be computed using the following equation:

\[\alpha_1(i) = \pi_i b_i(O_1) \quad 1 \leq i \leq N \]
(2.18)

\[\alpha_{t+1}(j) = \left(\sum_{i=1}^{N} \alpha_t(j) a_{ij} \right) b_j(O_{t+1}), \quad 1 \leq t \leq T - 1, \quad 1 \leq j \leq N \]
(2.19)

If we follow this procedure we can then compute the probability of the observation sequence until time \(t \) given the model:

\[P(O_1, O_2 \ldots O_t | \lambda) = \sum_{i=1}^{N} \alpha_t(i) \]
(2.20)

And if we scale the \(\alpha_t \) such that

\[\hat{\alpha}_t(i) = \frac{\alpha_t(i)}{P(O_1, O_2 \ldots O_t | \lambda)} \]
(2.21)

we then have for each \(t \) the state distribution probability.

\[\hat{\alpha}_t(i) = P(q_t = S_i | O_1, O_2 \ldots O_t, \lambda) \]
(2.22)

Now that we are able to have the state distribution for each time instant \(t \), we have to take a decision about the state that we consider the more likely for each \(t \), that is what is called *decoding*. We have used two strategy that are exposed below and that will be compared in the next chapter.
max decoding

In the max decoding, we simply select the most probable state \tilde{q}_t so that:

$$\tilde{q}_t = \arg \max_i \hat{q}_t(i)$$

(2.23)

and it is possible to go a little further and use $\max \{ \hat{q}_t(i) \}$ as the quality of the estimation.

barycenter decoding

It is also possible to use the barycenter of $\{ \hat{q}_t(i) \}$:

$$\tilde{q}_t = \frac{1}{N} \sum_{i=1}^{N} i \hat{q}_t(i)$$

(2.24)

which has a smoother behaviour when there is uncertainty among different states.

It would be possible to use other strategies using prior knowledge and restrictions on the possible paths but we’ve restricted ourselves to these two methods. In artistic applications, the decoding step could be left to the final application to better adapt to the context.

It’s important to note that using the forward procedure, the decoded path can be non-optimal with respect to the path that would be decoded offline by the viterbi algorithm. It can even not be allowed by the HMMs topology.
Chapter 3

Results

In order to clarify the results that are going to be exposed in this chapter, I will define the different measures of error we have used and explain their advantages and drawbacks.

First we have used the mean rms error: \(mre \)

\[
mre = \frac{1}{TN} \sqrt{\sum_{t=1}^{T} (\tilde{q}_t - q_t)^2}
\]

(3.1)

and the mean absolute error: \(mae \)

\[
mae = \frac{1}{TN} \sum_{t=1}^{T} |\tilde{q}_t - q_t|
\]

(3.2)

They both give an average measure of the how much the recognized path differs from the original one.

We have also used the max error: \(me \)

\[
me = \frac{\max |\tilde{q}_t - q_t|}{N}
\]

(3.3)

It gives an idea about what the worse case error can be, which is of extreme importance in live performance.

Since these three errors are normalized by the number of states \(N \) they should be treated with care when comparing segmentations with different number of states.
And we have finally used the mean binary error: m_{be}

$$m_{be} = \frac{1}{T} \sum_{t=1}^{T} |\tilde{q}_t - q_t| \quad (3.4)$$

with

$$|x| = \begin{cases} 1 & \text{if } |x| \geq 0.5 \\ 0 & \text{otherwise} \end{cases}$$

We could have called it the coincidence rate instead, it gives an idea of how much the recognized path coincide with the original one. It is very sensitive because of the binary threshold and is only useful when the two paths are very close from each other. Otherwise the quickly becomes very high. For example a perfect recognition but with a pure delay would lead to a very bad result.
3.1 features

Though we have tried many kinds of parameters during this work, we have mainly used the skeleton parameters and image moments. We will compare here the skeleton parameters with the Normalized Moments taken on the silhouette image that we will shorten to SNM. We could use the Hu moments or the cartesian moments but the results are quite similar and we won’t expose them here because of space. We have used HMM trained on the four examples to follow each example individually and have averaged the results to give a global mark to the feature.

We can see on figure 3.1 that the skeleton gives significantly better results than the SNM for the different kind of errors. That can be explained by the fact that:

- The SNM only goes until order 3, which only conveys lows spatial frequency information whereas the skeleton is a kind of multi-resolution description of the silhouette and thus catches more of its spatial frequency contents.

- We have 22 parameters for the skeleton and only 9 for the SNM. If we consider that each parameter brings the same amount of information – which is not the case since they are correlated – the skeleton has more chance to give us a discriminant description.

In the rest of the results exposed in this chapter, we have used either the SNM, the skeleton or both depending on what we wanted to highlight.
3.2 learning

In this chapter, in order to evaluate the effect of learning on the following performance without being disturbed by the similarities and dissimilarities between the different examples. We have computed all the possible couples \((L, R)\) where \(L\) is the set of examples used for the learning step and \(R\) is the set of examples being recognized. For example when learning on 3 examples we have the following possibilities: \((\{1, 2, 3\}, \{1, 2, 3, 4\}\), \((\{1, 2, 4\}, \{1, 2, 3, 4\}\) and \((\{2, 3, 4\}, \{1, 2, 3, 4\}\). Then all the results have been averaged in order to have a unique error for each learning situation\(^1\). For figure 3.2 we have used the skeleton parameters on the set of real videos dances.

On the figure 3.2 we can see that the different errors are very high (about 76% for the \textit{me!}) when the learning is only performed on one example. In fact the models is over-fitted to the particular example and is totally unable to recognize the other examples\(^2\). Then the errors quickly fall very low (5.55% for the \textit{me)} because

\(^1\) 1 example, 2 examples, 3 examples and 4 examples.

\(^2\) In some cases, the \(\alpha_i(t)\) are so low that they exceed the machine’s precision range.
and 1.04\% for the \textit{mbe}) giving very good results even with three examples and improving slightly with four. Because of the limited number of example we are not able to know if the error would rise with more examples or if it would converge to a stable point. In comparison, the \textit{snm}, which are not put in this chapter because of space, gives almost constant results across the different possible training but with greater errors as it can be seen on figure 3.1.

Note that when learning on three examples and recognizing the remaining one which is the situation we would meet in live performances but that we won’t show because of space, the results are slightly lesser, between 5\% and 15\% for the \textit{mbe}, than when the example belong to the training set but it stays very usable. But when the learning is performed on only 2 examples and following and example that is not in the training set, the results are very bad, 60\% for the \textit{mbe} and the error is maximum when the dancers are different.
3.3 Decoding

We wanted to evaluate how the decoding strategy affects the recognition performance. Optimizing the decoding strategy improves the overall recognition rate. This becomes particularly apparent when using a suboptimal set of features such as the SNM taken on the silhouette, as shown in figure 3.3. We used both the real dances and the animations and only used tests where HMMs were trained with the four examples.

We can see in table 3.3 that the barycenter method has lower mre, me and $\text{mb}e$ than the max method. The difference is particularly striking with the $\text{mb}e$. However the mae is in favour of the max method. Since the mre penalize the distance to the original path more than the mae it means that the barycenter method stay closer to the original path.

In the rest of this document, if not mentioned explicitly, the decoding method will always be the barycenter.
Table 3.1: decoding evaluation

<table>
<thead>
<tr>
<th></th>
<th>max</th>
<th>barycenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean rms error (%)</td>
<td>1.74</td>
<td>1.61</td>
</tr>
<tr>
<td>max error (%)</td>
<td>6.75</td>
<td>5.16</td>
</tr>
<tr>
<td>mean abs error (%)</td>
<td>1.20</td>
<td>1.41</td>
</tr>
<tr>
<td>mean binary error (%)</td>
<td>38.89</td>
<td>14.47</td>
</tr>
</tbody>
</table>

3.4 PCA

![Figure 3.5: trajectories of each video dance projected on the 2 first principal components of the 4 dances data set](image)

We can see on figure 3.4 that the four different examples have very similar trajectories when projected on the first two principal components. The different segments are well localized in the feature space and the manual segmentation is consistent across the examples. It is even possible to view that A1 ex1 and A1 ex2 have more in common than A1 bis ex1 and A1 bis ex2. In fact it matches with the fact that they correspond to two different dancers.

IRCAM Tutors: Frederic Bevilacqua, Monique Chiollaz CREATIS
We wanted to know how the use of PCA as a preprocessing step would help improve following results and reduce the number of required parameters to perform the computation.

We have used both tests with HMMs being trained with an example and following the same example and tests with HMMs being trained with the four different examples and following these four examples successively. Then for each dimension the respective errors have been averaged in order to give a global result for each dimension.

We can see in figures 3.4 and 3.4 – as we would have expected – that the errors decrease almost monotonously with the number of dimensions in both animations and real dances. We can also note that there is no real benefit to use more than about height parameters for the real dances and twelve for the animations when the original number of parameter for the skeleton is 22. It is easily explained by the fact that most of the skeleton parameters are correlated as it can be seen in figure 2.5.2.

We can also note that in the case of the real dances which were subject to different kind of perturbations because of the lightening condition the DV compression and the silhouette segmentation step, the PCA doesn’t help improve the results, there is no minimum in the error curves for which the perturbations would have been removed while keeping the useful signal.

Figure 3.6: pca dimension reduction effect on error, animation data
Figure 3.7: pca dimension reduction effect on error, real data
3.5 Segmentation

We wanted to evaluate the influence of the segmentation method on following. Because we couldn’t have an automatic segmentation having the same meaning across different dances, we have only used HMMs trained on one example and recognizing the same example. This way we should have the best results possible since the model is fitted to this example, and only evaluate the influence of the segmentation method.

We have also taken care of the number of states in each segmentation so that they either match or are similar in order to be able to compare the errors.

Animations

For the animations, we already had a kind of manual segmentation given by the footsteps of the character, that had been used to generate the animation. Furthermore, their use can be justified by the fact that they are associated to well defined instants of the movement and can be considered as a “natural” segmentation.

In table 3.5 and figure 3.3 we can see that the error rates are significantly lower when using the footsteps to segment the animation, than when using an automatic segmentation. This shows that the footsteps allows for an effective segmentation.
3.5 Segmentation

<table>
<thead>
<tr>
<th></th>
<th>automatic</th>
<th>footsteps</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean rms error (%)</td>
<td>1.42</td>
<td>1.17</td>
</tr>
<tr>
<td>max error (%)</td>
<td>1.13</td>
<td>0.94</td>
</tr>
<tr>
<td>mean abs error (%)</td>
<td>4.40</td>
<td>3.56</td>
</tr>
<tr>
<td>mean binary error (%)</td>
<td>5.24</td>
<td>1.90</td>
</tr>
</tbody>
</table>

Table 3.2: segmentation evaluation on synthesis data of the movement.

Videos

For the videos, the manual segmentation was made by searching some key instants and postures simultaneously in the different examples, and the automatic segmentation was still made using the curvature of the trajectory in the feature space.

In table 3.5 and figure 3.5 we can see that in this case the automatic segmentation has better results. It is easily explained by the fact that the automatic segmentation, is designed in order to have each state associated to - as much as possible- non overlapping regions of the feature space.
3.5 Segmentation

<table>
<thead>
<tr>
<th></th>
<th>automatic</th>
<th>manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean rms error (%)</td>
<td>1.42</td>
<td>1.17</td>
</tr>
<tr>
<td>max error (%)</td>
<td>1.13</td>
<td>0.94</td>
</tr>
<tr>
<td>mean abs error (%)</td>
<td>4.40</td>
<td>3.56</td>
</tr>
<tr>
<td>mean binary error (%)</td>
<td>5.24</td>
<td>1.90</td>
</tr>
</tbody>
</table>

Table 3.3: segmentation evaluation on real data

Furthermore, in this experiment we have forced the automatic segmentation to use the same number of state as the manual one in order to compare them equally. But the natural number of states given by the automatic segmentation was originally about twice the number of states given by the manual one. It means that the manual segmentation is under-specified with respect to the data set.

It would be interesting to investigate a mixed multilevel segmentation with the top layer being defined manually by the choreographer with respect to some key instants in the dance – the ones to be retrieved with precision – and let the system define automatically a finer grained structure inside those states in order to ease the following task.
Chapter 4

Summary and conclusion

We have presented a general following system applied to dance with whom we have had good results on both on animations and real videos dances using the skeleton features. Our methodology has proven to be valid which can let us suppose that it could be transposed successfully in other domains of application.

We have showed that the system can be exposed to over-learning when there are too few examples but that it converge quickly to good results even with only 4 examples. It suggests that when there is no possibility of collecting several examples we should find a way to give the system more tolerance, that could be achieved by forcing the covariance in each state to bigger that is is really, but It would need to be evaluated in detail.

We have also showed that tough PCA is not required to have good results, it could help reduce the number of required dimensions. As the eigenvectors of the covariance matrix can be pre-computed before launching the following, it could help reduce the cpu cost of the HMM decoding at the expense of a preprocessing computation. Again, this would need to be investigated in details.

Though the automatic segmentation of the data we have used can be better than the manual one, the manual segmentation has proven to be effective both for animations and for real dances and to allow easy and accurate training on several examples. Different kinds of automatic segmentation allowing the training should also be investigated. We could imagine using the HMM as in [19] to perform the segmentation for us.

We have also shown that the barycenter decoding resulted in smoother paths than the max decoding in the presence of ambiguities among different states. This is preferable in the case of live performance because we don’t want our system to move back and forth alternatively between different states. But we consider that the decoding strategy should be choosen or designed on a case by case basis de-
pending on the application in order to achieve optimal results.
Bibliography

IRCAM Tutors: Frederic Bevilacqua, Monique Chiollaz CREATIS

