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Introduction

This article discusses the measurement of acoustic source
radiation patterns with surrounding spherical micro-
phone arrays in the context of acoustic holography. For
practical reasons the spherical wave spectrum, which
forms the basis for spherical holography, is determined
through spherical harmonic transform (SHT) of discrete
observations on the sphere. The discrete SHT and its
limitations are addressed, particularly with emphasis on
spherical harmonic order truncation and angular sam-
pling; the existence and kind of spherical harmonic de-
compositions for different fundamental angular sampling
schemes are summarized and compared for a varying
number of sampling points. In conclusion, feasible array
configurations for accurate acoustic holography are out-
lined with respect to numerical accuracy and hardware
efficiency.

Spherical Wave Spectrum

The spherical harmonic transform (Fourier analysis) pro-
vides a decomposition of acoustic wave fields into their
spherical wave components. The expansion coefficients
are also referred to as spherical wave spectrum [1, 2].
The angular portions of the solution are typically com-
bined into single functions, the spherical harmonics (SH)
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where n denotes the order and m the degree of the SH,
Pmn the associated Legendre functions, φ and θ are the
azimuth and zenith angles, respectively, and i =

√
−1.

The normalization in Eq. (1) is chosen such that∫
S2
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′
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where δij is the Kronecker delta, dΩ = sin θdθdφ denotes
the standard rotation invariant measure on the 2-sphere
S2, and (·)∗ denotes complex conjugation.

The complex spherical harmonic expansion coefficients
ψnm can be determined from the sound pressure
p(r0, θ, φ) on a sphere with radius r = r0 using forward
harmonic transform [3]

ψnm(r0) =
∫
S2
p(r0, θ, φ)Y mn (θ, φ)∗dΩ, (3)

and the expansion in terms of SH becomes

p(r0, θ, φ) =
∞∑
n=0

n∑
m=−n

ψnm(r0)Y mn (θ, φ). (4)

The spherical wave spectrum ψnm uniquely defines the
radiated sound pressure and thus provides a reasonable
description format for acoustic radiation analysis and
synthesis.

Discrete Spherical Harmonic Transform

The spherical wave spectrum ψnm can be determined
from a limited number of discrete observations on the
sphere. This requires to suitably capture the sound field,
considering the spatial sampling theorem and the free
field assumption.

It can be assumed that real sound sources exhibit a band-
limited spherical wave spectrum, which only consists of
components with orders n ≤ N. In this case, Eq. (4) can
be reformulated in vector-matrix notation

pN = YN ψN, (5)

where YN consists of sampled spherical harmonics yN,
ψN denotes the vector of corresponding SH coefficients,
and pN the sound pressure at the discrete observation
points. Determining ψN from pN requires to invert YN,
which in many cases is badly conditioned.

The singular value decomposition (SVD) provides a well
established solution method [4]. It decomposes the ma-
trix YN = U S V T into a diagonal matrix S and two
orthogonal matrices U and V , containing the singular
values and singular vectors of YN, respectively. Keep-
ing only the K non-vanishing singular values in S̃ and
cropping the orthogonal matrices accordingly regularizes
the inverse Y †N = Ṽ S̃−1 ŨT. The solution of Eq. (5)
becomes

ψ̃N = Y †N p. (6)

Depending on the dimensions of YN, the number of non-
vanishing singular values, K = #{sl : sl ≥ a smax}, with
0 < a < 1, and the number of observation points, L,
Eq. (6) has the following properties:

1. K = (N + 1)2 ≤ L: Discrete spherical harmonic
“transform” (DSHT) or spectral analysis,

2. K = L ≤ (N + 1)2: Discrete spherical harmonic
interpolation (DSHI) or pseudo-spectral analysis,



3. K < min[(N + 1)2,L]: Discrete spherical harmonic
approximation (DSHA).

In the DSHT case, the pseudo-inverse provides an exact
SH analysis ψ̃N = ψN for a strictly band-limited radia-
tion pattern p = pN; the inverse becomes (Y T

N YN)−1Y T
N

and inverts Eq. (5) from the left. In general, exact
DSHT is required to provide numerically stable compu-
tations for acoustic holography. In the DSHI case, the
pseudo-inverse behaves as interpolation that achieves an
exact representation at the sampling nodes and approx-
imates arbitrary radiation patterns pN = p by order-
limited spherical harmonics expansion; the inverse be-
comes Y T

N (YNY
T
N )−1 and inverts Eq. (5) from the right.

For the DSHA case, neither exact transform, nor exact
interpolation is feasible.

Fig. 1 compares fundamental discretization schemes with
a varying number of sampling points L on the sphere. It
provides a classification into the above mentioned three
part scheme for SH order truncation N = 9. The follow-
ing spherical discretization schemes are considered: Ex-
tremal points for hyperinterpolation (hi), spiral points
(sp), equal-area partitions (eqa), HEALPix (healpix ),
Gauss-Legendre grid (gl), equi-distant cylindrical grid
(ecp), and equi-angle grid (equiangle), cf. [6].

The condition number of the matrix Y , i.e. the ratio be-
tween its maximum and minimum singular value, mea-
sures the sensibility and stability of the solution of the
inverse problem. If the condition number is too large,
regularization by SVD is required. In Fig. 1, the regu-
larization parameter was chosen to be a = −20dB and
matrices with condition numbers cond{Y9} ≤ 20dB were
left or right inverted without regularization, i.e. the case
of DSHT or DSHI. Greater condition numbers are con-
sidered to require limitation by regularization, hence be-
come a DSHA.

It can be seen from Fig. 1(b) that near the critical num-
ber of sampling nodes, L = (N + 1)2, most discretization
schemes only allow for DSHA. In the context of critical
sampling, the extremal points designed for hyperinter-
polation provide an exact and well-conditioned inverse,
which is both left and right inverse to the spherical har-
monics expansion. This inversion is then called hyperin-
terpolation and provides both DSHT and DSHI.

Conclusions

In this article we have discussed the spherical harmonic
transform of acoustic source radiation patterns measured
at discrete observation points on a surrounding sphere.
The inverse of the matrix YN is regularized using SVD.
As a result, a classification of different fundamental dis-
cretization schemes with respect to the quality of acoustic
holography is given. The analysis of simulation results
clearly shows that the hyperinterpolation, spiral points,
and equal area partitioning schemes provide an exact
transform for a minimal number of required sampling
nodes and thus reduce the measurement effort.

0 50 100 150 200 250 300 350

hi

sp

eqa

healpix

gl

ecp

equiangle

L

Comparison of Various Discretization Schemes on the Sphere
For Decomposition Order N=9, and cond  Y

9
 < 20dB.

 

 

DSHI
DSHA
DSHT
L=(N+1)²

(a)

50 60 70 80 90 100 110 120 130

hi

sp

eqa

healpix

gl

ecp

equiangle

L

 

 

DSHI
DSHA
DSHT
L=(N+1)²

(b)

Figure 1: Existence and kind of SH decompositions for dif-
ferent spherical discretization schemes with L sampling points
and order truncation N = 9; (b) highlights the region around
the critical number of sampling points (vertical dash-dot line)
to illustrate the unique behavior of the hyperinterpolation.
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