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INTRODUCTION 
The variable acoustics performance hall of IRCAM 
(Espace de projection, ESPRO) provides a remarkable 
flexibility with regard to form, volume and acoustical 
properties. The walls and ceiling consist of remotely 
controlled and individually rotatable prisms with three 
different material surfaces to absorb, reflect or diffuse 
the incident sound. To vary the hall’s volume and shape 
three ceiling panels can be raised or lowered 
independently, and two roller curtains allow for 
separating the different volumes; the volume can be 
changed in the range of 24 x 15.5 x (0.8 – 10.5) m3. The 
variable acoustics is thus achieved ‘passively’. 
 
Electro-acoustic sound reproduction systems provide 
the means of addressing variable acoustics ‘actively’. 
This approach is apart from what is traditionally 
considered amplification and provides acoustical 
environments tailored to each production and aims at 
varying and controlling the acoustics to a greater extent 
than to what is possible by passive variable acoustics.  
 
Virtual acoustics extends this approach to real-time 
synthesis and modeling of three-dimensional sound 
fields. The artistic play of spatial sound adds a further 
dimension to expressivity and embodiment in music 
performance. It may be, for instance, used to re-define 
and distort spatial relationships, to violate the spatial 
realism of sound and to break up its natural relation to 
the radiating body, with the intention to confuse the 
listener’s understanding of sound in space. 

The rapid increase in available computing power and 
the fast evolution of audio interfacing technologies have 
led to a new generation of immersive audio systems 
with a high number of playback channels. Several 
approaches exist to reproduce spatial sound with 
surrounding loudspeaker arrays. These techniques can 
be categorized into hearing-related model approaches 
and physical sound field reproduction. The latter aims at 
holophonic reconstruction of 2D/3D sound fields. Wave 
field synthesis (WFS) and higher-order Ambisonics 
(HOA) fall, for instance, in this category.  
 
This article reviews the theory with regard to the 
installation of a 350-loudspeaker HOA/WFS array in 
the ESPRO. The discussion is mainly focused on the 
definition of a feasible grid of loudspeakers for 3D 
HOA and the design of decoders to overcome the 
practical limitations of using non-uniform and/or 
hemispherical loudspeaker arrays.  
 
THEORETICAL BACKGROUND 
This section briefly discusses the fundamental solutions 
to the acoustic wave equation in spherical coordinates. 
For notational simplicity, the following equations are 
given in the frequency domain with respect to time; the 
dependency on the frequency variable ω is omitted in 
the notation. It will be clear from the context of the 
discussion if the quantity is in the frequency or in the 
time domain. The spherical direction vector is defined 
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as 

€ 

Θ = cos(φ) sin(θ ),sin(φ) sin(θ ),cos(θ )[ ]T , where 

€ 

⋅[ ]T  
denotes the transpose of a vector or a matrix. 
 
In spherical coordinates the scalar Helmholtz wave 
equation is separable in equations with respect to zenith 
angle θ and azimuth angle φ, and with respect to radius 
r. The angular portions of this solution are conveniently 
combined into single functions called spherical 
harmonics, 

€ 

Yn
m (Θ) , which are defined as  

 
 

€ 

Yn
m (Θ) =

(2n +1)
4π

(n −m)!
(n +m)!

Pn
m (cosθ )eimφ , (1) 

 
where n and m denote the order and the degree of the 
spherical harmonics, respectively, 

€ 

Pn
m are the associated 

Legendre functions, and 

€ 

i = −1 . 
 
It can be shown [1-3] that the spherical harmonics are 
eigenfunctions for the two-dimensional surface of the 
sphere, which are mutually orthonormal when applying 
the normalization given in equation (1). The Condon-
Shortley phase, a multiplicative phase factor of 

€ 

−1( )m , is 
often included in the defining equation of 

€ 

Yn
m (Θ) . 

However, it is not necessary [4] and usually omitted in 
acoustics. 
 
Consider now the non-homogeneous Helmholtz wave 
equation with continuous excitation 

€ 

f (Θ)  on a sphere 
with a radius of 

€ 

rL , notated as, cf. [5,6] 
 
 

€ 

Δ + k 2( )p = − f (Θ) δ (r − rL )
rL
2 ,  (2) 

 
where Δ is the Laplacian, k is the wave number, p is the 
sound pressure, and δ(·) is the Dirac delta distribution. 
The homogeneous solution to this equation derives to 
 
 

€ 

p = bnm jn (kr)Yn
m (Θ)

m=−n

n

∑
n=0

∞

∑ , (3) 

 
with the spherical Bessel functions 

€ 

jn (kr)  and the 
spherical harmonic spectral coefficients 

€ 

bnm (kr) . The 
Fourier-Bessel expansion (FBE) of the wave field in 
equation (3) allows one to express any incident sound 
field. The particular solution to equation (2) is 
 
 

€ 

p = −ikψnmhn (krL ) jn (kr)Yn
m (Θ)

m=−n

n

∑
n=0

∞

∑ ,  (4) 

 
with 

€ 

hn (krL )  denoting the spherical Hankel functions. 
Assuming that the continuous excitation 

€ 

f (Θ)  is known 

on the sphere, the spherical wave spectral coefficients 

€ 

ψnm  can be determined utilizing forward harmonic 
transform analysis, see e.g. [7] 
 
 

€ 

ψnm = f (Θ)Yn
m (Θ)* dΘ

S2
∫ , (5) 

 
where the superscript 

€ 

(⋅)*  denotes complex conjugation. 
A comparison of equations (3) and (4) shows that any 
incident sound field can be synthesized by 
 
 

€ 

ψnm =
i
k

bnm
hn (krL )

.  (6) 

 
In vector-matrix notation equation (4) notates as, cf. [6] 
 
 

€ 

p = −iky(Θ)T diag j(kr){ }diag h(krL ){ }Ψ, (7) 
 
given the following definitions: 
 
 

  

€ 

Ψ = ψ00,…,ψnm ,…[ ]T ,   
 

  

€ 

y(Θ) = Y0
0 (Θ),…,Yn

m (Θ),…[ ]
T
,  

 

  

€ 

j(kr) = j0 (kr),…, jn (kr),…, jn (kr)
2n+1

       ,…
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

T

,   

 

  

€ 

h(kr) = h0 (kr),…,hn (kr),…,hn (kr)
2n+1

       ,…
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

T

,  

 
The spherical wave spectrum 

€ 

Ψ decomposes the wave 
field (e.g. the sound pressure) on the sphere of radius 

€ 

rL  
into its spherical wave components, which are also 
referred to as Ambisonic signals: 
 
 

€ 

Ψ = f (Θ)y(Θ)dΘ
S2
∫ .  (8) 

 
Ambisonic Encoding 
Given the above equations and the two-dimensional 
delta function on the sphere, which integrates to unity 
over the solid angle, we are now in the position to 
express a point source on a sphere with radius 

€ 

rL  as 

€ 

fS (Θ) = s δ (Θ−ΘS ) . Inserting this expression into 
equation (8) results in the Ambisonic encoding 
equation: 
 
 

€ 

ΨS = s δ (Θ−ΘS )y(Θ)dΘ
S2
∫ = s y(ΘS ). (9) 

 
Daniel has shown [8] that encoding sources at distances 

€ 

rS > rL  requires additional distance-dependent filters.  
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€ 

ΨS = s diag h(krL ){ }−1 diag h(krS ){ }y(ΘS ). (10) 
 
Even though these distance compensation filters are 
stable, in practical realization regularization is required. 
A detailed study on different regularization functions 
has been recently presented in [9]. 
 
Ambisonic Decoding 
For Ambisonic playback the surround loudspeakers are 
modeled as point sources at discrete positions 

€ 

Θ l{ } ,

  

€ 

l = 1…L , with the corresponding driving signals 

€ 

gl . 
Using the two-dimensional delta function the angular 
excitation 

€ 

ˆ f (Θ)  can be written as 
 
 

€ 

ˆ f (Θ) = δ (Θ−Θ l )gl
l=1

L

∑ . (11) 

 
Applying the FBE similar to equation (9) the Ambisonic 
representation of the loudspeaker contributions becomes 
 
 

€ 

ˆ Ψ = y(Θ l )gl
l=1

L

∑ = Yg,  (12) 

with 
 

  

€ 

g = g,…gL[ ]T ,  
 

  

€ 

Y = y(Θ1),…y(ΘL )[ ]T .  
 
With equation (12) the loudspeaker driving signals 

€ 

g  
can be computed from the Ambisonic signals 

€ 

Ψ by 
matching the sum of the FBEs of the contributing 
loudspeaker sources with the target field FBE, i.e. 

€ 

ˆ Ψ =ΨS . This is commonly referred to as mode 
matching in the literature [8]: 
 
 

€ 

g = DΨ. (13) 
 
In practice, matching the FBE coefficients requires a 
spatial band limitation, i.e. a truncation to a maximum 
order 

€ 

n ≤ N , which results in a matrix 

€ 

YN ∈ R
KxL  with

€ 

K = (N +1)2 . It is clear from equations (12) and (13) 
that determining the mode-matching decoding matrix 

€ 

D  
requires one to invert the matrix 

€ 

YN . In many cases this 
matrix is badly conditioned and a direct inversion is 
likely to fail. A well-established solution method is the 
singular value decomposition (SVD), which computes 
the generalized inverse of a matrix. Non-uniform and 
incomplete loudspeaker arrangements can cause very 
small but non-zero singular values and the computation 
of 

€ 

D  becomes numerically unstable. Reasonable mode 
matching requires regularization, which approximates 
solutions 

€ 

YND ≈ I  that are less sensitive to noise and 
perturbations than the naïve solutions. Tikhonov 

regularization and truncated SVD are often applied to 
solve this numerically rank-deficient problem, cf. [10]. 
 
Depending on the dimensions of 

€ 

YN  and the number of 
non-vanishing singular values, M, the decoding matrix 
has different properties, which can be summarized as 
discrete spherical harmonic transform (DSHT), discrete 
spherical harmonic interpolation (DSHI), and discrete 
spherical harmonic approximation (DSHA), cf. [11]. 
 
In practical implementations not only the existence of 
discretization schemes but also their numerical quality 
is of critical importance. The condition number provides 
a quality measure. As one would expect, well-
distributed points on the sphere yield low condition 
numbers and are thus well suited for the design of HOA 
decoder. 
 
In this work we investigated the following fundamental 
discretization schemes on the sphere, cf. [11]:  
• Extremal points for hyperinterpolation (hi); 
• Spiral points (sp); 
• Equal-area partitions (eqa); 
• HEALPix (healpix); 
• Gauss-Legendre grid (gl); 
• Equi-distant cylindrical grid (ecp); 
• Equi-angle grid (equiangle).  
 
Figure 1 summarizes the existence and kind of solutions 
for these point distributions on the sphere. It provides a 
classification into the above-mentioned three-part 
scheme for discrete spherical harmonics of order 

€ 

N = 9  
and a varying number of sampling points L. In this 
study, condition numbers less than 

€ 

χ (Y9) < 20dB are 
considered as to provide a pseudo-inverse without the 
need for regularization (i.e. DSHT and DSHI); greater 
condition numbers 

€ 

χ (Y9) > 20dB require regularization 
and thus result in an approximate solution (i.e. DSHA). 
 

 
Figure 1 – Comparison of various discretization 
schemes on the sphere for order N=9 with 
respect to the number of loudspeakers L [11]. 
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It can be seen from figure 1, that most discretization 
schemes only allow for DSHA near the critical number 
of sampling nodes, i.e. 

€ 

L = (N +1)2 ; only the extremal 
system of points for numerical integration on the sphere 
(hyperinterpolation) provides an exact and well-
conditioned inverse (DSHT and DSHI). 
 
Figure 2 illustrates the condition numbers for different 
arrays with 75 loudspeakers on the upper hemisphere 
(including loudspeakers at the equator) applying the 
abovementioned discretization schemes. For computing 
the condition numbers the hemispherical array is 
completed to a full sphere by adding virtual speakers at 
positions mirrored across the equator of the sphere; see 
[12] for a more detailed description. This results in 121 
points on the sphere and thus fulfills the requirements 
for applying spherical harmonic expansions for 

€ 

N ≤ 10 . 
The figure clearly shows that the performance with 
respect to the condition number of hyperinterpolation, 
spiral points, and equal-area partitions is qualitatively 
equivalent for orders lower than the critical sampling 
case. They result in well-conditioned matrices and 
clearly outperform the other discretization schemes. 
 

 
Figure 2 – Condition number 

€ 

χ  of different 
fundamental spherical discretization schemes 
for a virtual set of 121 points on the sphere. 

 
It should be noted that only hyperinterpolation is well 
conditioned in the critical sampling case, i.e. for 

€ 

N = 10  
in this example. This is also reflected in the results 
depicted in figure 1. Point sets for hyperinterpolation do 
not exist for all spherical harmonic orders, especially for 

€ 

N > 80, and number of loudspeakers. However, in 
practice it is not feasible to implement 3D speaker 
arrays for very high orders. We thus consider the set of 
extremal points for hyperinterpolation as a lower bound 
for the condition number of loudspeaker arrangements 
for Ambisonic sound reproduction. 

ARRAY IMPLEMENTATION 
Figure 5 (see Appendix) illustrates the 350-loudspeaker 
array for sound field reproduction that has been installed 
in ESPRO. The four horizontal (linear) arrays consist of 
a total of 280 independently controlled speakers at a 
heigth of 2.20m; the distance between the speakers is 
16cm for the front/back arrays and 29cm for the side 
arrays. For 3D sound reproduction the horizontal array 
is complemented by a rectangular loudspeaker array; a 
detailed discussion on the design of this array is given 
below. 
 
Amadeus PMX-5 ES/A loudspeakers are used for the 
implementation of the array. The PMX-5 is a compact 
coaxial speaker with a 5.25-inch neodymium woofer 
1.5-inch diaphragm compression driver. For full-band 
sound reproduction, audio signals below 100 Hz are 
sent via crossover to 8 subwoofers (db-audio Q-series). 
 

 
Figure 3 – Audio processing and signal routing 
structure. 

 
The loudspeaker array is interfaced to a computer 
cluster in a sound isolated room using Ethersound audio 
networking; for audio connections in the server room 
MADI and ADAT is used. A 512 x 512 channel (8-port) 
MADI routing matrix distributes the audio output 
channels to the loudspeakers. It allows to combine 
individual channels to any output destination and thus to 
use different audio systems simultaneously, e.g. WFS 
for two-dimensional and HOA for three-dimensional 
spatial sound reproduction. Figure 3 illustrates the audio 
processing and signal routing structure. 
 
Ambisonic loudspeaker array 
The previous sections showed that the numerical quality 
of discretization schemes is of critical importance for 
the practical implementation of a loudspeaker array for 
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HOA. In addition, the movable ceiling panels, roller 
curtains, lighting bridges, and rotatable absorber prisms 
put strong constraints on the speaker positions. Figure 4 
illustrates the design process for an optimal speaker 
array. First, an architectural model of the room with all 
possible speaker positions and orientations is created. 
Second, an optimal source distribution grid, which is 
defined on a circumscribed sphere, is projected to the 
walls of the room. Third, a nearest neighbor search 
algorithm is used to find the closest possible speaker 
positions and the condition number is computed for this 
array. Simulations for different discretization schemes 
on the sphere have been performed in order to find a 
speaker distribution that is well suited for HOA 
playback. For simulations the number of loudspeakers 
was limited to 75 in the upper hemisphere including 
speaker positions at the equator, i.e. the horizontal 
speaker arrays. Figure 2 shows that the implemented 
array structure is well conditioned for 3D HOA 
reproduction up to 

€ 

N = 9  and that its condition number 
is qualitatively equivalent to those of the optimized 
source distributions on the sphere. 

 
Figure 4 – Projection of an optimal source 
distribution on a circumscribed sphere to the 
walls of ESPRO. 

 
Ambisonic decoder 
The two common approaches for designing HOA 
decoders are mode matching and direct sampling. The 
first calculates the loudspeaker driving signals by 
matching the sum of the FBE coefficients, i.e. the modal 
source strengths, of the contributing loudspeakers to 
those of the target sound field, cf. equation (13). The 
second samples the continuous spherical harmonic 
excitation at the loudspeaker positions. When decoding 
Ambisonics to incomplete or partial spherical 
loudspeaker arrays, both mode matching and sampling 
decoders result in loudness variations for regions with 
sparse loudspeaker coverage. In the given loudspeaker 
setup the southern hemisphere is not considered for 

playback; thus the energy loss for virtual sources from 
directions below is no problem. 
 
HOA only allows for error-free sound reproduction in a 
very restricted area, called the sweet spot, cf. [13] and 
[14]. Three-dimensional holophony is not feasible for 
the entire auditorium. For this reason, energy-preserving 
decoding methods have been recently presented [6], 
which interpret Ambisonics decoding as a panning law 
and preserve the energy over the entire angular domain. 
They have been shown to be numerically stable and 
feasible on the hemisphere. Alternative methods for 
hemispherical Ambisonics decoding, e.g. using a 
modified set of basis functions, have been presented in 
[12]. The horizontal 280-loudspeaker array provides a 
very dense grid of speakers and is used for two-
dimensional sound field reproduction with both WFS 
and HOA.  
 
The different decoding methods are implemented in 
IRCAM’s real-time signal processing library for sound 
spatialization. When evaluating the spherical harmonic 
expansions for higher-degrees the computation of the 
associated Legendre functions (ALF) might fail. An 
existing recursion method for computing ALFs, c.f. 
[15], has been implemented and first numerical tests 
suggest that this approach is precise and numerically 
stable. In addition, near-field compensation (NFC) 
filters for the reproduction of monopole sources, cf. [8], 
with different regularization functions, cf. [9], have 
been implemented.  
 
CONCLUSION 
In this paper we discussed various aspects of the design 
and implementation of a 350-loudspeaker array in 
IRCAM’s variable acoustics concert hall. This array 
aims at 2D/3D holophonic sound reproduction using 
WFS and/or HOA. Different discretization schemes and 
their effect on the numerical quality of the HOA 
decoder have also been discussed. The results have then 
been applied to the design of a feasible and well-
conditioned grid of loudspeakers for this room. It should 
be noted that we are currently evaluating the 
performance of the real-time processing library using 
the full array. Measurements and sound field 
reproduction error analysis is ongoing. 
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APPENDIX 

 
Figure 5 – 350-loudspeaker WFS/HOA array in 
ESPRO: vertical sections of the north wall 
(upper), the east wall (middle), and top view 
(lower) 


