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ABSTRACT

This paper investigates differences in the gestures people
relate to pitched and mon-pitched sounds respectively. An
experiment has been carried out where participants were
asked to move a rod in the air, pretending that moving it
would create the sound they heard. By applying and in-
terpreting the results from Canonical Correlation Analysis
we are able to determine both simple and more complex
correspondences between features of motion and features of
sound in our data set. Particularly, the presence of a dis-
tinct pitch seems to influence how people relate gesture to
sound. This identification of salient relationships between
sounds and gestures contributes as a multi-modal approach
to music information retrieval.

Categories and Subject Descriptors

H.5.5 Information Interfaces and Presentation]: Sound
and Music Computing—=Signal analysis, synthesis, and pro-
cessing

Keywords

Sound Tracing, Cross-Modal Analysis, Canonical Correla-
tion Analysis

1. INTRODUCTION

In recent years, numerous studies have shown that ges-
ture, understood here as voluntary movement of the body
produced toward some kind of communicative goal, is an im-
portant element of music production and perception. In the
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case of the former, movement is necessary in performance
on acoustic instruments, and is increasingly becoming an
important component in the development of new electronic
musical interfaces [17]. As regards the latter, movement
synchronized with sound has been found to be a universal
feature of musical interactions across time and culture [14].
Research has shown both that the auditory and motor re-
gions of the brain are connected at a neural level, and that
listening to musical sounds spontaneously activates regions
responsible for the planning and execution of movement, re-
gardless of whether or not these movements are eventually
carried out [4].

Altogether, this evidence points to an intimate link be-
tween sound and gesture in human perception, cognition,
and behavior, and highlights that our musical behavior is
inherently multimodal. To explain this connection, Godgy
[6] has hypothesized the existence of sonic-gestural objects,
or mental constructs in which auditory and motion elements
are correlated in the mind of the listener. Indeed, various
experiments have shown that there are correlations between
sound characteristics and corresponding motion features.

Godgy et al. [7] analyzed how the morphology of sonic
objects was reflected in sketches people made on a digital
tablet. These sketches were referred to as sound tracings. In
the present paper, we adopt this term and expand it to mean
a recording of free-air movement imitating the perceptual
qualities of a sound. The data from Godgy’s experiments
was analyzed qualitatively, with a focus on the causality
of sound as impulsive, continuous, or iterative, and showed
supporting results for the hypothesis of gestural-sonic ob-
jects.

Godgy and Jensenius [8] have suggested that body move-
ment could serve as a link between musical score, the acous-
tic signal and aesthetic perspectives on music, and that body
movement could be utilized in search and retrieval of music.
For this to be possible, it is essential to identify pertinent
motion signal descriptors and their relationship to audio sig-
nal descriptors. Several researchers have investigated mo-
tion signals in this context. Camurri et al. [1] found strong
correlations with the quantity of motion when focusing on
recognizing expressivity in the movement of dancers. Fur-



thermore, Merer et al. [12] have studied how people labeled
sounds using causal descriptors like “rotate”, “move up”, etc.,
and Eitan and Granot studied how listeners’ descriptions of
melodic figures in terms of how an imagined animated car-
toon would move to the music [5]. Moreover, gesture fea-
tures like acceleration and velocity have been shown to play
an important role in synchronizing movement with sound
[10]. Dimensionality reduction methods have also been ap-
plied, such as Principal Component Analysis, which was
used by MacRitchie et al. to study pianists’ gestures [11].

Despite ongoing efforts to explore the exact nature of the
mappings between sounds and gestures, the enduring prob-
lem has been the dearth of quantitative methods for ex-
tracting relevant features from a continuous stream of audio
and motion data, and correlating elements from both while
avoiding a priori assignment of values to either one. In
this paper we will expand on one such method, presented
previously by the second author [2], namely the Canonical
Correlation Analysis (CCA), and report on an experiment
in which this method was used to find correlations between
features of sound and movement. Importantly, as we will
illustrate, CCA offers the possibility of a mathematical ap-
proach for selecting and analyzing perceptually salient sonic
and gestural features from a continuous stream of data, and
for investigating the relationship between them.

By showing the utility of this approach in an experimen-
tal setting, our long term goals are to quantitatively ex-
amine the relationship between how we listen and how we
move, and to highlight the importance of this work toward
a perceptually and behaviorally based multimodal approach
to music information retrieval. The study presented in the
present paper contributes by investigating how people move
to sounds with a controlled sound corpus, with an aim to
identify one or several sound-gesture mapping strategies,
particularly for pitched and non-pitched sounds.

The remainder of this paper will proceed as follows. In
Section 2 we will present our experimental design. Section
3 will give an overview of our analytical methods, including
a more detailed description of CCA. In Sections 4 and 5 we
will present the results of our analysis and a discussion of
our findings, respectively. Finally, Section 6 will offer a brief
conclusion and directions for future work.

2. EXPERIMENT

We have conducted a free air sound tracing experiment to
observe how people relate motion to sound. 15 subjects (11
male and 14 female) participated in the experiment. They
were recruited among students and staff at the university. 8
participants had undergone some level of musical training, 7
had not. The participants were presented with short sounds,
and given the task of moving a rod in the air as if they were
creating the sound that they heard. Subjects first listened to
each sound two times (more if requested), then three sound
tracing recordings were made to each sound using a motion
capture system. The recordings were made simultaneously
with sound playback after a countdown, allowing synchro-
nization of sound and motion capture data in the analysis
process.

2.1 Sounds

For the analysis presented in this paper, we have chosen to
focus on 6 sounds that had a single, non-impulsive onset. We
make our analysis with respect to the sound features pitch,

loudness and brightness. These features are not independent
from each other, but were chosen because they are related
to different musical domains (melody, dynamics, and tim-
bre, respectively); we thus suspected that even participants
without much musical experience would be able to detect
changes in all three variables, even if the changes occurred
simultaneously. The features have also been shown to be
pertinent in sound perception [13, 16]. Three of the sounds
had a distinct pitch, with continuously rising or falling en-
velopes. The loudness envelopes of the sounds varied be-
tween a bell-shaped curve and a curve with a faster decay,
and also with and without tremolo. Brightness envelopes of
the sounds were varied in a similar manner.

The sounds were synthesized in Max/MSP, using subtrac-
tive synthesis in addition to amplitude and frequency mod-
ulation. The duration of the sounds were between 2 and 4
seconds. All sounds are available at the project website *

2.2 Motion Capture

A NaturalPoint Optitrack optical marker-based motion
capture system was used to measure the position of one end
of the rod. The system included 8 Flex V-100 cameras, op-
erating at a rate of 100 frames per second. The rod was ap-
proximately 120 cm long and 4 cm in diameter, and weighed
roughly 400 grams. It was equipped with 4 reflective mark-
ers in one end, and participants were instructed to hold the
rod with both hands at the other end. The position of in-
terest was defined as the geometric center of the markers.
This position was streamed as OSC data over a gigabit eth-
ernet connection to another computer, which recorded the
data and controlled sound playback. Max/MSP was used
to record motion capture data and the trigger point of the
sound file into the same text file. This allowed good syn-
chronization between motion capture data and sound data
in the analysis process.

3. ANALYSIS METHOD

3.1 Data Processing

The sound files were analyzed using the MIR toolbox for
Matlab by Lartillot et al.? We extracted feature vectors de-
scribing loudness, brightness and pitch. Loudness is here
simplified to the RMS energy of the sound file. Brightness
is calculated as the amount of spectral energy correspond-
ing to frequencies above 1500 Hz. Pitch is calculated based
on autocorrelation. As an example, sound descriptors for a
pitched sound is shown in Figure 1.

The position data from the OptiTrack motion capture sys-
tem contained some noise; it was therefore filtered with a
sliding mean filter over 10 frames. Because of the big inertia
of the rod (due to its size), the subjects did not make very
abrupt or jerky motion, thus the 10 frame filter should only
have the effect of removing noise.

From the position data, we calculated the vector magni-
tude of the 3D velocity data, and the vector magnitude of
the 3D acceleration data. These features are interpreted as
the velocity independent from direction, and the accelera-
tion independent from direction, meaning the combination
of tangential and normal acceleration. Furthermore, the ver-

"http://folk.uio.no/krisny /mirum2011

*http://www.jyu.fi/hum/laitokset /musiikki/en /research/
coe/materials/mirtoolbox
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Figure 1: Sound descriptors for a sound with falling
pitch (normalized).

tical position was used as a feature vector, since gravity and
the distance to the floor act as references for axis direction
and scale of this variable. The horizontal position axes, on
the other hand, do not have the same type of positional
reference. The subjects were not instructed in which direc-
tion to face, nor was the coordinate system of the motion
capture system calibrated to have the same origin or the
same direction throughout all the recording sessions, so dis-
tinguishing between the X and Y axes would be inaccurate.
Hence, we calculated the mean horizontal position for each
recording, and used the distance from the mean position
as a one-dimensional feature describing horizontal position.
All in all, this resulted in four motion features: horizontal
position, vertical position, velocity, and acceleration.

3.2 Canonical Correlation Analysis

CCA is a common tool for investigating the linear rela-
tionships between two sets of variables in multidimensional
reduction. If we let X and Y denote two datasets, CCA finds
the coefficients of the linear combination of variables in X
and the coefficients of the linear combination of variables
from Y that are maximally correlated. The coefficients of
both linear combinations are called canonical weights and
operate as projection vectors. The projected variables are
called canonical components. The correlation strength be-
tween canonical components is given by a correlation co-
efficient p. CCA operates similarly to Principal Compo-
nent Analysis in the sense that it reduces the dimension of
both datasets by returning IV canonical components for both
datasets where N is equal to the minimum of dimensions in
X and Y. The components are usually ordered such that
their respective correlation coefficient is decreasing. A more
complete description of CCA can be found in [9]. A prelimi-
nary study by the second author [2] has shown its pertinent
use for gesture-sound cross-modal analysis.

As presented in Section 3.1, we describe sound by three
specific audio descriptors® and gestures by a set of four kine-
matic parameters. Gesture is performed synchronously to
sound playback, resulting in datasets that are inherently
synchronized. The goal is to apply CCA to find the lin-
ear relationships between kinematic variables and audio de-
scriptors. If we consider uniformly sampled datastreams,
and denote X the set of m; gesture parameters (m; = 4)
and Y the set of ma audio descriptors (mz2 = 3), CCA finds
two projection matrices A = [a;...ay] € (R™)" and

3 As will be explained later, for non-pitched sounds we omit
the pitch feature, leaving only two audio descriptors.

B = [bi...bx] € (R™)" such that Yh € 1..N, the cor-
relation coefficients p, = correlation(Xap, Yby) are max-
imized and ordered such that p1 > .-+ > py (where N =
min(mi,mz)).

A closer look at the projection matrices allows us to in-
terpret the mapping. The widely used interpretation meth-
ods are either by inspecting the canonical weights, or by
computing the canonical loadings. In our approach, we in-
terpret the analysis by looking at the canonical loadings.
Canonical loadings measure the contribution of the origi-
nal variables in the canonical components by computing the
correlation between gesture parameters X (or audio descrip-
tors Y) and its corresponding canonical components XA
(or YB). In other words, we compute the gesture parame-
ter loadings 17, = (corr(xi,up)) for 1 <i<my,1<h <N
(and similarly 17, for audio descriptors). High values in 1,
or 17, indicate high correlation between realizations of the
i-th kinematic parameter x; and the h-th canonical compo-
nent uy,. Here we mainly focused on the first loading coef-
ficients h = 1,2 that explain most of the covariance. The
corresponding py, is the strength of the relationship between
the canonical components u, and v, and informs us on how
relevant the interpretation of the corresponding loadings is.

The motion capture recordings in our experiment started
0.5 seconds before the sound, allowing for the capture of any
preparatory motion by the subject. The CCA requires fea-
ture vectors of equal length; accordingly, the motion features
were cropped to the range between when the sound started
and ended, and the sound feature vectors were upsampled to
the same number of samples as the motion feature vectors.

4. RESULTS

We will present the results from our analysis starting with
looking at results from pitched sounds and then move on to
the non-pitched sounds. The results from each sound trac-
ing are displayed in the form of statistical analysis of all the
results related to the two separate groups (pitched and non-
pitched). In Figures 2 and 3, statistics are shown in box
plots, displaying the median and the population between
the first and third quartile. The rows in the plots show
statistics for the first, second and third canonical compo-
nent, respectively. The leftmost column displays the overall
correlation strength for the particular canonical component
(pn), the middle column displays the sound feature loadings
(l?’ 1), and the rightmost column displays the motion feature
loadings (17 ,). The + marks denote examples which are con-
sidered outliers compared with the rest of the data. A high
value in the leftmost column indicates that the relationship
between the sound features and gesture features described
by this canonical component is strong. Furthermore, high
values for the sound features loudness (Lo), brightness (Br),
or pitch (Pi), and the gesture features horizontal position
(HP), vertical position (VP), velocity (Ve), or acceleration
(Ac) indicates a high impact from these on the respective
canonical component. This is an indication of the strength
of the relationships between the sound features and motion
features.

4.1 Pitched Sounds

The results for three sounds with distinct pitch envelopes
are shown in Figure 2. In the top row, we see that the me-
dian overall correlation strength of the first canonical com-
ponents is 0.994, the median canonical loading for pitch is
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Figure 2: Box plots of the correlation strength

and canonical loadings for three pitched sounds.
Pitch (Pi) and wvertical position (VP) have a signif-
icantly higher impact on the first canonical compo-
nent than the other parameters. This indicates a
strong correlation between pitch and vertical posi-
tion for pitched sounds. The remaining parameters
are: loudness (Lo), brightness (Br), horizontal posi-
tion (HP), velocity (Ve) and acceleration (Ac).

0.997 and for vertical position 0.959. This indicates a strong
correlation between pitch and vertical position in almost all
the sound tracings for pitched sounds. The overall correla-
tion strength for the second canonical component (middle
row) is 0.726, and this canonical function suggests a certain
correlation between the sound feature loudness and motion
features horizontal position and velocity. The high variances
that exist for some of the sound and motion features may
be due to two factors: If some of these are indeed strong
correlations, they may be less strong than the pitch-vertical
position correlation For this reason, some might be perti-
nent to the 2nd component while others are pertinent to the
1st component. The second, and maybe the most plausible,
reason for this is that these correlations may exist in some
recordings while not in others. This is a natural consequence
of the subjectivity in the experiment.

4.2 Non-pitched Sounds

Figure 3 displays the canonical loadings for three non-
pitched sounds. The analysis presented in this figure was
performed on the sound features loudness and brightness,
disregarding pitch. With only two sound features, we are
left with two canonical components. This figure shows no
clear distinction between the different features, so we will
need to look at this relationship in more detail to be able
to find correlations between sound and motion features for
these sound tracings.

For a more detailed analysis of the sounds without dis-
tinct pitch we investigated the individual sound tracings per-
formed to non-pitched sounds. Altogether, we recorded 122
sound tracings to the non-pitched sounds; considering the
first and second canonical component of these results gives
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Figure 3: Box plots of the correlation and canonical
loadings for three sounds without distinct pitch.

a total of 244 canonical components. We wanted to analyze
only the components which show a high correlation between
the sound features and motion features, and for this reason
we selected the subset of the components which had an over-
all correlation strength (p) higher than the lower quartile,*
which in this case means a value < 0.927. This gave us a
total of 99 components.

These 99 components all have high p-values, which sig-
nifies that they all describe some action-sound relationship
well; however, since the results from Figure 3 did not show
clearly which sound features they describe, we have analyzed
the brightness and loudness loadings for all the recordings.
As shown in Figure 4, some of these canonical components
describe loudness, some describe brightness, and some de-
scribe both. We applied k-means clustering to identify the
three classes which are shown by different symbols in Figure
4. Of the 99 canonical components, 32 describe loudness, 30
components describe brightness, and 37 components showed
high loadings for both brightness and loudness.

Having identified the sound parameters’ contribution to
the canonical components, we can further inspect how the
three classes of components relate to gestural features. Fig-
ure 5 shows the distribution of the gesture loadings for hor-
izontal position, vertical position and wvelocity for the 99
canonical components. Acceleration has been left out of this
plot, since, on average, the acceleration loading was lowest
both in the first and second component for all sounds. In
the upper part of the plot, we find the canonical components
that are described by vertical position. The right part of the
plot contains the canonical components that are described
by horizontal position. Finally the color of each mark de-
notes the correlation to velocity ranging from black (0) to
white (1). The three different symbols (triangles, squares
and circles) refer to the same classes as in Figure 4.

From Figure 5 we can infer the following:

e For almost every component where the canonical load-
ings for both horizontal and vertical positions are high
(cf. the upper right of the plot), the velocity loading
is quite low (the marks are dark). This means that
in the instances where horizontal and vertical position
are correlated with a sound feature, velocity usually is
not.

“The upper and lower quartiles in the figures are given by
the rectangular boxes
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Figure 4: Scatter plot showing the distribution of
the sound feature loadings for brightness and loud-
ness. Three distinct clusters with high coefficients
for brightness, loudness, or both, are found.

e The lower left part of the plot displays the components
with low correlation between sound features and hori-
zontal /vertical position. Most of these dots are bright,
indicating that velocity is an important part in these
components.

e Most of the circular marks (canonical components de-
scribing brightness) are located in the upper part of
the plot, indicating that brightness is related to verti-
cal position.

The triangular marks (describing loudness) are dis-
tributed all over the plot, with a main focus on the
right side. This suggests a tendency towards a correla-
tion between horizontal position and loudness. What
is even more interesting is that almost all the triangu-
lar dots are bright, indicating a relationship between
loudness and velocity.

e The square marks (describing both loudness and bright-
ness) are mostly distributed along the upper part of the
plot. Vertical position seems to be the most relevant
feature when the canonical component describes both
of the sound features.

S. DISCUSSION

As we have shown in the previous section, there is a very
strong correlation between vertical position and pitch for
all the participants in our data set. This relationship was
also suggested when the same data set was analyzed using a
Support Vector Machine classifier [15], and corresponds well
with the results previously presented by Eitan and Granot
[5]. In our interpretation, there exists a one-dimensional
intrinsic relationship between pitch and vertical position.

For non-pitched sounds, on the other hand, we do not find
such prominent one-dimensional mappings for all subjects.

Distribution of gesture loadings for canonical components (non-pitched sounds)
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Figure 5: Results for the 99 canonical components
that had high p-values. X and Y axes show correla-
tion for horizontal position and vertical position, re-
spectively. Velocity correlation is shown as grayscale
from black (0) to white (1). The square boxes de-
note components witch also are highly correlated to
brightness.

The poor discrimination between features for these sounds
could be due to several factors, one of which is that there
could exist non-linear relationships between the sound and
the motion features that the CCA is not able to unveil. Non-
linearity is certainly plausible, since several sound features
scale logarithmically. The plot in Figure 6, which shows a
single sound tracing, also supports this hypothesis, wherein
brightness corresponds better with the squared values of the
vertical position than with the actual vertical position. We
would, however, need a more sophisticated analysis method
to unveil non-linear relationships between the sound features
for the whole data set.

Furthermore, the scatter plot in Figure 5 shows that there
are different strategies for tracing sound. In particular, there
are certain clustering tendencies that might indicate that lis-
teners select different mapping strategies. In the majority
of cases we have found that loudness is described by ve-
locity, but also quite often by the horizontal position fea-
ture. Meanwhile, brightness is often described by vertical
position. In one of the sounds used in the experiment the
loudness and brightness envelopes were correlated to each
other. We believe that the sound tracings performed to this
sound were the main contributor to the class of canonical
components in Figures 4 and 5 that describe both bright-
ness and loudness. For this class, most components are not
significantly distinguished from the components that only
describe brightness. The reason for this might be that peo-
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squared value, suggesting a non-linear relationship.

ple tend to follow brightness more than loudness when the
two envelopes are correlated.

In future applications for music information retrieval, we
envision that sound is not only described by audio descrip-
tors, but also by lower-level gesture descriptors. We par-
ticularly believe that these descriptors will aid to extract
higher-level musical features like affect and effort. We also
believe that gestures will play an important role in search
and retrieval of music. A simple prototype for this has al-
ready been prototyped by the second author [3]. Before
more sophisticated solutions can be implemented, there is
still a need for continued research on relationships between
perceptual features of motion and sound.

6. CONCLUSIONS AND FUTURE WORK

The paper has verified and expanded the analysis results
from previous work, showing a very strong correlation be-
tween pitch and vertical position. Furthermore, other, more
complex relationships seem to exist between other sound and
motion parameters. Our analysis suggests that there might
be non-linear correspondences between these sound features
and motion features. Although inter-subjective differences
complicate the analysis process for these relationships, we
believe some intrinsic action-sound relationships exist, and
thus it is important to continue this research towards a cross-
modal platform for music information retrieval.

For future directions of this research, we propose to per-
form this type of analysis on movement to longer segments of
music. This implies a need for good segmentation methods,
and possibly also methods like Dynamic Time Warping to
compensate for any non-synchrony between the sound and
people’s movement. Furthermore, canonical loadings might
be used as input to a classification algorithm, to search for
clusters of strategies relating motion to sound.
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